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On the controllability of the Laplace equation
observed on an interior curve.

A. OSSES! and J.- P. PUEL

Abstract

The boundary approximate controllability of the Laplace equa-
tion observed on an interior curve is studied in this paper. First we
consider the Laplace equation with a bounded potential. The r*
(1<p<oo) approximate controllability is established and controls of
L?-minimal norm are built by duality. At this point, a general re-
sult which clarifies the relationship between this duality approach
and the classical optimal control theory is given. The results are
extended to the L? (1<p<oo) approximate controllability with quasi
bang-bang controls and finally to the semilinear case with a glob-
ally Lipschitz non linearity by a fixed point method. A counterex-
ample shows that the globally Lipschitz hypothesis is essential.
To compute the control, a numerical method based in the duality
technique is proposed. It is tested in several cases obtaining a fast
behaviour in the case of fixed geometry.

1 Introduction and Main Results

1.1 Introduction

In this paper we present some extensions and numerical applications
of a method which has been developed by Fabre, Puel and Zuazua in

! The author gratefully acknowledges the support of the French Scientific
Committee ECOS.

AMS Classifications: 35B37, 93B40, 93B06, 93C10.

Servicio Publicaciones Univ. Complutense. Madrid, 1998.



404 A. Osses and J.- P. Puel

a series of papers [Fa-Pu-Zu 1,2,3]. They studied the boundary and
internal approximate controllability of the semilinear heat equation ob-
served at final time. We consider here the boundary control of the
semilinear Laplace equation observed on an internal surface (also see
[Os-Pul]). The boundary value is unknown on a part of the boundary
but some “measurements” of the solution in L? are given on the internal
surface. The problem is then to retrieve the boundary value from the
given measurements. This can be viewed as an inverse problem to which
approximate controllability techniques apply.

By definition, if we can find an approximation of the boundary value
we say that we have LP-approximate controllability. In this paper, we
study in an unified manner the L?-approximate controllability for 1 <
p < oo with controls of minimal p-norm, the case of quasi bang-bang
controls, the semilinear case and a numerical resolution of the problem.

Our results make use of unique continuation properties which are
classical in the case of the Laplace equation. Thanks to recent unique
continuation properties of the generalized Stokes system [Fa-Le], we
treat in another paper the Stokes case for which numerical calculations
are also given [Qs-Pu2].

1.2 Control Problem

Let © be a regular bounded open set of RV, N > 2. We also suppose
that Q is connected, in fact the results of this paper are valid in each
connected component of 2 separately.

We denote by I' the boundary of 2, and by v the unit outward normal
of Q. We suppose that I'g is a non-empty and relatively open part of
I’ which represents the boundary where the control acts. We are now
given an internal regular subset S of {2 of codimension 1, that is to say
a curve in two dimensions or a surface in three, where we observe or
measure the solution.
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)
v

Fic. 1. Principal notations.

Let us consider for each v € LP(Ty), 1 < p < oo the following
Dirichlet boundary problem:

~Ay+ay=f in Q (1.1a)

y=v on Iy (1.1%)
y=0 on TI'\Ty, (1.1¢)

where f € LP(R?) and the potential function a satisfies the following
conditions

a(z) >0 ae. z€Q ifp#£2

00
a€l (Q) and {a(z)z_ﬂ>_,\1 ae. z€Q ifp:2

(1.2)
where A\; > 0 denotes the smallest eigenvalue of the —A operator in
Q with Dirichlet homogeneous boundary conditions. We will see that
problem (1.1) has a unique solution y = y(v) in a transposition sense
[Li-Ma], but this solution is only in LP(§2). Nevertheless, the trace of
y(v) on S still makes sense if S is supposed to be strictly included in Q
as we will see later.

Given y; € L?(S) and o > 0, our aim is finding v € LP(I'g) such that

Jv@)ss = wl,, g < e (13)

where |||, , 5 denotes the standard norm in L?(S) (see section 1.4).

Of course, a = 0 would be the ideal case of exact controllability, but
this is in general impossible due to regularity reasons. For example, if
f=0in (1.1) then y(v) is analytic in Q and y; is only taken in LP(S).
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Condition (1.3) follows from classic approximate controllability meth-
ods since our problem is equivalent to showing that the set {y(v);s,v €
LP(To)} is dense in LP?(S).

1.3 Main results

In order to obtain the approximate controllability results, we have to
introduce the following geometrical hypothesis on S and I'p:

S'is strictly contained in Qland each point on Scan be

connected to Toby an arc in Quwhich does not cross S. (1.4)

For each g € L?'(S), let us denote by ¢ the solution of the problem
—Ap+ap=¢ods in (1.5a)
=0 on T, (1.5b)

where 5 denotes the Dirac mass on S.

Finally, we define i as the solution of the following homogeneous
problem:
~AY+ag=f in Q (1.6a)

=0 on T. (1.60)

Theorem 1.1. Assume (1.4). For each y, € LP(S), 1 < p < oo and
a > 0, there ezxists a control v in LP([g) such that the solution y(v) of
the problem (1.1) satisfies (1.3). Moreover, if U,q represents the set of
all v in LP(T'o) which satisfies (1.3), called admissible controls, then the
minimization problem:

1
Juin = llvllo,p,s (L.7)

has a unique solution ©. On the other hand, if we define the functional

dp|? _

s = [ do+alionlops = [ -Dpods,  (18)
for each g in LP'(S) and the associated solution ¢ of (1.5), the problem
of minimizing J in L?'(S) also has a unique solution $o. Moreover, the
minimal norm control ¥ is given by

690 P2 0(,0
~13,®

o(z) = (:l:) a.e. z €Ty, (1.9)
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where $ is the solution of (1.5) associated to $y. We also have

19(2) = y1llop,s = min{e, [ly1]lo,5,53- (1.10)

Theorem 1.1 is proved in Section 2. A unique continuation property
based on the hypothesis (1.4) leads to show the existence of a control
satisfying (1.1)-(1.3) by a classical density argument. This enables to
construct controls of minimal LP-norm such as in (1.7) by using a method
[Li1,2,3] based on the duality theory of Fenchel and Rockafellar [Ek-Te]
which gives functionals like (1.8).

