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On pseudo-isotopy classes of homeomorphisms
of #, (8" x 8™).

Alberto CAVICCHIOLI and Friedrich HEGENBARTH

Abstract

We study self-homotopy equivalences and diffeomorphisms of
the (n + 1)-dimensional manifold X = #, (Sl X S") for any n > 3.
Then we completely determine the group of pseudo-isotopy classes
of homeomorphisms of X and extend to dimension n well-known
theorems due to F. Laudenbach and V. Poenaru [10},[12] and J.M.
Montesinos [14].

1 Introduction

Through the paper we work in the piecewise-linear (resp. C°-
differentiable) category, so we shall omit the prefix PL (resp. DIFF).
Therefore the term homeomorphism means either PL homeomorphism
or diffeomorphism.

Let M™"! be a closed connected oriented (n+ 1)-manifold. Following
[3] , [19], we say that two homeomorphisms f,g : M — M are pseudo-
isotopic if there is a homeomorphism F : M x I — M x I (I = [0, 1])
such that F(z,0) = f(z) and F(z,1) = g(z) for all z € M.

Let us consider the following groups:
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Aut(M) (resp. Auto(M)) the group of (resp. orientation-preserving)
self-homeomorphisms of M;

D(M) (resp. Do(M)) the group of pseudo-isotopy classes of (resp.
orientation-preserving) homeomorphisms of M;

E(M) (resp. £g(M) ) the group of homotopy classes of (resp. orientation-
preserving) homotopy self-equivalences of M;

Aut(II;) the group of automorphisms of the fundamental group H1
II; (M) of M; v

Out(IT;) the outer automorphism group of II;, i.e. automorphisms
modulo inner automorphisms.

We have natural maps (base points are not required to be fixed)

Aut(M) - D(M) — E(M) — Out(IT,)

Auto(M) = Do(M) — E(M) — Out(Il;).

In [3}, [7], [9] it was studied the pseudo-isotopy classes of homeomor-
phisms (and self-equivalences) of the manifold M™*! = S x §" for
n > 2. There it was shown that two homeomorphisms of ' x $" are
homotopic if and only if they are pseudo-isotopic (resp. isotopic for the
case n = 2). Hence the natural map

D(slxs"')-*g(slxs")

is an isomorphism for any n > 2.
We summarize the results proved in the quoted papers by the fol-
lowing statement.

Theorem 1. ([3],(7],[9])
If n > 2, then

D(Slxs"),~ (slxs") Zo®Zo® Zo

180 iso

By Theorem 1, it follows that there are at most two non equivalent
n-knots in the (n + 2)-sphere with diffeomorphic complements, n > 2

(see [3], [7], [91).

The aim of our paper is to extend Theorem 1 for the (n + 1)-
dimensional manifold X = #, (Sl X S”), n>2, p>1,ie the con-
nected sum of p copies of S x S™.
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More precisely, we prove the following result

Theorem 2. If X = #, (,S1 X S"), n>2,p>1, then we have short
exacl sequences

0— & Z>— D(X) — Out(I}) — 0,
p+1

0— @& Z2— Do(X) — Out(Il;) — 0,
p .
where II) = I} (X) ~ ;Z is the free group with p generators, p > 1.

Observe that the group D(X) (resp. Do(X) ) is not a direct sum of
the other two terms of the sequence for p > 1. Indeed, diffeomorphisms
of X, which permute the p summands 8! x S", also permute the p
rotations along n-spheres (compare section 4).

As a consequence of Theorem 2, we completely determine the group
Do(X) of X as follows:

Theorem 3. If X = #, (S1 X S’"), n > 2, p > 1, then the group

Do(X )5 Eo(X) 1is generated by sliding 1-handles, twisting 1-handles,
(2]

permuting 1-handles and rotations.

The case n = 2 in the statement of Theorem 3 was proved by F.
Laudenbach (see [11]) and J.M. Montesinos (see [14]). The definitions
of the above generators can be found in [10] and [12]. Because all these

generators extend to the (n + 2)-handlebody Y = #, (S1 X D"H), ie.
the boundary connected sum of p copies of $* x D™ we prove, following

[14], other two consequences of Theorem 3 about handle presentations
of manifolds.

