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Optimal control of fluid flow in soil 1.
deterministic case.

Youcef KELANEMER

In memory of Professor Ulrich Hornung*

Abstract

We study the numerical aspect of the optimal control of prob-
lems governed by a linear elliptic partial differential equation
(PDE). We consider here the gas flow in porous media. The ob-
served variable is the flow field we want to maximize in a given part
of the domain or its boundary. The control variable is the pres-

. sure at one part of the boundary or the discharges of some wells
located in the interior of the domain. The objective functional is
a balance between the norm of the flux in the observation region
and the costs due to the control variables. We consider several
geometric configurations of the control and the observation vari-
ables, and we make use of different objective functionals. We take
advantage of the linearity of the flux w.r.t. the control variable to
significantly reduce the computational effort and to deduce the op-
timal controls of wide class of objective functionals. In this paper
we consider the deterministic case where the model parameters are
given in the whole domain. -

1 Introduction

Stationary fluid transport in porous media and heat transfer in con-
ducting materials are governed by a well-known second order elliptic
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differential equation [Bea79]. In general, this equation is the combina-
tion of the mass conservation and Darcy laws for the mass transfer, or
the energy conservation and Fourier laws for the heat transfer. In this
paper we will refer to the gas flow in porous media, but the study and
the results are directly applicable to other problems like water transport
and heat transfer. The model is two-dimensional and results from a ver-
tical averaging. Together with appropriate boundary conditions which
are in our case the Dirichlet boundary condition on one part and the
Neumann one on the other part, the boundary value problem (BVP) of
gas transfer can be written as

~-V-(KVy) =f, z€Q
y =9, ‘TEFD (1)
qv :h, xEFN.

Here K is a strictly positive-bounded function in the bounded domain
Q C R? and called transmissivity. We assume that there are two con-
stants ¢; and ¢y, such that 0 < ¢; < K < ¢2 < oo. The functions f
and' the boundary data g and h are given. The flux ¢ = —KVy is the
gas velocity in the medium and the quantity ¢, = ¢- v is the flux in the
outer normal direction on I'. The state variable y is for the compressible
gas the square of the air pressure.

When dealing with soil remediation, several strategies are used. The
one we consider here is the soil venting. Pump and treat (PAT) tech-
nique, which consists of extracting air using pumps located in a con-
taminated soil and treat it with filters, has widely been used [RM94],
[Bru91] and [NG91]. The pumps are called wells and are sources when
they introduce air in the domain and sinks when they extract the air
out of it. The air movement induces a convection which removes the di-
luted pollutant to the exterior part of the contaminated porous media.
Instead of introducing or extracting air using some wells in the domain,
other applications need to do this from the boundary.

2 The Optimization Problem

The procedure of air pumping is very costly and the remediation takes
many years. Therefore the optimization of the soil venting technique is
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very important. When we observe this technique, we see that the dis-
charges of the pumps or the under-pressures produced at some places are
the mean control variables. The cost and the result of the remediation
depend strongly on them. Designing cost-effective and reliable remedi-
ation schemes is a difficult task. In groundwater quality management,
Wagner and Gorelick [WG87] [WG89] and Gorelick {Gor90] minimize
the discharges of some wells subject to a reduction of contaminant con-
centration to acceptable level. In soil venting one would maximize the
extracted contaminant subject to some constraints on the discharges.
Both problems are rather complicated: multiphase and multicomponent
transport governing laws are not obvious and the big number of unknown
parameters make the prediction and the optimization hard tasks. There-
fore, a simplification of the problem is to reduce it to maximization of
the air flow in the region of high volatilization.
Here we describe our optimal control problem.

1. The observation is the flux we want to maximize in one region of
the domain or through one part of the boundary.

2. The control variable is the pressure prescribed on the boundary
and represented by the Dirichlet condition or the discharges of the
wells at some locations and represented by a source term of Dirac
type. The control variable is notated here by u and belongs to the
space R".

3. The objective functional called J, is a balance between the profit
of the strategy, function of the norm of the flux in the interesting
region, and the costs of this strategy, function of the norm of the
control variable. We have to minimize the difference between the
costs and the profits.