In an optimal control philosophy, another approach for solving (1.1)-
(1.3) is to minimize for some ¢ > 0 the functional

1 1
H(v) = —/ —ylPd —/ ’do.
(v) » () —ul -y [v|Pdo

This method and the method presented in Theorem 1.1 seem to present
some similarities but they are actually different. We study this relation-
ship in Section 3. More precisely, we generalize a comparison given by
[De]. The extension (Theorem 3.4) evidences some equivalence between
the two approaches in reflexive spaces. The cases studied in Section
2 fit into this framework, but not those of Section 4. Except for this
comparison, we will not consider the optimal control method in this
article.

Following this study, in Section 4 we consider the case of the LP-
approximate controllability for 1 < p < oo with controls of infinity
minimal norm (Theorem 4.2) by inversing the duality argument [Fa-Pu-
Zu3]. The case of the L!-controllability is also studied (Theorem 4.3).
In this case duality is no longer valid and we use a proof by modifying
the dual problem [Fa-Pu-Zul,2]. In all the cases we obtain the same
kind of quasi bang-bang controls.

In Section 5 the study of the linear case leads to state the approxi-
mate controllability result in the globally Lipschitz semilinear case (The-
orem 5.1) by a fixed point method [Fa-Pu-Zu3]. A counter example
based on a technical argument shows that the result is not true in the
superlinear case at infinity, that is a non-linearity of the type |y|" 'y
with r > 1 [He]. Nevertheless, the result could be slightly extended to a
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non-linearity between the sublinear and the superlinear comportments
at infinity [Fe].

To complete the study, we present in Section 6 a numerical method
for the linear case in L? based on the duality approach of the previous
sections. The method has been constructed in order to have a fast up-
date of the control in the case of changes of I'g, & or y; and only a small
stockage is required. We observe a loss of accuracy for small values of
o independently of the mesh, which is a typical problem in numerical
approximations in control and inverse problems. The proposed numer-
ical method is easily generalized to the L? case and it can be adapted
to other similar control problems. The semilinear case might be treated
by a fixed point procedure, but we do not follow this idea here.

1.4 Notations

We recall some classical definitions. For each integer m > 0 and real p
with 1 < p < 0o, we recall that W™?(2) are the classical Sobolev spaces
with norms

I/p
”‘P”m,p,ﬂ = ( Z fﬂ |Da(p(x)lp diI)) for 1 S p< 0

ja|<m
N2M i 00,0 = MBX|a|<m (e888UP,eq |[D@(z)]) for p=oo.

For p = 2 we denote the classical Hilbert space H™(Q2) = W™?*() and
we drop the subscript p = 2 in the norms. We recall also that Wg"* ()
is the closure of D(Q) (infinitely differentiable functions with compact
support in ) for the norm ||-||,,, , o For the definition of W™ on the
boundary and for non integral or negative values of m, see for example
the introduction in [Gi-Ra]. We only recall here that the trace space of

W™P(Q) is Wm_%’p(l") for I' regular and that the dual space of Wy ()
is by definition W~17'(Q). We denote by p’ the conjugate exponent of
pie 1/p+1/p =1.

Remark. Without a loss of generality, we suppose in all sections that
f = 0. Otherwise we introduce ¥ solution of (1.6) and the results are
valid by changing y1 by y1 — 9.
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2 [P-approximate controllability

In all this section 1 < p < 0o. Section 2.1 presents the classical density
argument used to show the existence of a control satisfying (1.1)-(1.3).
By using the geometrical hypothesis (1.4), a unique continuation prop-
erty is proved in Section 2.2 and it leads to show Theorem 2.1. In
Section 2.3 a constructive approach [Lil,2,3] to construct controls of
minimal LP-norm is used and Theorem 1.1 is proved.

2.1 Classic approach

Theorem 2.1. Assume (1.4). If y(v) denotes the solution of (1.1) for
v € LP(Ty) then the set

R, ={y(v);s s.t. ve LP(To)} (2.1)

is dense in LP(S).
First we give a transposition sense [Li-Ma] to (1.1). Let ¢ be the
solution of the following problem for h € L¥' ()

-Ap+ap=h in (2.2a)
=0 on T. (2.20)

Under the hypothesis (1.2), we know ([Ag-Do-Ni] or [Mi], Theorem 38,
VI) that (2.2) has a unique solution ¢ € W™ (2) N W2P'(Q) and that
there exists a constant C' which depends only on €, p and a such that

lellz 0 < Cliklloya - (2.3)

If we multiply (1.1a) by the solution ¢ of (2.2) and if we integrate by
parts, we obtain the following weak characterization of (1.1).

Lemma 2.2. The unique solution y € LP(Q) of

— d_‘P p'
/thdz = /n,vau do  Vhel”(Q), (2.4)

where ¢ denotes the solution of (2.2) associated to h, is also a solution
of (1.1) (with f = 0) in a weak sense and conversely. Moreover, Ay €
LP(Q2) and there ezxists a constant C such that

9llop0 < C llvllo,p,r, - (2.5)
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Remark. Since Ay € L?(Q) then y € W, ?(Q) ([Li-Ma], Theorem 3.2,
p-138) and thus the trace of y on § ma,kes sense if S is regular and
strictly included in 2.