Corollary 4. LetY be the handlebody #, (S1 X D"‘H) with boundary

Y = X = (S1 X S"), n >2, p>1. Given a connected com-
pact (n + 2)-manifold N™2 with boundary 8N ~ X, the smooth closed
(n + 2)-manifold M = N U, Y obtained by gluing N and Y via an arbi-
trarily chosen diffeomorphism h : N — 8Y is independent of the way
of pasting the boundaries together.

In particular, the closed (n+2)-manifold M = YUY is diffeomorphic
to the (n + 2)-sphere $™+2,
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Corollary 5. FEach closed orientable (n + 2)-manifold M™2, n > 2,
with haendle presentation

M™2 = FOUMH U.. .U M U H™?
is completely determined by
HOUMHIU...UNH™

Here H* represents an arbitmry handle of index 1.

Using Corollary 4, we prove an extension to dimension n of a well-
known result due to F. Laudenbach and V. Poenaru (see [12]).

Corollary 6. Let M™?2 be the smooth closed (n-+2)-manifold,
n > 2, obtained by gluing #, (Sl X D"“‘"l) to #, (S™ x D?), p > 1, via

an arbitrary diffeomorphism of their boundaries. Then M is diffeomor-
phic to S"+2.

Proof. Set Y = #, (S1 X D"H) and Z = #, (8™ x D?) for n > 2 and
p=>1

Consider a diffeomorphism h : 8Y — 8Z and the smooth closed
(n + 2)-manifold M =Y Uy, Z.

One has canonical identifications

oY % X = #, (slxs")iaz

which will be given, one for all. It is obvious that Y Ug-1,4 Z = Snt2,

Since the manifold M = Y Uy Z is independent of the way of pasting
the boundaries together (see Corollary 4), it follows that M =Y U, Z
is diffeomorphic to ¥ Ug-154 Z = snte,

2 Homotopy equivalences and pseudo-isotopies
of X =#, (Sl X S‘")

In this section we prove that the group D(X) of pseudo-isotopy classes of
homeomorphisms of X = #, (Sl X S"), n > 3, is isomorphic to £(X).
For this, we use the following results proved in {4] and {5].
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Theorem 7. Let M™!, n > 4, be a closed connected PL (n + 1)-

manifold of the same homotopy type as X = #, (Sl X S"). Then M 1is
PL homeomorphic to X .

Theorem 8. Any homotopy self-equivalence of X = #, (Sl X S'”),
n > 3, is homotopic to a PL homeomorphism.

Theorem 7 extends the analogous result proved in [9] for p = 1 and
Theorem 8 represents an extension of Lemma 16.2 of {18], p = 1 and
n=3.

In order to prove our result we need the following proposition.

Proposition 9. If X = #, (S1 X S"), n >3, p>1, then any PL
homeomorphism f : X — X, which is homotopic to the identity, is
pseudo-isotopic to the identity.

Proof. Let Y be the (n + 2)-handlebody, i.e. Y is the boundary con-
nected sum Y = #, (Sl X D""‘l). Obviously we have 8Y = X. As
shown in [4], Proposition 3.1, the homeomorphism f : X — X extends
over Y. To make the reading clear, we skecth the construction and refer
to [4] for more details.

Form the closed (n + 2)-manifolds M =Y UgY and N =Y Uf Y.
Obviously M is PL homeomorphic to #, (Sl X S"+1>. Furthermore N
is homotopy equivalent to M since f is homotopic to the identity.

Leti;:Y = Mandj;:Y — N (resp. io: Y — M and jo: Y — N)
be the canonical inclusions of Y into the first (resp. second) copy of it.
For simplicity we identify Y = i;(Y) C M with Y = j3(Y) C N so that
MNON=Y.

