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The topological complexity of sets of convex
differentiable functions.

Mohammed YAHDI

Abstract

Let C(X) be the set of all convex and continuous functions
on a separable infinite dimensional Banach space X, equipped
with the topology of uniform convergence on bounded subsets of
X. We show that the subset of all convex Fréchet-differentiable
functions on X, and the subset of all (not necessarily equivalent)
Fréchet-differentiable norms on X, reduce every coanalytic set, in
particular they are not Borel-sets.

1 Introduction

Let X be an infinite dimensional Banach space. We denote by IN(X) the
set of all equivalent norms on X. This space is topologically metrizable
complete when equipped with the uniform convergence on bounded
subsets of X. Recently, the topological nature of some collections of
norms has been investigated : In [1], the collection of all uniformly rotund
norms in every direction on a separable space with a basis was shown to
be coanalytic non Borel for the Effros-Borel structure, as well as the set
of all weakly locally uniformly rotund norms (see (2], [3]).

More recently, it is showed in {12] that the set of all Gateaux-smooth
norms reduces any coanalytic subset of a Polish space M through a
continuous function in IN(X). This implies of course that this set is
coanalytic complete when IN(X) is equippped with the Effros-Borel
structure (see [6], [16] for the definition of this notion).
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In a third article [4], the locally uniformly rotund norms are investi-
gated. Recall that an equivalent norm ||.|| on a Banach space X is localy
uniformly rotund (in short, L.U.R.) if whenever z € X and a sequence
(zn) in X satisfy :

. 2 2 2
Llim 22l + lzall®) = 12 + 2al* = 0,

one has

Jim e = 2] = 0.

In [4] it was shown by combining the methods of [12] with
a classical topological theorem due to Hurewicz [11] and its extensions
((13],[14]), that a similar result is obtained for the L.U.R. norms when
X is separable. Moreover for the case when X* is separable we have the
following result for L.U.R. dual-norms (see [4]) :

Theorem 1. Let X be an infinite dimensional Banach space such that
X* is separable. Let M be a Polish space, and A an analytic subset of
M. Then there exists a continuous map A : M — IN(X) such that:

(1) If t € A, then the norm A(t) = |.||, is not everywhere Géteauz-
differentiable.

(i3) Ift ¢ A, then the dual norm A*(t) = ||.||; is L.U.R.

In particular, since a norm whose dual norm is L.U.R. is Fréchet-
differentiable ({9}, p.43), it follows that if X is a separable infinite
dimensional Banach space such that X* is separable, then the set of
all equivalent Fréchet-differentiable norms on X \ {0} and the set of
all convex continuous and Fréchet-differentiable functions on X are not
Borel subsets of C(X).

The aim of this work is to show a similar result for every separable
infinite dimensional Banach space (theorem 2, corollary 7 and 8).

2 Notations and definitions

Let X be a Banach space. We denote by C(X) the set of all convex
and continuous functions on X. This set is topologically metrizable and
complete when equipped with the topology of uniform convergence on
bounded subsets of X. By S(X) (resp. B(X)) we denote the unit sphere
(resp. the unit ball) of X.
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A norm .|| on X is Géateaux-differentiable at a non zero point z of
X, if for every h € X,

thil —
o et ehl — o]
t—0 t

exists.

An equivalent reformulation for z € S(X), is that there is a unique
f € S(X*) such that f(z) = 1 ([9], p. 5). In this case we say that f
is the differential of the norm ||.|| at z. This norm will be said Fréchet-
differentiable at z if the limit above exists uniformly for A € S(X).

A norm is said Gateaux-differentiable (resp. Fréchet-differentiable),
if it is Gateaux-differentiable (resp. Fréchet-differentiable) at all non zero
points of X.

3 Results

Theorem 2 is the main result of this work, its proof relies in part on the
proof of Theorem 1 mentioned above.

Theorem 2. Let X be a separable infinite dimensional Banach space.
Let M be a Polish space and A an analytic subset of M. Then there is
a continuous map I' : M — C(X) such that:

(?) If t € A, then the function I'(t) is not everywhere Géteauz
differentiable.