4. Due to technical and physical reasons, the optimization is subject
to some constraints. The equipment works under restrictions and
the change rate in pollutant phase is too small, such that a mod-
erate air pumping will remove almost as much pollutant as will do
a strong one. Nevertheless, large discharges u will give high values
for J and avoid the explicite use of the constraints in many cases.

In this paper we study three optimal control problems which corre-
spond to three different configurations, namely:
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1. Boundary observation and Dirichlet boundary condition control
variable. We look for the Dirichlet condition on one part of the
boundary which produces the “best” flux observed on another part
of it. In this first part we study the maximization of the flux
through different segments on the right side of the unit square.
We will see that due to the diffusion and the geometrical consid-
erations, the effect of the control variable on the observation may
be small.

2. Distributed observation and Dirichlet boundary condition control
variable. The only difference between this second problem and the
first one is that the flux is observed in one region of the domain in-
stead of one part of the boundary. The control variable is still the
Dirichlet boundary condition. In opposite to the first formulation,
when the region of the observation is located near the control vari-
able, we see that the optimization makes sense and the solution is
not always the more intuitive one.

3. Distributed observation and the discharges of Dirac type sources
control variable. In the third problem we change the nature and
the locations of the control variable. We also optimize the dis-
charges of some wells located inside the domain in order to pro-
duce a strong flux in a given region. This third formulation makes
one more step than the second one. Then it is clear that the op-
timization of the discharges when combined with optimization of
the positions must produce the “best” “optimal” of all. The last
step, namely the optimization of the positions, is still to be done
in future work.

2.1 Boundary Observation and Dirichlet Condition
Control

We study a typical problem where the control variables u; are the pres-
sures generated at some part of the boundary of a remediation site (2,
and the cost functional J(u) simultaneously measures the normal flux
(using ® in equation (3)) that is produced at some other part of the
boundary and also the costs (using ¥ in equation (3)) that are caused
when generating the pressures u;. In principle, such a problem is in the
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Figure 1: The domain, the boundary types and the observation segment (a, b)

framework of a well-known theory for optimal control of partial differen-
tial equations [Lio71]. We consider an elliptic boundary value problem
of the form

-V .(KVy) =f, z €N
y =g+Bu, z€I'p (2)
9 =h, z€lN.

Here K is a strictly positive-bounded function in the bounded domain
Q C R? the piecewise smooth boundary of which I' = I'p U 'y with
I'p NT'y = @ as shown in Figure 1. The state variable is y(u), and the
control variable is « € U. The operator B : U = HY%(T) is assumed
to be linear from the Hilbert-space U into HY/3T'). Its adjoint B* :
H-Y2(I') — U is given by

(B*r,v) = (r,Bv)Vr € H"Y*(), v € U.
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The cost functional is chosen as

J(u) = 1Hf ®(q. (y(w))p) dT' + ¥(u) (3)

where @ is a differentiable convex function on R, p € L*(I') is a weight
function on I', and ¥ is a differentiable convex functional on U.

Adjoint problem. We introduce the adjoint variable p as the solution
of the elliptic problem

-V - (KVp(u)) =0, ze
p(v) = ®'(q,(y(w))w)n, z€Tlp
ry =0, z€eln

where r, = —v - KVp(u) is the normal boundary flux belonging to the
adjoint p. The interest of the adjoint state p consists of simplifying the
integral in the functional J. We get the following lemma.

Lemma 2.1. The differential of the cost functional J is given by

Oy J(u) = B*r,(p(u)) + 0, ¥ (u). (4)

Proof. Following the methodology of Lions [Lio71], ché,pter 1.4, we get
@I, 0= = [@umeue)
I'p

— a(y(w))p dr + (0, (u), v — u)

for any v € U. Green’s formula gives

[ 7 k@) a) - ) d- [ v KTp)(s) - o) T
Q r

= [V (K9() - sw)p(u) 2~ [ v+ KV(s(o) - ww)p(w) aT.
Q r

Since
V- (KVp(u))=0in Q,

y(v) —y(u) = Bv - BuonTp,
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r,=0on Iy,
V- (KV(y(v) - y(v)) = 0 on &,

and
9 (y(v)) - ¢.(y(v)) =0 on I'n,

we get

[ P @) - 6 lw@)) &r = [ B - ar,
I'p

Tp

and from this we obtain
(OuJ (u),v — u) = (B"ry,, v — u) + (0, ¥(u), v — u)

and thus the conclusion. Q.E.D.