Note that

f = (j2lx) "o gilx-

Because n > 3, Theorem 7 implies that there is a PL. homeomorphism
h:M™2 o N2

By the tubular neighborhood theorem and the Whitney embedding
theorem we may assume that k is the identity on the first summand
Y = 41(Y). Then the restriction of h to the second copy i2(Y) of Y in
M provides the required extension of the map f. Thus,let g: ¥ — Y be
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a PL homeomorphism which extends f to Y. One has the commutative
diagram

mx) £ mx)
i | li
L(Y) g» IL(Y)
where the inclusion-induced homomorphism i, : IT;(X) — IL;(Y) ~ ;Z

is bijective. Since f, = identity,b it follows that g, = identity.
Let S} be the canonical i-th S'-factor of Y = #, (S1 X D’H’l) for

i=1,2,...,p. Then the l-sphere 2} =g (S,l) is homotopic to S% be-
cause g, = identity. Hence they are also isotopic as dimY > 5. Then we
isotope g to a map, also named g, which sends the 1-dimensional graph
G = VE_,S! (one-point union) in ¥ to itself via the identity. Then we
can also adjust the map g so that it is the identity on a regular neigh-
borhood of G in Y. Moreover we may choose these isotopies keeping a
collar of the boundary X = 9Y fixed. In other words, there exist two
regular neighborhoods V and W of G in Y which satisfy the following
properties:

1) VCintW CintY

2) glv = identity

3) the previous isotopies are fixed outside W.

By the regular neighborhood collaring theorem (see [16], p. 36), the
complement Y\ int V' can be identified with X x I where Y = X = X x0
and 8V = X x 1 (I = [0,1]). Then the restriction map

gl: X xI—XxI

is a pseudo-isotopy between g|xxo = f and g|xx1 = identity (use 2)
above). Thus the homeomorphism f : X — X is pseudo-isotopic to the
identity as claimed.

Corollary 10. If X = #, (S1 X S"), n >3, p > 1, then the natural
map
D(X) — E(X)
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is an isomorphism.

Proof. By Proposition 9 the map of the statement is injective. It is also
surjective because each homotopy self-equivalence of X is homotopic to
a PL homeomorphism by Theorem 8.

Theorem 11. If X = #, (s1 x s'f), n>3,p>1, then we have the
following exact sequence

0— Ker g ~ & Zz — Do(X) = Eo(X) 22 Out(IT;) — 0,
Y4

i.e. any two orientation-preserving diffeomorphisms f,g: X — X with
fi=g:Ih =1
are pseudo-isotopic provided certain obsiructions
a; €I (SO(n+1)) ~ Z,
vanish, 1 <1i < p.

In order to prove Theorem 11 we need the following lemma.

Lemma 12. Let f,g: X — X be two degree one maps.
If fo=gs : Uy — My, then fo = g4 : Ilg = Iy for all ¢ < n.

Proof. We observe that IIi(X)=0 for 1<i<mn, hence
fo = g« : Iy — I for all ¢ < n. By [12], p. 341, the Poincare
duality and the relation deg(f) = deg(g) = 1, we have the following
commutative diagrams

Ho(X;2) =— Hu(X;Z) = HYX;Z) = HNX;Z)
fol 15 fl iy
Ho(X32) — Ha(X;Z) —» HYX;Z) — Hi(X;7Z)
Hi(jf;z) — HMX:;Z) = HY(0;Z[]) — H!(II}; 2(IL))
g Ly il N
HNX;Z) = HXX;Z) = H'(I;;Z[M])) — H'(I;2[Mm))

where f,§: X — X are the liftings of f, g respectively.
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Since the hypothesis f, = g, : II; — II; directly implies f} = g,
it follows that f, = g, : Hn(f(;Z) — Hn()?;Z). Then the Hurewicz
isomorphism 5 :

Ha(X; Z) = Ty(X) =~ Tn(X)

implies that f, = g4 : II, — II,, as required.

Proof of Theorem 11. Here we prove that the sequence
®pZo — Do(X) — Out(Il;) - 0

is exact. The injectivity of the term &,Z 2 into Do(X) will follow from
realizations of obstructions in section 4.

Suppose that f : X — X = #,(S' x §"), n > 3, is an orientation-
preserving diffeomorphism such that 6g(f) = 1. We can choose a repre-
sentative (also named f) in the class of f which preserves the base point
of X and f, = identity on I1;(X). Lemma 12 implies that f, = identity
on II4(X) for all ¢ < n. By Proposition 9 it is enough to show that f is
homotopic (and hence pseudo-isotopic) to the identity Idx : X — X.

We attempt to build up a homotopy F : X x I — X between f and
Idx in steps, using a filiration of X by subcomplexes.