(1) If t € A, then the function T'(t) is Fréchet-differentiable.

Proof of Theorem 2:

The proof is divided into two cases according to whether X* has
or has not the Schur property. Remember that a Banach space has the
Schur property if every weakly convergent sequence is norm convergent.

1% case : X* has the Schur property.

Then in particular X* contains an isomorphic subspace to £;(IN)
([10], p. 112). Moreover, since X is separable we deduce that co(IN) is
isomorphic to a quotient space of X ([15], p.104). Hence, there exists a
surjective operator T from X onto ¢o(IN) .

On the other hand, Theorem 1 applied to the Banach space co(IN)
implies that there exists a continous map A : M — IN(¢o(IN)) such that:
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(#) ¥t ¢ A, the norm A(t) = ||}, is Fréchet-differentiable on
co(M)\ {0}.
(¢¢) If t € A, the norm A(t) = |||, is not Géteaux-differentiable at

some points of c¢o(IN) \ {0}.
We define the map I' : M — C(X) by ,

()= T2

Fact 1. Ift € A, the function I'(t) is Fréchet-differentiable on X.

Indeed, it is the composition of Fréchet-differentiable functions since
the function ||"f is Fréchet-differentiable on cp(IN).

Fact 2. Ift € A, the function ['(t) is not Giteauz-differentiable at some
points of X.

Let tp € A and let zg be a non zero point of cg(IN) where the norm
I-l;, is not Gateaux-differentiable. T being surjective, we consider g €
X such that T'(zo) = z0 . Assume that the function I'(tg) = IIT()"?0 is
Gateaux-differentiable at z. Then the function || 7'(.) |, is also Gateaux-
differentiable at zq since T'(zg) = 2 is non zero. It follows that for all
heX,

sy IT (o + th)ll? = 1T (zo)lls,

Hence for all £ € co(IN)

exists.

o =0+t = ol

exists,
t—0 t

since T is surjective.

In other words, the norm ||.||,, is Gateaux-differentiable at zo. It is a
contradiction , thus the function I'(¢g) is not Gateaux-differentiable at
zg.

27 cage :X* has not the Schur property.

In this case, we use the same idea as in the proof of the first case,
namely, to find a Banach space Y whose dual is separable and an
appropriate operator T' from X to Y. Then we consider the functions
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|7°(.)}l; on X where the collection of the norms ||.||, on Y is appropriately
given by Theorem 1. To have (ii) , T has to be “nearly surjective”
(with dense range) and if the norm |.|, is not everywhere Gateaux-
differentiable, it is necessarily not Gateaux-differentiable at some points

of T(X) .

Fact 3. There ezists a separable reflexive Banach sapce Y and a non
compact operator T from X to Y with dense range .

Proof. Since X* fails the Schur property, there exists a subset C in X
which is w-compact but not norm-compact. We put

K = tonv(C U (=C))

which is also w-compact ([18], II.c.8) but not norm-compact. Let Eg
be the vector space generated by K equipped with the norm jx (the
Minkowski functional of K). Then Ex is a Banach space since K
is w-compact. Indeed, let (zn)n>0 be a jg-Cauchy sequence in Eg.
Then for every integer p, there exists an integer N(p) such that z, €
(xn(p) + P LK) for every integer ¢ > N(p). We put

Kp=zn@p) + pK.

It is clear that every finite intersection of K, is non empty, and so by
compactness, (| K, # 0. It is easy to check that [} Kp = {zo} and
p>0 p>0

that jx — liyrln ZTn = Too. Thus, (Ek,jk) is a Banach space.

Consider now the canonical injection ¢ : Ex — X*, which is
w-compact and not norm-compact because i(B(Eg)) = K. By the
interpolation theorem of Davis-Figiel-Johnson-Pelczynski (see [7] ou [18],
IL.c.5), there exists a reflexive space R and two operators o : Ex — R
and 8: R — X* such that i = Ba.

In particular, 8 is not norm-compact since the operator i = Ba is
not. Moreover 3 is w*-continuous since R is reflexive. Hence, there exists
an operator fg : X — R* such that 8 = 3§ and then, like 3, (o is not
norm-compact (see {18], 1.A.15).