Equation (4) gives a theoretical tool to compute the functional J.
In discrete form, one can compute the images B*r, and then the cost
functional for the basis vectors. Therefore the quadratic functional J can
be expressed in matrix form with the dimension of the control variable.

2.1.1 Finite Element Discretization of the PDE

In this paper the domain € is taken to be the unit square in R?%. It is
clear that in order to compute the state variable and the flux, problem
(2) should be solved numerically. To discretize this elliptic problem, we
make use of the mixed-hybrid finite element method (MHFEM). The
original mixed method leads to an indefinite matrix, a difficulty which
is overcome by hybridization using Lagrange multipliers. This method
computes the state variable and flux simultaneously and has the advan-
tage to conserve the mass balance cell by cell. For more details about
the theoretical and numerical aspects of the MHFEM, the reader is in-
vited to see [Tho77] and [BF91]. More details about the basis functions
and methods of assembling the matrices can be found in [KH90]. It is
to be mentioned that in this optimization formulations, the flux is a
linear function with respect to the control variable and thus the ellip-
tic PDE has to be solved for the basis vectors only. Also the domain
is subdivided to a finite set of triangles. In our case the triangulation
of the unit square is uniform and contains 3200 elements. This corre-
sponds to a 40 segments in in each of the two directions and ensures the
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super-convergence of the discretization, i.e. the L2-norm of the error in
the pressure is of order the square of the edge size. We approximate the
pressure by piecewise constant functions and the flux in the lowest order
Raviart-Thomas space. The discret flux is therefore linear in each tri-
angle and with continuous normal component across the inter-element
boundaries (the edges). As mentioned before, we introduce Lagrange
multipliers on the edges of the triangulation to make the solution of the
linear system more convenient. This last one is done using conjugate
gradient method, preconditioned by cholesky factorization.

Discrete Variational Formulation. We give here the discrete for-
mulation which correspond to the MHFEM. We define

e T the regular triangulation of (2. Ts, is then the set of triangles
which form by their union Q and satisfy the two following condi-
tions

— Conformity: Intersection of two different triangles is empty,
one common edge or one common vertex.

— Regularity: The minimal angle (taken over all triangles 7 in
Tr) is bounded from below by a strictly positive constant.

e B, = U 0T,
T€Th

e RT%T) = {(a + bz1,c + bzs),a,b,c € R} C (Pi(T))? where
T € Th, P (T) is the four dimensional space of the linear functions
in 1 and z,.

o RTY,(T;) = {¢ € (L*(R))? ¢\, € RTo(T),VT € Th},

e M?P,(T) the space of piecewise constant functions on 7 (constant
on each element),

e M?°,(E}) the space of piecewise constant functions on Ej, (constant
on each edge),

o M° p(En) ={} € M2 (Ex)|]A=0o0nTp}.
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The hybrid version of the lowest order Raviart-Thomas mixed method
for problem (2) is given by: Find (q,y,A) € RT°,(Tx) x M°,(Ts) x
M?, p(Ej) such that

([
_TZL:'n. (/ryV-v—/aT,\u.ur) =—LD(g+Bu)v.V Vv € RT®,(Tw)

$
/v.q¢ =—/f¢ VY € M2, (Tn)
Q Q
» (¢-vr)n —_-/ hu Vu € M2, p(En)
\ T€TnJoT 'y

(5)
for given control variable v and parameters g, f, and h. Let us choose
the bases for the spaces RT, (73), M2,(Tz) and M2, p,(E4) as described
in Kaasschieter and Huijben [KH90]. The discrete variational formula-
tion (5) leads to a linear system of the form

Aq +B'y +L'X =G
Bgq =F (6)
Lgq =H

Solving the Linear System (6). We want to determine the un-
knowns g, y, A in (6). First, using the formal elimination, we compute A,
then y and at the end q. We describe briefly all steps (cf. Kaasschieter
and Huijben [KH90]). Let us note that the matrix A is block diagonal.
Each block is 3 X 3 and positive definite. Thus its inverse A~! can be
easily computed. ‘

e Solve the system
[L{Ids — MBJA™'L']A = L[-MB + Id\)JA™*G+ LMF - H

for A\, where M = A~! B{{BA~'B!|"!. The matrix L{Ids —
M B]A~1L! is sparse, symmetric, and positive definite. One can ef-
fectively solve it using a preconditioned conjugate gradient method.

e Solve the system

[BA'B'ly= (~F + BA™' G - BA™'L'))
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for y. Now [BA~!B!] is a positive definite diagonal matrix which
makes its inversion trivial.

o After getting A and y solve
g=A"G - B'y- L)
for gq.