Consider the handle presentation

P p
x = o™ u, | (D} x DF)uy | (DF x D)) U B
i=1 j=1 .
where D, B are (n + 1)-cells and x, ¥ are embeddings

p
x:|J (ep}) x D} — oD™! = 5"
=1

P P
v:J (60}) x D} - 8 (D"“ uy U (D} x D;‘)) :
j=1 i=1
Our filtration starts with D™ then we successively add
D} x 0, D} x D}, D} x 0, D} x Dj and finally B™*1.
Now we regard f as a diffeomorphism of X x 1 and seek to extend f
on X x 1 and the identity Id on X x 0 to a map F : X x I — X, where
I=10,1}.
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Step 1. By the disc theorem f|pn+1 and Id|pn+1 are homotopic. Thus
we choose a homotopy and define it

Flpntiyy : D" x I — D™ ¢ X,

Step 2. We next define F on Dil x I. Now F| a(DixI) is already given:
on D} x I C D™ x I by Step 1, on D} x 0 by the identity and on
D} x 1by f.

Because f, = identity on II;(X), we can extend to some map

D} xI— X.

Indeed, let S} be the i-th S!-factor of X = #, (Sl X Sn), n > 3; the con-

dition f, = identity on IT; implies that the 1-sphere f(S}) is homotopic
to S} (and also isotopic as dim X > 4).

Step 3. We now extend F to D} x D?x I, i.e. to a tubular neighborhood
of D} x I in X x I. By the tubular neighborhood theorem it suffices
to find a trivialisation of the normal bundle with the desired properties.
As in step 2 these turn out to be that a trivialisation is already given on
the boundary 8 (D} x I). The obstruction to extending this over D}xI
(since this is contractible, the bundle certainly is trivial) is an element
(see [17])
a; €I; SO(n+1))~Z

(see [1], [8] for the stable homotopy of the orthogonal group, n > 3).
If a; = 0, then the extension of the framing and hence of F is
possible.

Step 4. We now assume that steps 1,2,3 have been successfully per-
formed, i.e. F' has been already defined on

P
(D" Uy J (D x D)) x 1
i=1
We next extend F on D} x I. Now F|3(an 1) is already given:
on DT x IC §(D™! 1y U (Dl x D")) x I by step 2, on DT x 0 by

the identity and on D7 x 1 by f-
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Because f, = identity on IT,(X) (see Lemma 12) we can extend F
to some map

D} xI— X.

Indeed, let S (j = 1,2,...,p) be the j-th $"-factor of X. The condition
f+« = identity on I1,,(X) implies that the n-sphere f (S;’) is homotopic
to S7

7

Step 5. We have now to extend F to D} x D1 x I, i.e. to a tubular
neighborhood of D}xIin X xI. As remarked m step 3, the obstruction

to extending a trivialisation given on the boundary 8 (D;‘ X I)

to D} x I is an element of II, (SO(2)) ~ II,(S*) =~ 0 for n > 3. Thus
the extension of the framing and hence of F is possible on the whole of
(X\int(B™*1)) x I. Then we complete the extension of F' to X x I by
using the Alexander theorem.

Finally we prove that the homomorphism 6y is surjective. Indeed,
for any £ € Out(Il;) there exists f € Aut(X) such that f, = £ (see [12]).
If deg(f) = 1, then {f] € Do(X) and 6o[f] = £. Otherwise we compose
f with the homeomorphism

v = #p (Ids1 Xr) X=X

where r:S8" — 8" is the reflection on the 1-st coordinate. Then
[f or’] € Do(X) and 6g[f o #'] = €. Thus the proof is completed.

In section 4 we will show that any obstructions can be realized.

3 Alternative proofs

We can give an alternative proof of Theorem 11 by applying the classical
obstruction theory (compare for example with [6]).

In order to do this, we need some algebraic lemmas which are inter-
esting by itself.
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Lemma 13.
1) Let A = Z|[II1] be the group ring of II1(X). Let ey, eo, ...,
ep € I11(X) be canonical generators and let

0':(81_1,82-‘1,...,81)'—'1)6%1\.