Weput Y = Bo(X) and T = fBp : X — Y. It easily checked that Y
and T work. This prove the fact 3.

83
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Let Z be a fixed closed hyperplane of Y. We write Y = IR® Z. Since
Z is a separable reflexive Banach space, we may and do assume that Z

is equipped with an equivalent L.U.R. norm |.| whose dual norm |.|* is
also L.U.R. (see [9], p. 55).

Fact 4. Xg = T~ Y(Z) is a hyperplane of X.

Indeed, let @ be the quotient map from Y onto Y/Z. If we consider
the operator T = QoT defined from X to Y/Z, then since dim(Y/Z) = 1
and T has dense range, the operator T' corresponds to a non zero element
of X* and therefore, ker T = T~1(Z) = X is a hyperplane of X.

Now if we call Ty the restriction of T on the hyperplane Xy, it is
clear that Ty is also a non-compact operator.
From now on, we denote (0, z) € Y the element 2z € Z

Fact 5. There exists a weakly closed subset F in the unit sphere S(Z)
such that F C S(Z) NTo(Xo) and F is weakly homeomorphic to NN

To prove that fact, we need the following theorem (see {17}, [14], [13]
p. 133) :

Theorem 3. Let E be a metrizable compact set, A an analytic subset
of E and B a subset of E having an empty intersection with A. If there

ezists no Fg subset of E containing A and having empty intersection with
B, then there exists a subset K of E included in AUB and homeomorphic
to NN such that (K N B) is countable and dense in K .

We put:

.E=(B(2),w).

. A= 5(Z) N To(Xo)-

.B=B(Z)\ S(2).
E is compact metrizable since Z is separable and reflexive. The set A is a
Borel subset (hence analytic) of E. Indeed, the sphere S(Z) is w-borelian
since it is a G of (B(Z), w). Moreover, To(Xp) is a |.]-Borel subset since
it is the injective and continuous image of X/ ker Ty (see [6]). Moreover,
since Z is separable, any norm-Borel subset of Z is w-Borel. Thus To(Xg)
is w-Borel subset.
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Assume now that there is a Fy; subset G of E such that A C G

and BNG = 0, i.e. that G = |J K, where K, are closed subsets in
n>0

(B(Z),w) and To(X0)NS(Z) C G C S(Z). In particular, for any integer
n, Ky, is w-compact in S(Z). Moreover, since the norm |.| is L.U.R. on
Z, the weak and norm topologies agree on the sphere S(Z) of Z, and
hence Ky, is |.]-compact for any integer n.

We consider the map p : IR x Z — Z

(A, 2) — Az

If for every integers n and p we put Knp = ¢([0,p] x K;), then the
subsets Kp p are |.|-compact since ¢ is continuous and moreover we have:

To(X0) S | Knp
n>0,p>0

Thus, the subsets Fy, , = Ty 1(Kn,p) of X are closed and,

XO = U Fn,p-
n20,p>0

According to Baire theorem, there exists two integers ng and pg such

Q
that the interior F oo po of Fpyp, is non-empty. Let By a non-empty
o]

open ball included in F o po* Then T (Bg) C Kng,py, and hence To(Bo)
is |.|-relatively compact in Z, and finally by translation and homothety,
we deduce that To(B(Xg)) is |.|-relatively compact. This contradicts the
fact that T is not a compact operator.

Thus, by the theorem 3 above, there exists a subset K of E satisfying:

. K C(T(Xo)NS(2))uUB.

. K w-homeomorphic to 2N,

. K N B is countable and w-dense in K.
It follows that F = K N (T(Xo) N S(Z)) is w-homeomorphic to INN and
w-closed in S(Z).

The next fact can be also seen as a particular case of the lemma 10
in [8].
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Fact 6. Let o : (S(Z),w) — (S(Z*),w) be the map which associale to
z € S(Z) the element f = o(z) of S(Z*) such that f(x) = 1. Then,
since Z 1is reflexive and the norms |.| and |.|* are L.U.R., the map o is
an homeomorphism.