2.1.2 Application

Now we specialize more and assume I'p = 'L UT'Q with TENT3 = §, as
shown in Figure 1. Further, we assume B(U) ¢ HY/*(TL). Let U = R,

_ k _
and I'; C F{) pairwise disjoint open subsets, such that T'5, = UT;; for
1

v = (¥,...,u;) € U let B(u)(z) = u; whenever z € I';. In this case
we get (B*r); = (r,1;) for r € H-Y2(T'L)), where 1;(z) = 1 for z € T;
and 1;(z) = 0 for z € T5\T;. Let g = 0 on 'L, In addition, let
f=0,9g=0,and h = 0. For ®(2) = 2(z — 7), we get ®'(2) = z — 7.
If P(u) =5 3; |uj|®, we have (0,%(u)); = au;j|u;|P~2. The parameters
a, B and 7 are positive numbers. Finally, we take 4 = 1 on the segment
(a,b) of 'Y (Figure 1) and p = 0 otherwise. The support of y is called
the region of observation. R
For an unconstrained control problem, i.e.

ir[}f J(u),

the necessary and sufficient optimality condition of first order is 8, J (u) =
0,i.e., u = —B*r,(p(u)). If we consider the case § = 2, then the problem
is quadratic with respect to the control variable u, one efficient way of
solving this numerically is the CG method. We have applied this tech-
nique to a problem in the unit square of R?; here I‘{J is the left vertical
boundary, I‘g is the right vertical boundary, and I'y consists of the two
- lower and upper - horizontal boundaries.

Lemma 2.2. For 3 =2 and v # 0, let 8 € R and define the class of
objective functionals

Jo(w) = [ ®o(a(y(w)w) dT +¥(w)
I'p
where ®g(2) = z(z — 07). Then
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o Jo(0u) = 02J;(u).
o If u is the minimizer of J,, then u is the minimizer of J,.

o The minimizers of Jy, for 8 € R, form one-dimensional vectorial
space.

Proof. For the proof one needs only the linearity of the flux ¢ w.r.t.
the control u. Q.E.D.

Though, the optimal problem does not use a fixed constraints, this
simple lemma 2.2 is a flexible way to find the optimal control with the
acceptable price or the suitable norm (see also lemma 2.5).

2.1.3 Results

In this application, we consider the quadratic case § = 2. Thus the
minimizer exists and is unique. For ¥ = 100 and o = 0.01 we try to

Figure 2: Optimal solution, state variable (gray) and flux (arrows): o =
0.01, # =2 and v = 100, (left): (a,b) = (0,0.2), and (right): (a,b) = (0.4, 0.6)
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Figure 3: Optimal control, pressure on I', :

a = 0.01,3 = 2 and v = 100, (left): (a,b) = (0,0.2), and (right): (a,b) =

(0.4, 0.6)
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Figure 4: Optimal flux on the right boundary:
a = 0.01,8 = 2 and v = 100, (left): (a,d) = (0,0.2), and (right): (a,d) =
(0.4, 0.6)
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Figure 5: Optimal control, pressure on I‘f) :
(a,b) = (0.4, 0.6), 3 =2 and v = 10, (left): a = 0.01 and (right): o = 0.0001

to maximize the flux through the segment S; = 1 x (0,0.2) or S; =
1 x (0.4,0.6). Figure 2 shows the state variable and the flow field for
the case of S; and S;. This variables correspond to the optimal control
represented in Figure 3. The correspondent fluxes on I‘g are shown in
Figure 4. We do the same when the observation of the flux is done on
the segment S,. It is clear that the optimization in the case where the
observation is on the segment S; is more meaningful than the case of
S2. This is due to two things: The first one is that the diffusion plays
the role of dilution of the control effect. The second reason is that the
segment S; lies down near the insulated side (0,1) x 0 which avoids the
diffusion in the down direction. One can see in Figure 4 that the flux
on I‘g is almost uniform for the case of S, while for the case of S, the
flux has a visible difference between the down and upper parts. We have
tried to play with the parameters ¥ and « but the situation remained
the same as shows Figure 5. We conclude this first part by the following
remark.