Lemma 2.3. For each ¢y € L”'(S), there exists a unique solution
© € WLP'(Q) of problem (1.5). Moreover, if S is regular and strictly
included in Q and I" is regular, then

0 -
a"’ e W'F ' (I) (2.6)
and there exist constants C; and Cy such that
dp
0 llo . x < Cillellpa < Calivollo,s - (2.7)

Proof. Case p= 2. From (1.5) we have

IVela+ [ a@) el dz = [ eopds, (2.8)

— v -
" (1 ! ﬂ) inf IVellen (1_.)\1 ﬁ)
M Hi® Jelig M
IVelloa M- B
2 1- A
liellog 1

But

=
f

since from the condition (1.2) we have 0 < '\‘T_lﬁ- < 1. Thus

A
BB Vela < IV6la - Bllelia < IVelha+ [ a(@) ol da.

Then (1.5) has a unique solution thaks to the Poincaré inequality and the
Lax-Milgram Lemma. Combining this result with (2.8) and using a trace
theorem we obtain the second inequality in (2.7) with C3 = CAy/(A1-8).

For the general case p # 2 (see also [La-Ur] and [Ne]), let us first
notice that 8spp € W1#(Q) if o € L”'(S). Indeed, by definition and
by using classical trace theorems we obtain
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Bspoll-ipa = sup([ popdsi v € W3 (@), liplhpa< )
< sup{llgollopr,s llelli—1 5,55 @ € Wo (), llellp0 < 1}
< CH‘PO”o,p',s (2.9)

Now, let us denote by Th the solution of (2.2). We know that T is an
isomorphism from L? onto W2?NW,** (we drop Q to simplify the expressions).
But T = T* is also an isomorphism from (W2? N W2?)’ onto L?'. If [A, B]
denotes the 1/2-interpolated space between A and B (see [Li-Ma], Theorem 1.4)
we also see that T is an isomorphism between the corresponding interpolated
spaces: )

T: [P, (W2P N Wy P)] - W2 nWy? , LP].
But .
[L”', (WP A WEPY] = [P, W2P N WPy = (WhPy = w-ir

and [W2F' N W, P L IP) = WP ", Therefore T is an isomorphism from W=1#'
onto WJ . This is equivalent to the existence and uniqueness of problem (1.5)
and the second inequality in (2.7) follows from (2.9).

To prove (2.6) and the first inequality in (2.7), let § € C*(RQ) be a function
such that # = 1 in a neighborhood of T' and # = 0 in a neighborhood of S (this
is possible since S C €2). One may note that for the solution ¢ of (1.5) we have:

A(fp) = pAO +2V0 - Vo + 0Ap = pAO +2V0 -V + abfp
and it follows that Gy is the solution of
—A(fp) +a(fp) =h in Q
0p=0 on T,
where h = —pAf + 2V - Vo € L' (). Therefore fp € Wi*' (Q) N W2#'(Q)
and consequently by classical trace theorems

Aoy) _ 0¢ o yr-3#'r)

v ov

and

9
v

< Clloelly pr 0 < bllopra < el pr -

1-4pT

|2
1_;1’_,1)/’1-* 61/

Finally we obtain the first inequality in (2.7) due to the continuous injection
of W'~ P (T) in L”'(T).
n

411
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2.2 Unique continuation property

Lemma 2.4. Assume (1.4). Let ¢ be the solution of problem (1.5). Then

0 S .
6—‘5:0 on Tg implies ¢=0 in Q.

Let us define the set of all the arcs which connect S with I'y as
A(S;To) = {c € C([0,1};Q); c(t) € 2\ S Vt €]0,1], c(0) € S, ¢(1) € To}.
The geometrical condition (1.4) can be more technically stated as follows:
S C Qand ¥z € S,3c € A(S; ) such that ¢(0) = z. (2.10)
Let us also define the exterior and interior sets of S relative to I'g as

Sez't = {C( ); c E.A(S FO) tE]O 1[} (2 11)
1nt = Q\Sezt (2 12

00000

Fic. 2. In all cases I'y is the whole boundary. The curve S is represented with a dashed line.

In (a), (b) and (c) the geometrical hypothesis (1.4) is satisfied but not in (d) and (e).
The set S..: is shaded in each case.

From the definitions above, the following geometrical properties are easily de-
duced.

Proposition 2.5. Assume (1.4). Then

(i) Sert is @ non-empty open set and we have : S C 8Sext, To C 8Sess.
Moreover, if Sezt has several connected components, the boundary of each
of them contains a nonempty open subset of I'g.

(i1} Sint may be empty but if not, Sin: C SuUr.
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Proof. (of Lemma 2.4) The solution ¢ of (1.5) clearly satisfies

—Ap+ap = 0 in Seg
¢ = 0 on T
%‘5 = 0 on Ty,

and it is easy to prove that ¢ € W"if‘(Sezt), therefore, since I'y C 3Ses:,
by unique continuation [Sa-Sc] ¢ = 0 in Ses¢. Since ¢ € Wj”"(ﬂ), we have
necessarily ¢ = 0 on 8Sezt. As S C 0Sest, it also vanishes on S and thus ¢ =0

on ASin:. If Sin; is not empty (otherwise ¢ =0 in @ = Sepe U ?) then

—Ap+ap = 0 in Sipe
Y = 0 on 8S,~nt

and this implies ¢ = 0 in S;,;. Therefore, ¢ vanishes in all Q@ = S,z¢ U Sin US.
| ]

Proof. (of Theorem 2.1) Let g € L?'(S) be given and let y(v) be the solution
of (1.1) in the weak sense (2.4). We will show that

/y(v)g ds=10 Vv € LP(I'y) impliess ¢=0 on S.
S
If ¢ is the solution of (1.5) with ¢o = g then by (2.4)

/ygds:—/vaidazo Vv € LP(Ty).
s o 61/

Therefore %‘5— = 0 and by the unique continuation property of Lemma 2.4,

p=0inQ,80 9 =9 =0.