Then the A-module I1,,(X) is A-isomorphic to (& A)/oA.
P

2) The A-module Ilp1(X) is A-isomorphic to ( ) %\1‘\-) ® (b Zy),
P~ P

where A acts on Z9 via the map naturally induced by the augmentation
e:A— Z.

Prolc))fi,et X () be the g-skeleton of the standard cellular decomposition
e® Upel Upe™u el
of X. Since X9 = X for 1 < ¢ < n, we have
Tln(X) = Tn(X) = Ha(X; Z) = Hn(X; A)

and Hn(X;A) ~ HY(X;A) by Poincaré duality. Here X denotes the
universal covering space of X.
To calculate H1(X;A) we consider the exact sequence

0 — Hl(f(l),f(o)) — Ho(f(o)) — Ho()?(l)) — 0
iso | iso | iso |

i €

0 — I(A) s A — z — 0,

which gives the following augmented A-chain complex

0 — Homa (Z, A) <5 Homa (A, A) <% Homy (I(A), A) —» 0,

hence

Homy (7(A), A) .

HY(X;A) ~ cokeri# ~ e

As A-module, I(A) is isomorphic to

Aler—1)@Ale2— 1) ... 0 Aep — 1),

155
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where
€1,€9,...,€p € Hl(X) ~ ;Z

are canonical generators. If ¢ € Homy (A, A), then i# () corresponds to

op(l) € GP?A ~ Homa(I(A), A),

proving statement 1) of the lemma.

2) Let X* be the CW-complex obtained from X = #, (Sl X S")

by attaching p — 1 (n + 1)-cells D™ along the n-spheres where the
connected sum is taken. Observe that X* is homotopy equivalent to the

wedge \; (S1 X S")

Furthermore one can easily verify the following isomorphisms:
a1 (X*) 2 Mayo(X*) = @ Z2

A
* ~y * s —
Hn+1(X ,X) = p@lA Hn+2(X ,X) = 1 2A

Thus the homotopy exact sequence of the pair (X*, X) yields
Mn2(X) — Hnto(X*) — Ini2(X ™, X)
— 41 (X) — Mpta (X*) — 0.
Since j, is an epimorphism, we obtain the result.

Given a A-module L, we denote by H *(X; L) the cohomology of the
complex Homp (C4(X), L), where Cy(X) = H,(X®), x(*-1)).

Lemma 14.
1) HY (X ;Hp(X))~ Z

2) H"H(X ;1 (X)) ~ o Zs.
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Proof.

1) By Poincaré duality, we have H™(X;I[,(X)) ~ Hi(X;I(X))
(see [18]).

Using IIn(X) ~ (63 A)/o A, one obtains the following exact sequence

Hi(X;4) — Hi(X;©A) — Hi(X;(@A)/0A)

— ZOQANA—Z @\ (egA).

Now Hi(X;A) ~ Hi(X;®A) ~0and Z@pyA — Z Q@4 (®A) is the null
P P

homomorphism because o goes to zero. Hence we obtain
HY X (X)~ZQsA~ Z

as claimed (use also [15], Theorem 1.12).
2) We have

H™H (X;Hn+1(X)) P'lE)HO (X§Hn+1(X)) e Hn+1(X)II1(X)

where IIn+1(X)m(x) is the maximal quotient module of TInt1(X) (see
[15], p. 266), i.e.

i1 (X)
Pr:xeAnzell, (X))}

M1 (X)myx) =

Because this quotient module is A-trivial (see [15]), Lemma 13 implies
that
H™ (X3 Tl41 (X)) = @ Zo.

Thus the proof is completed.

Theorem 11: second proof. Let f: X — X = #, (31 X S"), n >3,
p > 1, be a homotopy self-equivalence of degree one such that 8g(f) = 1.
As before, we can assume that f preserves the base point of X and that
f+« = (Idx)s« on Hy(X) for all ¢ < n (see Lemma 12). We have to study
under that conditions f is homotopic to the identity Idx. We attempt
to build up a homotopy A : X x I — X between f and Idx in steps
using a filtration of X by subcomplexes.
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Let X(® be the g-skeleton of the standard cellular decomposition
X =e®uUpel Upe® Ue™.
Because f, = (Idx). on II;, there is a homotopy
h:X®xT1-x

between f|y@ and Idx |x).
The equalities X(@ = X@ for 1 < g < n imply that

HY(X;T(X)) ~ 0
for all 1 < ¢ < n. Thus the first obstruction lies in
H(X;Ta(X)) ~ Z