Remark. In many field applications, the parameters of the flow model,
namely K, f,g and h are not available. Neverthless, if the normal flux
on the segment of observation can be measured when using the basis
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control variables, then the optimization is realizable.

2.2 Distributed Observation and Dirichlet Condition
Control

2.2.1 Formulation

Now we consider an optimal control problem where the observation is
distributed and the control variable is given as Dirichlet boundary con-
dition. We consider an elliptic boundary value problem of the form

V-qg =0, z €

q =—-KVy, z€Q )
y = Bu, z€lp

qv :Ov IEEFN

Here K is the previously defined transmissivity field in the bounded
domain © C R? the smooth boundary of which is I' = I'p U Ty with
I'p NT'ny = B. The control variable is v = (uy,...,u,) € R".

‘The cost functional is

T = [ 8, q(y(w)) d2+ W(w), ®)
Q

where ®(z, ) is a differentiable functional on R? and ¥ is a differentiable
functional on R". Here we take

20 = L and v = ;T O

where p € L*™(f2) is a weight function on Q2 and 3 > 2, a given real
number.
What we want to find are minimizers of J, i.e., u € U,y C R", such
that
J(u) < J(v) Yv € Uy,q.

Lemma 2.3. For 8 > 2, one can deduce that

1. ® is quadratic functional of u,
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2. the functional J(u) is not quadratic and not convez but of regularity
at least C,

3. J(u) = oo when |uf - oo ie. VA > 0, AM > 0, such that,
lul >M = J(u) > A,

4. J(0)=0 and 8,J(0) =0,

5. J(u) <0 for |u| small enough and different of 0,

Lemma 2.4. Using lemma 2.3, we conclude that

1. J is bounded from below and has one global minimum, i.e. it ezists
(not necessarily unique) u € R", such that

J(u) < J(v) Vv € R",
2. Since the functional J is of regularity at least C', we can say that
it 18 convexr near any minimizer u and satisfies the equation
0,J(u) =0,
where
(B (w), w) = — [9 K0,8(z, q(y(w))) - Vi(w) d+ (9,9 (w), w)
for allw e R™.

Lemma 2.5. Let ug be a global minimizer of J defined by (8) and
(9) for B > 2 and p # 0. Define ®4(z,q) = —6’ﬂ.b,f)-|q|2 and Jy(u) =
J ®o(z, q(y(u))) dQ + ¥(u) where 0 € R, then

Q

1
o i=00-2 ug 48 a global minimizer of Jy(u) and
Jo () = 0P = 2 J (o)

Proof. We have Jy(0) = 0, 8,,J5(0) = 0 and q is linear w.r.t. u, therefore
the lemma can be proved using substitutions only. Q.E.D.

This lemma which is similar to lemma 2.2 has also an important
application: Increasing the weight function by a constant factor without
modifying the costs of the control variable leads to a multiplication of
the optimal solution by another factor.
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2.2.2 Numerical Optimization

We propose here to apply the Newton method to find the variables u for
which the gradient of the objective functional vanishes. This method
is well adapted to this case because the Hessian matrix of J is easy
to compute. The algorithm is well known but to make it easier and
time-effectiver, we compute its tools as

1. Solve the state systems

V.go =0, z€N
() =—-KVy, z€Q
Yo =0, z€lp
v-gg =0, zelN

andforj=1,...,n

V.-q¢; =0, z €N
q; =-KVy;, z€Q

" Y; =Bej, :vEI‘D
v-q; =0, z €'y.