2.3 Constructive approach

There exists a more constructive approach to the L? approximate controllability
on a curve which is in fact an explicit method to find controls of minimal
norm. The method was introduced by J.-L. Lions (see [Lil,2,3]) and is based
on the duality theory of Fenchel and Rockafellar. We use the following duality
theorem.

Theorem 2.6. [Ek-Te] Let V be a Banach space and Y a separable topological
vector space. Let F : V — R and G : Y — R be two convez functions. Let
L : V = Y be a linear continuous operator. We suppose that there exists
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vg € V such that F(vo) < +00, G(Lvg) < +oo and that G is continuous at
Lvg. Then, if the infimum is finite, we have:

inf (F(0) + G(Lv) = sup (~F*(L*w") - G"(~u")) (2.13)
w*ey”

The supremum in (2.13) is attained at least in one point @w* € Y*. If the
infimum is also attained at ¥ € V (for ezample if V is reflerive and F(v) +
G(Lv) = 400 as ||v}| = 00), the following extremal relations are satisfied:

F(®) + F*(L*®")— < L*®*,5>=0 (2.14q)
G(L?) + G*(—@*)+ < ©*, L# >=0. (2.14b)

Remark. The respective duality products between V and Y and their topo-
logical dual spaces V* and Y* are denoted equally by < -, - >. The respective
norms are || -|| and ||-||,. We recall that F* is the conjugate function of F in
V,ie.
F*(v*) = sup(< v*,v > —F(v)) foreach v*'eV”
vev

and similarly for G* defined in Y*. Moreover L* denotes the adjoint operator
of L. We present in Table 1 some functions F and their conjugates which are
useful here. The symbol /[_q4,q) denotes for a > 0 the convex function equals
to 0 into the interval [~a, @] and to +oo in its complement.

TABLE 1. Conjugate functions.

Function F(v) | Conjugate F*(v*)

Ii—o,a1(lv=voll) | alv®ll+<v® vo>

'
Lol Loz

We will also use the following well known property (Young’s inequality)
which can be easily proved by developing log(ab) (see for instance [Br]).

Proposition 2.7. Let 1 <p< oo, 1/p+1/p'=1,a >0, b> 0 be given. Then
1 1,

—a? 4+ = —ab>0

P 4 -

and the equality holds if and only if a® = ab = b’

Proof. (of Theorem 1.1) We apply Theorem 2.6 with V = LP(I'g) and ¥ =
L?(S). We also take

1
F(v)=;||vll’é,p,r., , Gw) = I-ae(llw - wllops) » L(v) =y()ls.
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We can write (1.7) in the form of the infimum in (2.13). In this case, the
infimum is attained at a unique point. To see this, let us notice that the set
U4 is not empty, since the existence of a control function that satisfies (1.3) is
assured by Theorem 2.1. Moreover, it is easy to see that U,q is a convex set.
Then, since Il,” . llg,p, g is a strictly convex and coercive functional, there exists

a unique ¥ € LP(S) which minimizes (1.7).

Functions ' and G are clearly convex. By Theorem 2.1 we can chose vg
such that

ly(vo) — wllo,p,s < @,

then F(vo) < 400 and G(y(vo);s) = 0 and due to the continuous dependence of
y on v (see (2.5)), there exists a neighborhood O of v such that G(y(v);s) = 0
for all v € O, thus G is continuous at y(vo)|s. Therefore, the identity (2.13) is
valid in this case. We denote by @y a function where the supremum is attained.

We precise the dual problem of (1.7) given by the right hand side in (2.13).
From Table 1, we see that

* * 1 * ! * * *
P = S W, o G = allwllys+ [t ds
and then

* 1 * * * *
F*(170) + G-w) = 2110 [, + o ||0’p,’5—/sy1w ds. (2.15)

Let us identify L*. From (2.4)

and then s
A (2.16)

We obtain from (2.15) and (2.16) the expression (1.8) for J (here = 0).
In our case, the extremal relation (2.14a) can be written as
1|”’ +l||L“1|"' — [ 9L*@odo =0 (2.17)
? 1ollo.p,ro p W Pollogire ™ f UE P04 = :

then
[ (@ + S1a@p - @0 do=o
I \P pl
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From Proposition 2.7 the integrand of the last expression is non negative thus
[B(z)IF = ¥(z)L*Po(z) = |L"‘¢0(x)|”l ae. z €Ty, (2.18)

and multiplying by L*{@o(z) we obtain the relation (1.9). To see that @ is
unique, we use the fact that 9 is unique. Indeed, if g} and 3 are two functions
where the minimum of J is attained, then from the first equality in (2.18)

L@ - 73) =0.
Thus by unique continuation {Lemma 2.4), the corresponding solutions of (1.5)

satisfy $' = $? and therefore &} = 3.

On the other hand, since we know that ||[L¥ — y1]l, , ¢ < @, the extremal rela-
tion (2.14b) gives

04 ||¢0“0,p’,s - [sylao ds + LL?&Q ds =0. (2.19)

Thus
allollo s = - fs (L9 — 31)Pods < |15 = wallo .5 1Bollo prs

from which, if gp # 0

[|ILY — y1||0‘p,5 =a. (2.20)
By(1.9) $o = 0 implies ¥ = 0 and then ||L% - yil, s = llslly, s < @ Con-
versely, if ||yl , s < o then J(po) > 0 for all o € L?'(S) and J(0) = 0, by

I’ &

uniqueness we obtain that o = 0. This proves (1.10).
n

Remark. In the case p =2 and a < ||y, s @ more precise result than (1.10)
is

) -z ——a——-[ﬁo(z) ae «
(¥(®) —n)(=) = Bolowrs ™ €s. (2.21)

Indeed, if we use (2.27) and (2.28) we have
- 2
o '

Qe+ L/’l;—yl
ollos T &7~ )

1 ~ ~
a’+a?+ 20— /500'(13”—311)‘13
||<P0||o,s s

= 2% -2a%=0.