(see Lemma 14). Let h : X®™1) x I - X be a homotopy between
flx-1 and Idx |y(m-1. The obstruction to extend h to X™ is the
homotopy class of the map

FURUIdy : X xOUX® D xTUX x1— X,
i.e. forany i = 1,2,...,p we have
Ai(f, h, 1dx) = [f UhUIdx Ie?xowe;'xIUe?n] € IL(X).
In other words, the difference cochain is defined as follows:

d(f,h,ldx): Cn(X) — IIn(X)
el — Ai(f,h,1dx)

hence the obstruction is the cohomology class
P
[d(f, b, 1dx)] = DA € H™ (X;TIn(X)) ~ Z.
i=1

Let o' : X1 x I — X be a homotopy of Id}xm-1) to Id|xm-1. Tt is
well-known that

A(f, b, 1dx) + A(ldx, &, Idx) = A(f, h + ', Idx)



On pseudo-isotopy classes of. ..
where h + k' : X1 x I — X is defined by
; | h(=z,2¢) 0<t<s3
(h+h)(x’t)_{h'($,2t—l) %Stﬁl.
Indeed, for each i = 1,2,...,p, we take a small ball in the centre of

the n-cell e and cut off it. Next we attach to its place a spheroid
representing the value in II,(X) of the cochain d at e}. Thus we can
always choose an h' such that

d(ldx, ', Idx) = —d(f, h,Idx),

i.e. h+ h' extends to a homotopy X (") x T — X between flx and
Idx | x(n). Now the only obstructions lie in

H™ (X1 (X)) ~ ® Z2.

This proves Theorem 11.

4 Realizing obstructions

Now we are going to prove Theorem 3.
Let {ei},i=1,2,...,p, be a free basis of II;(X) ~ ;Z, where

X =#p (Sl X S"), p > 1, n > 3. Obviously e; is the homotopy class of

the i-th S!-factor S} of X. As proved in [10] and [12], Aut(Il;) is gener-
ated by sliding 1-handles, twisting 1-handles and permuting 1-handles.
More precisely, for i = 2,3,...,p (p > 1) define ¢; € Aut(Il;) by setting
di(e1) = ei, di(ei) = e1 and ¢i(e;) = e; for each j # i, j # 1. Permuting
the 1-handles e; and e; corresponds to the automorphism ¢; o ¢; 0 ¢; 1
It follows that ¢ = 1 and by [10], [12] there exist diffeomorphisms
fi : X — X (permuting 1-handles) such that f;, = ¢;. Then define
o € Aut(IT;) by setting o(e;) = e]* and o(e;) = e; for i # 1. Twisting
the 1-handle e; corresponds to the automorphism ¢; 0o o 0 ¢; ! Obvi-
ously 02 = 1. Furthermore there exist diffeomorphisms of X (twisting
1-handles) which realize o and ¢; 00 0 ¢; ! for i > 2. Finally we define

159
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¥ € Aut(Ily), p > 1, by setting ¥(e1) = ereo and ¥(e;) = e; for i > 2
(sliding 1-handles).

Let ¥; = 87 be the i-th S"-factor of X = #, (S1 X S"), p>1,n>3.
Following [10], we show that rotations of X parallel to ¥; generate the
obstruction subgroup

Kerfy ~ @11, (SO(n + 1)) ~ & Zo.
P P

Let
a: (S, 1) = (SO(n + 1),id)

be a loop representing a homotopy class of I; (SO(n + 1)) ~ Z2 (n > 3).
Then o induces a diffeomorphism

ha:8"xI —-8"%x1I

defined by
ha(z,t) = (a(t)z,t)

for all z € 8™ and t € I = [0,1]. Obviously h, is the identity on the
boundary 8(S" x I) =S" x 0US™ x 1.