Indeed, for z € S(Z), o(x) is the differential of the norm |.| at z.
Since the norm [.| is Fréchet-differentiable, o is a (|.|,|.|*)-continuous
map (see [9], p. 7) and surjective because Z is reflexive. Similarly, for
f € 8(2*), 07(f) is the differential of the norm |.|* at z. Since the norm
|| is Fréchet-differentiable, ! is a map from S(Z*) onto S(Z**) = S(Z)
which is moreover (|.|*,].|)-continuous.

Hence o is a (|.|,].|*)-homeomorphism, and thus, a (w,w)-
homeomorphism because the weak and the strong topologies agree on
the sphere when the norm is L.U.R. .

In particular, the subset o(F) = F* is w-closed in the sphere S(Z*)
and w-homeomorphic to INIV.

By using the same arguments as in the proof of the Theorem 1 of
Bossard-Godefroy-Kaufman ([4], theorem 3), but applied to our reflexive
space Y and for our special subset F* of Z, we get:

Lemma 4. Let M be a Polish space and let A be an analytic subset of
M. Then there ezists a continuous map A : M — IN(Y') such that:

(¢2) If t & A, then the norm A(t) = ||.||, is Fréchet-differentiable.

(i) Ift € A, then the norm A(t) = ||.||, is not Géteauz-differentiable.
More precisely, it is not Gaiteauz-differentiable at some points of the
subset ({0} x F) of Y =R & Z.

Proof of lemma 4: For the proof, we need the following lemma ([4],
lemma 2).

Lemma 5. Let (S,d) be a metric space which contains a closed subset
E homeomorphic to INN. Let A be an analytic subset of a Polish
space (M,d'). Then, there exists an uniformly continuous map ¢ from
(M x 8,d" +4d) to [0, 1] such that:

(@) Ift ¢ A, then o(t,y) <1 forally € S.

(#1) Ift € A, then ¢(t,y0) = 1 for some yg € E.

We apply lemma 5 to S = E = (F*,d) where d is the restriction to
F* of a distance on B(Z*) which defines the w-topology ( (B(Z*),w) is
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metric compact since Z is reflexive separable) . There exists a uniformly
continuous function ¢ : (M x F* ,d’' +d) — {0, 1] such that:

(i) Ift ¢ A, then (¢, f) < 1 for all f € F*.

(i2) If t € A, then ¢(t, f) = 1 for some fp € F*.
We put L = F*" which is a compact of (B(Z*),w). Observe that since
¢ is (d'+d)-uniformly continuous, it has an unique uniformly continuous
extension ® to the completion (M x L) of (M x F*). Moreover, t € A if
and only if there is fo € F* such that ®(t, fo) = L.

We consider the following w-compact subsets of Y* =R & Z*:

R(t) = ({0} x B(Z")) U{(L, @(¢, f).f): f € L}
and
K(t) = conv’(R(¢t)).

Clearly, K (t) is the unit ball of an equivalent dual norm on Y* which
we denote by |.|;. Finally, we define an equivalent dual norm |.||; by ,

(s, )32 = 1(s, H)IE2 + 1712,

whose predual norm is denoted by A(t) = ||.||, . This give us the
continuous map A : M — IN(Y), which satisfies (i) and (ii) of the
lemma 4. Indeed ,

(i) Let ¢t ¢ A. Assume that the norm |.||, is not Fréchet-
differentiable. Then the dual norm .||} is not L.U.R. ([9], p.43), and
hence, there exists fo € S(Z*) and so > 0 such that ([4], proof of theo-
rem 3),

(0, fo)lt = 1= |(s0, fo)l¢-
Since t ¢ A, we have ¢(¢, f) < 1 for all f € F*. Since F* is w-closed in
S(Z*), LNS(Z*) = F*. 1t follows that |®(¢, f).f)|* < 1 for all f € L.
Let p a probability measure on R(t) such that (s, fo) is the barycen-

ter of u. The function h((s0,g)) = |g|* is convex and w*-lower semi-
continuous on Y *, hence (see [5] proposition 26-19) :

L= 1fof" = k(oo fo)) < [ ol aul(s,9)).