Determine the matrix

D;j=— /ﬂ p()g - g; d9, (10)

the constant vector

b; = — /ﬂ u(2)do - g; A, (11)

and the constant real

= _fn@w? dQ. (12)
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2. For a given u = (u;);=1,. n € R", one can compute the functional
J, its differential @, J(u) and its Hessian H using the matrix D, the
vector b and the constant ¢ given by (10), (11), and (12) without to
make use of the fluxes; Using (17) and (18) we get the functional

J(u)=%u.vu+u.b+c+\y(u) (13)

the differential

8uJ (1) = Du+ b+ V¥ (u) (14)

and the Hessian

) Dy if i#j
”’J—{Dij+a(ﬂ—1)|uj|ﬁ-2 if iz (15)

Therefore it is not necessary to solve the PDE for each control variable in
order to compute the Hessian matrix since all the information is stored
in D, b and c. At each iteration of the Newton method, one needs to
update the term a(8 — 1)|u;]°~% on the diagonal of the Hessian. In
this case of non-quadratic functional, there exist in general more than
one minimizer. The difficulty is that the Newton algorithm is a local
search and depends on the initialization. To avoid that the solution
given by the Newton algorithm is one maximizer or one saddle point, as
the one given in Figure 7, we run the algorithm with some hundreds of
random initial data. We have seen that most of the solutions to which
the Newton method converges are the global minimizer or its opposite
(J(—u) = J(u)). The dimension of the control variable is rather small
(< 10). Thus the numerical solution of the linear system (the Hessian)
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can be done by many ways. We have chosed the I.U-factorization.

-0.25

R

Figure 6: Optimal control, state variable and flux: Box = (0.1, 0.2) x (0.4, 0.8),
p=1

2.2.3 Application and Results

Figures 6, 9 and 10 represent the optimal solution (left), and the state
variable and the flow field (right) with 3 = 4, f = 8 and § = 2.5,
respectively. For these three cases we have optimized the flux in box; =
(0.1,0.2) x (0.4,0.8). Also, £ = 1 in box; and g = 0 outside it, except
for the case § = 2.5. In this case when  is not much larger than 2,
the minimizer becomes very small and in order to avoid this we make
use of lemma 2.3 and we put g = 10 in box;. The number of iterations
depends on the initialization and the tolerated error on the solution.
For a random initializations in [—10, 10]* and for stopping criterion for
Newton algorithm of 10710 the average number of iterations over 100
initializations (minimizations) is 12, 33, 60, 102, 160 and 151 for 3 = 2.5,
4,6, 8, 10 and 12 respectively. One remark that the rate of convergence
is highly related to the value of 3. For § = 2.5, we are rather near



Optimal control of fluid flow in soil. . . 391

6.25

0.1 Flow field (arrows) and state variable (gray)
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Figure 7: Optimal solution, state variable and flux: Box = (0.1, 0.2)x(0.4, 0.8),

p=4
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Figure 8: Optimal solution, state variable and flux: Box = (0.1, 0.4)x(0.4, 0.6),
p=1
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Flow field (arrows) and state variable (gray)

0.06

Figure 9: Optimal solution, state variable and flux: Box = (0.1, 0.2)x (0.4, 0.8),
p=8

T 8 9 10

Flow field (arrows) and state variable (gray)

-1 068 002 031 <}

Figure 10: Optimal solution, state variable and flux: Box = (0.1, 0.2) x
(0.4,08),86=25
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Flow ficld (arrows) and state variable (gray)

052 o 14 ; 0

Figure 11: Optimal solution, state variable and flux, observation in two boxes:
Box1 = (0.1, 0.4) x (0.2, 0.4),Box2 = (0.1, 0.2) x (0.6, 0.8), 8 = 2.5

the quadratic case and the rate is the highest. The flux for 8 = 4
(Figure 6)and especially for § = 2.5 (Figure 10) are strong near the box
and small elsewhere. For 8 = 8 (Figure 9) the flux is still strong far
from the box. The reason is that the 8-norm or the functional ¥ for 3
large tends to the infinity norm which says that the price you pay for
one control variable is the price you pay for its maximum value. This
is also the reason why the absolute value of the optimal control variable
does not vary too much in_ the case 3 = 8, as shows Figure 9-(left),
contrary to the case 8 = 4 and 8 = 2.5 as present Figure 6-(left) and
10-(left). Note that the saddle point solution given in Figure 7 would
be the intuitive solution in many cases: one would prescribe a large
under-pressure on the opposite of the centre of the box to extract the
contaminants. Figure 8 presents one optimal solution where we have
changed the location of the box to (0.1,0.4) x (0.4,0.6). One can see
that if the observation is not close enough to the control variable, the
optimization leads to rather poor strategies.