Now let M™*! be a closed oriented (n + 1)-manifold and let =" be
an oriented n-sphere embedded in M. Suppose ¢ : 8" x I — M is an
orientation-preserving embedding such that ¢(S™ x 0) = X. Because
he = identity on 8(S™ x I), one obtains a diffeomorphism

RZ:M - M
defined by
hE(z) = T if z € M\Imop
YT ] pohopTI(x) if z € Imep.

We call the diffeomorphism h2 the a-rotation of M parallel to & (briefly,
a rotation). Obviously the pseudo-isotopy class of hZ depends only on
the homotopy (resp. isotopy) class of o (resp. L).

If MM = X = #,,(slxs"),p > 1, n > 3, then let &; = ST be
the i-th S™-factor of X. We set

hiq = hZi
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for i = 1,2,...,p and [a] € II; (SO(n + 1)) ~ Zo. One can choose
hiq to be the identity on the union UZ_|¥;. Because (hiq). = identity
on Iy (X) for all ¢ < n, we have that h;o € Kerfy, i = 1,2,...,p.
Moreover hiq 0 hjg = hjpgo hiq (i # j), each h;o commutes with the
generators of Aut(Il;) and k4 is pseudo-isotopic to the identity if and
only if [a@] = 0. Thus we have shown that the rotations h; = hiq of
X parallel to the n-spheres ¥; generate Ker 6y if [a] is the generator
of II; (SO(n + 1)) ~ Z2. In particular, this shows that the term 61{? Z
injects into Dy(X).

More precisely, we can interpret our results in the following way
(which is related to Lemma 5.4 of [10]):

Corollary 15. Let X = #, (S1 X S"), p>1,n>3,andletf: X - X
be an orientation-preserving diffeomorphism such that 6o(f) = 1, i.e.
f+« = identity on II;. Then there ezist loops (obstructions)

a;: (81, 1) = (SO(n + 1),1d)
(:=1,2,...,p) such that f is pseudo-isotopic to the product
h]_’al (o] h42’a2 0...0 hvp,ap.

Moreover, the pseudo-isotopy can be chosen keeping the union Uleﬂi
fized.
In other words, rotations hy = hio (i =1,2,...,p) is a free basis of

Kerg~&Il; (SO(n+ 1))~ Zo
P P

where [a} is the generator of II; (SO(n + 1)) ~ Zo.

5 Concluding remarks

Following [12], let C(n, \) denote the class of smooth (n + 1)-manifolds
of the form
Nn+1 — HO UPHA UpHA’Fl

such that N is contractible, n > 3, 1 < X < n — 1. The h-cobordism
theorem of Smale implies that if N € C(n, ), then N is an (n + 1)-disc
provided that n > 5 and 1 < XA < n — 3 (see for example [16}). On
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the other hand C(n,n — 2) contains elements with non-simply connected
boundary (see [12]).
Now one might ask the following question:

N €C(n,n—1)=> N ~ D"
diff

We can apply Corollary 6 to give a positive answer in the particular case
HOUpH™?! ~ #p (S""l X D2) .
Indeed, we have the following result.

Proposition 16. Let N™! be the manifold obtained by attaching p
handles of indez n to #, (S"_1 X Dz), n>3. IfH,_1(N;Z) =0, then
N is diffeomorphic to the n-sphere S™.
Proof. We simply follow the proof of Lemma 5 [12], settled for n = 3.
First of all, the hypothesis Hn_1(N;Z) = 0 implies that N is con-
tractible, i.e. N € C(n,n— 1).

Let % be the attaching map of the i-th handle H? = DI x D}
of index n, i = 1,2,...,p. The same argument as in [12] shows that

Wi (BD? X ;12-) are disjnined homologically independent (n — 1)-spheres
embedded in

) (#,,(s"-l x 02)) = #,(8"1 x 8Y).
Let 7! be the i-th (n— 1)-factor of #, (S'"_1 X Sl). Cutting

#p (S"—1 X Sl) along the (n — 1)-spheres v} (8D,’-‘ X %) (resp. 7Y
yields a punctured n-disc P" (resp. Q™), where

P" ~ Q" ~ D™\{2p — 1openn — cells}.

A diffeomorphism P"™ — Q™ which preserves the boundary compo-
nents induces a diffeomorphism between the pairs

(#hp (5 x 8 (D] x 2))

and
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(#p (5" x 81), e,
i
This implies the statement.
|
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