Since |®(¢, f).f|* < 1 for all f € L, it follows that u is supported by
({0} x B(Z*)) and hence so = 0. This contradiction shows (i).
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(#1) Let t € A and let then fo € F* such that (¢, fo) = 1. We
consider zg = o~ }(fy) € F, so fo(20) = |20] = 1. For any f € Z* and
s € IR, we have :

G, U = 110, £)Is = V251"

Hence for all z € Z;

|2|
10,21, = 2.
On the other hand, since ®(¢, fo) = 1, we have for all s € [—1, 1],
(s, fo)l = 1.

Hence for all s € [-1, 1],

< (31 f0),(0,20) >=1= ”(s’ fO)”: -0, ZO)”t .

And thus, the norm ||.||; is not Gateaux-differentiable at a point (0, zq)
of ({0} x F). This finishes the proof of lemma 4 .

We define the map I' : M — C(X) where for t € M and z € X,
Lt)(z)=|T (:1:)"? Let us check that I is the map we are looking for.

First, if ¢t € A, according to lemma 4, the function ||||f is Fréchet-
differentiable on Y, and then I'(¢) is also Fréchet-differentiable as com-
position of Fréchet-differentiable functions.

Fact 7. IF t € A, the map I'(t) is not Giteauz-differentiable at some
points of X.

Let tg € A. The lemma 4 provides the existence of zg € F such
that the norm |.||;, is not Gateaux-differentiable at (0, 20). Since F C
S(Z)NTo(Xo) (see Fact 5), we consider zo € X such that To(zg) = 2.
Recall that Tg is the restriction of the operator T : X — Y to the
hyperplane X and that an element z of the hyperplane Z of Y is written
inY as (0, z). Then since zy € Z, we have :

T(zo) = (0,20) €Y.

Let us check that I'(¢g) is not Gateaux-differentiable at zg. Indeed, if
not, since I'(to)(x0) = || T(z0)llZ, = (0, z0)|Z, = & # 0, the semi-norm
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IT(.)ll;, will be also Gateaux-differentiable at zo. Thus, the norm .||,
will be Gateaux-differentiable at T(zg) = (0, z0) along the directions
subset T(X). It follows that the norm ||.}},, is Gateaux-differentiable at
(0, 29) since T'(X) is dense in Y . With this contradiction we finish the
proof of theorem 2 .

Now we turn to the norm case. Let A'(X) be the set of all continuous
norms on a Banach space X, equipped with the topology induced by
C(X).

Corollary 6. Let X be a separable infinite dimensional Banach space.
Let M be a Polish space and A an analytic subset of M. Then, there
ezists a continuous map ¥ : M — N (X) such that:

(i) Ift € A, then the norm ¥(t) is not everywhere Gateauz-
differentiable on X \ {0}.

(i1) Ift & A, then the norm U(t) is Fréchet-differentiable on X \ {0}.

Proof. We consider the semi-norms (I"(t))% = |T()|l; , defined in the
proof of theorem 2 satisfying :
Jfte A T() = ||T()||Z is not everywhere Gateaux-differentiable.
It g A, T(@) = |IT()|; is Fréchet-differentiable on X.

X being separable infinite dimensional, we have S(X*)" = B(X*) and
(B(X*),w*) is metrizable. Hence, there exists a sequence (z;)n>1 in
S(X*) which is w*-dense in the unit ball B(X*). Then we define the
injective operator J from X in ¢o(IN) by,

)= (z—;;(f_))nzx'

Let ||.|| be a Fréchet-differentiable norm on co(IN). we define |[.|| a
Fréchet-differentiable norm on X by ,

lizll = 17 () -
Let now the norm ||.|||, defined on X by :

Nzll? = Nell® + 1T ()I1F

89
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It is easy to check that the map ¥ : M — N(X), defined- by ¥(t) = ||,
works. .

Since any uncountable Polish space M (for example IN™)) contains
an analytic non-Borel subset A, theorem 2 and corollary 6 imply :

Corollary 7. Let X be a separable infinite dimensional Banach space.
Then, the set of continuous convezr and Fréchet-differentiable functions
on X and the set of all Fréchet-differentiable (and not necessarily
equivalent) norms on X \ {0}, are non Borel subsets of C(X).
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