In this second case, where the observation is distributed in one region
of the domain and if this region is not too far from the control variable,
the optimization gives a meaningful answer to the question of existence
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of a best choice of ventilation strategy. We remind the reader that
this answer was not so clear in the case of the boundary observation
considered in Section 2.1. The strong dependence between the locations
of the control and the observation shown in the two first optimal control
problems is a logical motivation to the next formulation.

2.3 Distributed Observation and the Discharges of Dirac
Type Sources Control

2.3.1 Formulation

In this third and last part we change the problem a little bit more
and we permit the control variable to enter the domain, too. We are
interested in solving an optimal control problem where the observation is
distributed and the control function is given as sources or sinks located
in the domain. We consider the elliptic boundary value problem

V-q :Z;';l ujéj, z €
q = —-KVy, z €€
Yy :0, -'L'EFD
v.gq =0, -z €I'n.

(16)

Here the control variable is u = (uy,...,u,) € R" and §; is the Dirac
function at z; € Q the position of the well j: §;(z) = é(z — z;).
The cost functional is

T = [ @z, q(y(w)) a2+ B(w), (17
Q

where ®(z, -) and W are two differentiable functionals on R? and R™, re-
spectively. Here we take ® exponentially decreasing of ¢ which is more
realistic because the quantity of extracted pollutant from the soil in-
creases but converges exponentially to a maximal value. The functional
¥ is a penalty term taken equal to the 8-norm;

8(z,) = p(@)ezp(Slal?) and ¥(w) = EXwl a8

where p € L*°(Q) is a weight function on 2. The two real numbers § > 1
and a > 0 are given. The weight function is zero outside an observation
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box in the unit square and in a small and fixed vicinity of each well, and
equal to 1 in the rest of the domain. The flux, solution of problem (16)
does not belong to the Hilbert space L2(f2), and to avoid any ambiguity,
we cut off a fixed vicinity from the support of u. This vicinity will not
depend on the discharge of the well or the space discretization. We have

Lemma 2.6.

1. The functional ® decreases with the norm of q but is still positive.
It means that a very strong fluz will not help much more than a
moderate one.

2. The functional ¥ increases with the norm of the discharges u. For
small values of u and B > 2, ® dominates ¥ and thus the min-
tmizer should not be 0. For § < 2 the norm of the minimizer
depends on a.

For large u and 3 > 1 the functional J is also large and diverges to oo
with u and therefore we have the ezistence of a global minimizer of J,
e, u € Uy C R, such that

J(u) < J(v) Vv € Uyq.

2.3.2 Numerical solution of the BVP

The right-hand side in problem (16) is the sum of functions with regu-
larity less than H~1(f2). To solve it we proceed as follows. We assume
that the conductivity is Lipschitz, in a vicinity of each well and we define
the functions of the Hilbert space L2()

— Ui ‘
(@) = goptnle 2l (19)

Therefore
V- (K;Vy;) = —u;é;,
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n
then the function § =y — ) y; satisfies the BVP
i=1

~V - (KV§) =3 V-((K-K;)Vy) inQ
=1
n
§ ~KViw =% KVy-v onI'y (20)
J:
] ==Y onI'p.
\ =1

The right-hand side in problem (20) is in this case a divergence of a func-
tion in L?(), and thus we can deduce a variational formulation which
has a unique solution for (20) in H*(f2). Therefore, we apply the finite
element discretization to problem (20) and by adding the fundamental
solutions y;,j =1, ..., n defined by (19), we get the solution of problem
(16).