0,5

In fact, the property of uniqueness of the minima and other properties of
J can be proved independently, as we see in the following result.
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Lemma 2.9. Assume (1.4). For each a > 0 and y; € LP(S) the functional J
defined in (1.8) is continuous, strictly convezx and

lim inf M

> a. 2.22
oL Toollors = 222)

Moreover, the function py € ¥ (S) where J achieves its unique minimum
satisfies
Po#0 & a<l|lnllp,s- (2.23)

Proof. We give a proof such as in [Fa-Pu-Zu3]. To see that J is continuous,
we only need to recall the continuity property (2.7). J is strictly convex since
it is the sum of strictly convex terms.

To prove (2.22), we take a sequence such that ||¢g||y ,» s — 00 and we denote
by ¢y the solution of (1.5) associated to ¢§. If we define

_ %
legllo pr s’

then by (2.7) |lenll; ,» o < Cllebllo s, and thus &, is bounded in wir'(Q)
and & is also bounded in L*'(S). As a result, up to a subsequence:

~ Pn

Ppn=7——— and @ =
" ”S"{)'”o,p',s °

Pn — & in WLP'(Q)-weakly
&8 = Po in L' (S)-weakly.
But

7

=P
%So—"- do — /yl%‘ ds+a. (2.24)
v s

J(¥5) 1 -1
= Zletlts |
Feillogs 700 07"y,

If we define the number:

~ pl
9%n do,

o 61/

4 =lim infi,
n.p
we have two cases: if ¥ > 0, since ||¢F ||y, s — 00 the equality (2.24) implies

that n
lim inf -J—("%—)—
n le8llop,s
We consider now the case ¥ = 0. By using the continuity and the convexity of
i -"g:p,’m and (2.7) we can deduce that

- 400 2 a.

1 P’ ~ p’

P,

¢

ov

do < liminf —1—,-
n P JL,
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then %g =0 on T’y and by Lemma 2.4 we see that & = 0 in Q. Therefore
&n =0 in Wl”’l(Q)-weakly

and all the sequence converges. But by definition g, is the solution of (1.5) for
#4, and by continuity (see (2.7)) & = 0 is the solution of (1.5) for o and then
@0 = 0. Then

@r =0 in LP(S)-weakly.

Using this fact, from (2.24) we obtain

n B ~ p'
fiminf —P8) Ly inf|;¢g||g;,‘sf P‘”" do—0+a>a,
n P ro 61/ -

n leGllops P

and (2.22) is proved. The direct implication in (2.23) is easy. For the other
one, let us suppose that @y = 0. Then

J(tpo)
(4

0< lim = allpollg pr. s — /y1 o ds Vo € LPI(S)~
t—0+ o S

Taking g0 = 1£/7' we obtain a [y 355 ~ llv1[l5 .5 > 0 and then [[yr[lo,s < e

3 Relationship with the optimal control theory

We provide here a generalization of a result given in [De], see also {Ca-GI-Li].

Let E be a separable topological vector space and F a reflexive Banach
space. Let L : F — E be a linear continuous operator and L* : B/ — F’ its
adjoint operator. Let £ > 0 and a > 0 be given real numbers and y; € E a
given function.

We consider the following abstract control problem:
Find v € F such that ||Lv—yi||p and ||v||p are small. (3.1)

We introduce two different strategies or minimization problems and their re-
spective dual problems in the sense of Theorem 2.6. Here 1 < p < oo and
1/p+ 1/p’ = 1. The following hypothesis ensures that all conditions about v
in Theorem 2.6 are fulfilled. We suppose that

Jv e F such that ||Lv—y||p <o.
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Optimal control strategy: (Tychonov’s regularization)

minger 5 vl + ||Lv—y1||p = —minuep 5 ||L*wllf (3.2)
b Ol — G whe e
Duality strategy: (Fenchel’s regularization)
minger ol + fi-al (L~ pallp = —minues g ILwlfe (g 3)

+ allullg =y, w)ep

The extremality conditions (2.14a) and (2.14b) which characterize the so-
lutions of (3.2) and (3.3) are respectively

- ”””p = ||L'i5||pl — (v, L*"®)r,p =0 (3.4a)
1 ~ pl_l in’ = N
pos 1LY — wll + |9l — (v, B)E. B2 + (LY, B)E,6r =0 (3.4b)
and
= ll~l|” —IILV?II”/ ~(v,L*W)pp =0 (3.5a)

LV -~ p|lg <o and al|tl|g — (y1, D)e,p + (LU, W)g.er =0. (3.5)

Lemma 3.1. For ¢ > 0 given, let (v,w) be a solution of problem (3.2). Then
we have

lllg = L7 wlly" (3.6)
Proof. The condition (3.4b) implies that

1, . 1, ~ ~
—ILT - wiliE + = lledlle < 1LY - wlig lled@l| g
p 4
then, using Proposition 2.7 we obtain
e ||l = 1LY - mlfp
and since p/p’ = p — 1 we can deduce (3.6).

Lemma 3.2. For a < |lyi||g given, let (V, W) be a solution of (3.3). Then we
have

a=||Lv -yl - (3.7)
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Remark. The case o > ||y} is not really interesting since in this case v =0
and w = 0 is a solution of (3.3).

Proof. One may note that if @ = 0 then from the extremality condition (3.5a)
we have ¥ = 0 and if we use (3.5b) we see that ||y1]|p < a. By hypothesis
a < ||y1||g and then here @ # 0. Now from (3.5b) we see that

a||@llg <LV = wllg ||@l|g

and so we have (3.7).

We directly have from these two Lemmas the following Corollary.

Corollary 3.3. For ¢ > 0 and o < ||y1||g given, let (v,w) be a solution of
(3.2) and (3.3) at the same time, then we necessarily have

o~ = elullp -

The converse property is also true in the following sense.
Theorem 3.4.
(i) For e > 0 given, let (v,w) be a solution of problem (3.2). Then (V,®) is
also a solution of (3.3) for

a=e""1B|5 " (3.8)

(i) For a < ||lu1||g given, let (¥,®) be a solution of (3.8). Then (v,w) is
also a solution of (3.2) for

E=a® !a|lg - (3.9)

Proof. To prove (i), let ¢ > 0 be given and let (¥, @) be a solution of problem
(3.2). Take @ such as in (3.8). Then, using the relation (3.6) we easily see that
eP' -1

@l = a1l (3.10)

1
— ||L7 - %
ep 1LY — willE +

and
“L"l)\— ylu’é = 6
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From these two latter expressions, if we compare the extremality conditions
(3.6) and (3.7), it is clear that (¥, ®) also is a solution of (3.6) and then for
(3.3) for a = a.

The proof of (ii) is completely similar. If a < ||y1]| is given and (v, @) is a
solution of (3.3), by choosing £ such as in (3.9) and by using the relation (3.7)
we can deduce that

Lo - i+ Tl = i (3.11)
gp WilE pl P B! ‘

If we compare again the extremality conditions (3.6) and (3.7) again, it is easy
to see that (¥, ) is a solution of (3.7) and then it is a solution of (3.2) with
€ =E.

4 First extension: quasi bang-bang controls

4.1 LP-controllability with an L*°-minimal norm control

We give an extension of Theorem 2.8 to controls of minimal infinity norm. Here
I1<p<g<oo.

Definition 4.1. We say that v € psgn ¢ if v(z) = go(:c)h—ﬁ%g-[ a.e. in the set
{z] ¥(z) # 0} and |v(z)| < |¢(z)| a.e. on the set {z | P(x) = 0}.

Theorem 4.2. Assume (1.4). For each y, € LP(S) and o > 0 there ezists a
control v € L®(Lo) such that the solution y(v) of (1.1) satisfies (1.3). More-
over, if U3 represents the set of all control functions in L™ (T'o) which satisfies
(1.8), then the minimization problem:

1
- 1
i 2 1ol o r, (4.1)

has a solution ©. The minimization problem in L (S) for

ql

1 || 8¢
s =2 || +allolops = [ugods  @2)

0,1,F%
where @ represents the solution of (1.5) for each @y € L¥'(S), has a unique
solution @y and ¥ satisfies on I'g

~

0p

Ov

qi—l —~
sgn Q—(’i, (4.3)
ov

o~

veE—

0,1,
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where $ is the solution of (1.5) for $o. For the error we also have the identity
(1.10).

Proof. The proof is also based on Theorem 2.6, but here we take thel mini-
mization of (4.2) as the primal problem. We chose Y = L!(T,), V = L?'(S),

1 ] 9
F(po) = a“%“o,pl,s - /Syl% ds , G(w) = 7 “w“g,1,r‘o » Lpo = _E;IFO'

We have F(0) = 0 < o0, G(0) = 0 < oo, G is clearly continuous at 0 and
J = F+GoL. We notice that J also satisfies the coercive property (2.22)
with the same proof of Lemma 2.9 (we only use the continuity and convexity

of ” ”0 1.r,)- Since here V is reflexive, the minimization problem for J has a
unique solutlon @o and its dual problem following Theorem 2.6 is

. . 1
= emin (licaallEo = nlloy,s) + - 0l o r,)

equivalent to (4.1) since L*po = y(v);s. Theorem 2.6 enables us to see that
the extremality conditions (2.14a) and (2.14b) hold. The error property (1.10)
is deduced directly from (2.14a) and (4.3) is obtained from the other extremal

relation (2.14b) as follows:
- ~0p
508 o, [ 952 do
0,1,1‘.,

~ .0p
4 Pllo v, = | 950 do >0

~

ov
op
v

0 =4

>
Io

then from Proposition 2.7

op ap||?

19118 00,10 = 112110 00, 3 : (4.4)
I 0,00,I’ IO T ay 01I‘o ov 0.1.T%
Also 3G 9
2 o\ 1p s Y =
| (5@ 19l o.r, ~ Gote)01a) dor
thus 95 85
So(2)i(e) = la—(’:(z) I9llocor, @€ €T
But (4.4) means
o[
v(z)| < ||=— a.e. €Ty,
lv(=)l < 15, oire

and then (4.3) holds. ]



On the controllability of the Laplace equation ... 423

Remark. With the same proof of Lemma 2.9, we can prove the equivalence
(2.23) in the case of Theorem 4.2. So the case a > ||yl , s implies &o = 0
and v = 0 (unique).

Remark. The expression (4.3) means that the control ¥ is quasi bang-bang.
If & < |lyn]lp 5,5 then ¥ is not unique in general. In fact, all solutions of (4.1)

only differ on the set {z € T'¢| %f(z) = 0}. The measurement of this set is an
open problem, but it does not contain any non-empty open set of I'g due to
the unique continuation property.

4.2 ['-controllability with an L*-minimal norm control

In the present case, we can not apply a duality argument. However, the idea
is to directly introduce a functional like (4.2) and to write the extremality
condition at its minimum to obtain a control which satisfies the error condition
(4.7). Here we consider the solution ¢ of (1.5) with o € L*(S). The function
@ is regular near I'g and its normal derivative on Iy satisfies

Op
ov

Given y; € L'(S) and a > 0, we define for 1 < ¢ < o0

< Clieollo,co,s -
0,1,T

1 q

a
Jgo)= A

v

+ & [@ollo o5 + / y1p0 ds. (4.5)
0,1,T s

We can prove the analogous of the coercive property (2.22) for this new func-
tional using the weak-* topology in L. As a result, J has a unique minimum
and we can extend the result of Section 4.1 in a weaker form. Here 1 < ¢ < oo.