2.3.3 Application and Results

In this case of non-convex functional one can make use of global opti-
mization techniques like stochastic search or genetic algorithm [Gol89]
because the computation of the functional is rather cheap and there may
exist many local minimizers. These two global search methods are es-
pecially suitable for non-regular functional with control variable of high
dimension. The dimension of the control variable is in our case low
which makes the number of minimizers low, too. In the other hand the
functional is of high regularity and thus we think that Newton algorithm
is still applicable. Due to the form of the objective functional (Figure
13), the Newton method slowly converges for 3 being larger than 2 and
may diverge for 8 being smaller than 2. Therefore some modifications
are in order: For example for # < 2 one can introduce a relaxation fac-
tor in the iteration to avoid a big change in the solution. One can also
initialize this iteration with the solution of a larger . One has to take
care of the vicinity of zero for 3 < 2 because ¥ will not be differentiable
to the order 2. We try to see the impact of the parameter 8 on the
optimal control. We have taken a = 0.002, A = 1, and §3 varies between
1.2 and 12. We suppose that the pollutants are located in the region
given by the box (0.4,0.8) x (0.4, 0.8). Figure 12represents the optimal
solutions which correspond to 8 = 2 and # = 3 and Figure 14 shows
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the behaviour of the optimal control function of the parameter 3. The
best solution in term of positions of the wells for 8 = 2 is to put all the
discharge on the well located in the centre of the pollution. This is not
the case, if 3 becomes large. For 8 > 4 the wells share the discharges in
an equitable way. For soil remediation it is important to have negative
total discharge which is the case shown in Figure 12.

------------------ L
...... L e e 4 e a = - - s > .. -*‘-- - -
------ P S T L TSP, - v e o e v e » [\i .~ . - - .
...... LU S Y 2 N I ] - r v v v elv ¢ 2 ~ wje - -
------ LY PR R R - e v v o wle e o a e sle e -
------ - - o ofo o - - v v v v vile o - sie - -
...... - ’(;' R N - v v v v elv IK\ w-in - -
————— rle » f \ L S L > v v » ¢ cle ¢ F N N Siv - =
- v v »r ¢ vie « Vv wiw o« - - v v ¢ ¢ «])a4 4 ] 0y vl v o=
L 2 Y TR S T B B - D L L Y T T T
- v v ¥y e s 4 LAY Y Y " - . 4 &t 3 a2
- s * ¥ N T 2 R . Ay N7
. ®

- v e e w - L N

o = .

- - -

o Extraction Well O Injection Well ® Extraction Well  © Injection Welt

00 00 “700

Figure 12: Optimal solution: flow field, Box(0.4, 0.8) x (0.4, 0.8), the location
of the wells are (0.6, 0.2), (0.6, 0.6) and (0.6, 0.9), (right): 8 = 2 and (left):
B=3
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Figure 13: 1-D representation of the functional J when varying 3 : j(z)
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Figure 14: Optimal solutions: Discharges of the three wells respectively func-
tions of 3, wells locations respectively: (0,86, 0.2), (0.6, 0.6) and (0.6, 0.9).
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3 Conclusion

In this paper, we have considered some aspects of optimization of flow
essentially governed by a second order elliptic differential equation. The
control variable was the pressure on one part of the boundary for the first
and the second formulations, and the discharges of some wells located in
the domain for the third one. We would say that the first formulation is
rather hard in the sense that the unique optimal solution does not always
produce a very good strategy. This is due to the fact that the control and
the observation locations are distant and the diffusion of the fluid avoids
any strong relation between them. In the second formulation, where the
region of observation moves towards the control variable, the situation
becomes better and the optimal solutions seem to treat the problem of
soil venting in a clear way. This is better than the first formulation but
one cannot imagine that a polluted soil “moves” towards the ventilation
equipments. Thus the third formulation seems to be the best approach.
The control variable should move in the domain to find the positions
which permit to treat the problem of optimization of the discharges.
As future work we plan to treat the optimization of the positions and
the discharges of the wells simultaneously. Another advantage of this
third strategy is that the extracted air leaves the domain at a small area
which make the treatment of this air easier. The injection wells can be
also used to introduce heated air to enhance remediation in some cases
[LD90].

Another point we have to mention is the spacial variability of the
soil properties, namely the transmissivity. Recently Unger, Sudicky, and
Forsyth [USF95] have addressed the problem of robustness of a remedi-
ation strategy with respect to spatial heterogeneities of the soil. This
variability of the transmissivity has to be considered and the optimal
control problem depends strongly on it. Without this effort the opti-
mization gives in general highly uncertain results in term of remediation
[Gor90].

Another aspect of the optimization of soil venting is the pollutant
transport in the soil. This brings many complications to the prob-
lem, namely the numerical solution of the convection-diffusion transport
equation, the parameters of this equation which are almost unknown but
offers the possibility to define the objective functional in a more direct
way. In this case, one should maximize the quantity of the extracted
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pollutants under some physical and technical restrictions. This has to
be done and to be compared with the optimization considered in this

paper.
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