Theorem 4.3. Assume (1.4). For all yu € L*(S) and a > 0, if § is the
solution of (1.5) associated with the minimum Go in L°(S) of (4.5), then
there ezxists

veE - % ! sgn 43 on Ty (4.6)
wloir, OV
such that the solution y(v) of (1.1) satisfies
lly(¥) — 3/1”0,1,5 La. (4.7)

Remark. A priori, (4.7) is not valid for all ¥ satisfying (4.6), but this is true

if the set {z € I'¢ | %‘f(z) = 0} has zero measure, since in this case ¥ is unique

(a.e.).
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Proof. If J attains its minimum at $o, we have for each ¢ € L™(S) that

~nq
J(Po + £do) — J(Po) > 0 for all € > 0. We note J1(Po) = % e oL
1140

@ is the solution of (1.5). By using the triangular inequality we obtain that

, where

%(«h({o‘o + €d0) — J1(%o)) + a|l¢ollo,c0,s — /Sy1¢o ds>0 Vo € L%(S).

One may observe that J; is subdifferentiable, then by taking limit as € = 0 we
can deduce that there exists £ € 8J3(Po) such that

[00do + allbollo s~ [mbode 20 VeoeL=(s).  (@8)
s S .

But J; = J; o L where J(u) = $-||u||g,1,r° and Lpg = —52 over T'y. Since
8(J1 0 L)(Po) = L*8T1(Po) (see [Ek-Te] p. 27) we can deduce that £ is of the
form

E=L'v (4.9)
where ¥ satisfies (see [Ek-Te] p.21)
1]|og|? 1 ¢ 0p ..
q||ov “0,1,1‘0 + 7 "”"o,oo,rg = njg"d" (4.10)

and this implies (4.6) with the same proof as in Theorem 4.2. Here we also
have L*v = y(v), where y(v) is the solution of (1.1). By using (4.9) and if we
follow (4.8) again, we obtain

JuGrs0ds + allbll s — [srd0ds 20 Véo € L(S).
S S :

This implies that

/S (¥(5) — 11)dods > —allbolloms Vo € L2(S),

and taking ¢o € ~sgn (y(v) — y1) we obtain (4.7).
]
Remark. The equivalence (2.23) is also valid in this case and takes the same

proof of Lemma 2.9 with ¢o € sgny; at the end. Consequently, the case
@ > |ly1lly ;1 s implies ¥ = 0 in Theorem 4.3.
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5 Second extension: the semilinear Laplace equa-
tion
5.1 Main Result

The following theorem states the L?-approximate controllability of the semi-
linear Laplace equation. The proof of the L? (1 < p < oo} case is similar and
we do not give the details (see [Fa-Pu-Zu3)).

Theorem 5.1. Let f be a real valued and continuous function and let us
suppose that there exist positive constants 3 and v such that

A <-8< 1(s) = /(0 <y forall se R\{0}, (5.1)

s

where Ay > 0 denotes the smallest eigenvalue of the —A operator in Q with
Dirichlet homogeneous boundary conditions. If we consider the problem :

-Ay+ fly) =0 in Q (5.2a)
y=v on Ty (5.2¢)

then, under the geometrical hypothesis (1.4), the set
R:={y(v);s s.t. ve L*To)}
is dense in L%(S).

Proof. Let y; € L?(S) and a > 0 be given. We will prove that there exists a
control function v € L?(I'p) such that

| 9(¥)ss = 41 llo,s< e (5-3)

Without loss of generality, we can suppose that f(0) = 0. We also suppose
that f € C*(R) (see the Remark at the end of the proof). The role of f will
be played by the the following real function:

s) .
o) =T its 20 and 0= 7).
For each z € L%(Q) fixed, we associate the solution y(z,v) of
~Ay+g9(2)y=0 in Q (5.4a)

y=0 on I'\Iy (5.4b)
y=v on Ty (5.4¢)
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It is easy to deduce from (5.1) that g satisfies the conditions (1.2). Then, thanks
to Theorem 2.1, we can choose v(z) € L?(I'¢) such that [|y(z,v(2)) — mly s <
a. Among these possible controls, we choose v(z) with minimal L?-norm. A
characterization of such control is given by duality in Theorem 1.1. We recall
that if we consider the solution ¢(z, o) of

-Ap+g(z)p=408spo in N (5.5a)
=0 on T (5.56)
and we define as o(z) the minimum in L2(S) of the functional
1 Op(z, 2
ste) =5 [ |25 do v aliallys — [mpnds (5
2 To v ' s
then
v(z) = —-W on T. (5.7)

The idea is to show that the application A : z — y(z, v(z)) has a fixed point Z in
L%(). In this case g(Z)y = f(y) , where § = y(Z,v(Z)) and, as a consequence,
v(Z) is the required control function for which (5.3) holds.

Let us show that the application A : 2z — y(z,v(z)) is continuous from
L%(Q) into itself. We take a sequence z, — z in L%(Q), and for a fixed
@0 € L?(S) we denote the solution of (5.4) by ¢, = ¢(zn, po). By using Lemma
2.3 we obtain ||pn|l; o < Cllpollp s- Consequently, up to a sub-sequence, there
exists a function ¢ € H(Q) such that

Yn = in HE(N)-weakly. (5.8)
Let us notice that

l9(2n) ¢n = 9(2) eallo.q + 19(2) pn — 9(2)¢llo 0

llg(zn) o — 9(2) elloe <
< llenllo,g llg(zn) = 9(2)llo,0 + lig(2)llo, llen = #llo.a

thus
9(#n) pn > g(2) ¢ in L*(R)-strongly. (5.9
In order to identify ¢, remark that by definition ¢,, is solution of

/w,. -V¢dz+/g(z,,‘)<p,,¢ dz =/gao¢ds for all ¢ € HY(Q). (5.10)
Q (1] S

By taking limit as n — oo, using (5.8) and (5.9) and the fact that (Ag,, ¢)
converges to (Ay, ¢) for all ¢ € D(Q), we obtain

/V(p-V¢dx+/g(z)go¢d:c=/cpod)ds forall ¢ € Hy(Q), (5.11)
Q Q s
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which implies that
@ = ¢(z, po)- (5-12)

In fact, the convergence is strong in (5.8). Indeed, if we take ¢ = ¢, and ¢ = ¢
in (5.10) and (5.11) respectively, we obtain

IVenllga + /n 9(zn) lonl” dz = /S Popn ds (5.13)

I9el0+ [ o)1l dz = [ popds, (5.14)

and by taking limit as n — oo in (5.13) and by comparing this limit with (5.14)
we can see that Vi, converges to Vi in L2(Q)". To sum up, we see that if
o is fixed then

@(2n,00) = o(2,0) in H(Q)-strongly. (5.15)

The same argument is also valid to show that
@(2zn, Po(2n)) = @(z,P0(2)) in Hj(RQ)-weakly, (5.16)

provided that
Po(zn) = Po(z) in L*(Q)-weakly. (5.17)

By contradiction, suppose that there exists a sub-sequence such that
IPo(2a)llg s —* oo- Since Po(2n) minimizes the functional J;, then

J2.(P0(2n)) < Iz, (po) forall o€ L2(S).

From (5.15) and Lemma 2.3, the normal derivative of ©(2,, o) also converges
in L?(T) to the normal derivative of ¢(z, po), so J;, (o) converges to J, (o).
Therefore, there exists a constant M such that

Tz (Po(zn)) < M. (5.18)

The same proof such as in Lemma 2.9 shows that for each z,, J,, is a continuous
and strictly convex functional and that

R lim inf Jin(‘PO(zn))
[feo(zn)]|, s =00 [1Bo(zn)llo,s

As a result, the uniform bound in (5.18) is a contradiction. Then, up to a sub
sequence, Po(zn) weakly converges in L2(S) to a limit denoted Py, that is

Po(zn) = Po in  L%(S)-weakly. (5.19)
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Now, we must prove that $o = $o(z). Indeed, by (5.19) and using the fact that
@o(2n) minimizes J, we obtain

J2(%o) < liminf J, (Po(2n)) < liminf J;, (o) = J:(po) for all ¢o € L*(S),

therefore @y minimizes J, and o = Po(z). Consequently, the convergences
(5.17) and (5.16) are valid. From the definition (5.7), by using (5.16) and
Lemma 2.3 we see that the control function v(2,) weakly converges to v(z) in
L*(Tg). Finally, since z = 2z, in L?(R), it is easy to show that y(z,,v(z))
strongly converges to y(z,v(z)) in L?(Q). Therefore A is a continuous map.

Let us prove that the application A : z — y(z,v(z)) maps L?(Q) in a
bounded subset of L?(£2). We have ll9(2)llo o uniformly bounded in z. Thanks
to Lemma 2.3 we see that ||p(2, po)|; o and the L%-norm of its normal deriva-
tive remain uniformly bounded in z, therefore J, (o) is bounded with respect
to z. Consequently, there exists a constant M only depending on ¢, such that -
J:(Po(z)) < M. If there existed a subsequence such that ||Go(2n )]y s — oo we
would necessarily have

a < J2a (Po(2n)) J2.(#0) < M
= N@o(za)llo,s = l1@olzn)llo,s = l1@o(2n)llo s

-0,

and this is impossible. Therefore ||go(2)||o s is uniformly bounded in 2. From
Lemma 2.3 we have ¢(z,$o(z)) uniformly bounded in H(Q2) and then v(z)
defined in (5.7) is also uniformly bounded. We conclude that y(z, v(z)) remains
bounded in L%(2), uniformly with respect to z.

Remark. In the proof we suppose f € C1(Q2). We can always take a regular-
izing sequence
fn = pn x f, supppn C [-1/n,1/n]

which satisfies (5.1) for each n (see [Fa-Pu-Zu3], Proposition 3.4). Thus we
obtain a control v, satisfying (5.3). Taking limit as n — oo, we can pass to the
limit in (5.2) and the weak limit of v, is the required control to assure (5.3).

5.2 A counterexample

We consider a non-linearity of the form:
fls)=1|sI""'s for r>1. (5.20)
We will prove that if y is solution of (5.2) then the set
U={ylv)ys st. ve L)}
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is bounded in L2(€2). In particular ¥ is not dense in L?(£2). The proof is based
on the classic example of Bamberger [He]. If we muitiply (5.2a) by 8y, 6 > 0,
0 € H(Q) N L*°(), and if we integrate by parts we obtain

/Vy - V(8y) de — / Qg@vdtf-}- /Of(y)yd:c =0
0 r, O fy)
thus, if we define ¢ =r—1
/0 ly)? de +/yVy .Vodz + /e|y|‘1+2 dz —/ % gy do = 0. (5.21)
Q 0 Q r, Ov
But 3 + 583y + q_+2 =1land 1-3 ;f? + q_+2 = 0 then by Holder inequality
< ( / 9|Vy|2dx)%( o~ vg 152 dx)"" iR ( / 0|qu+2dx)ﬁ$
0 Q Q

1 2 q /‘_ﬂiﬁ 2(q+32) 1 +2
<=l 8IVyPde+—— |8 7 |VO "2 dr+—= [ 08|y dz
< o9 drt gt [0 v s [ow

/yVy-VG dz
Q

therefore by (5.21)
Ay q _ a4 2(g+43)
92d</—od ———/eqvo«d. 5.22
Joowr de < [ Gpovar+ gty o RO a2

By hypothesis S N dQ = ¢, thus let {B(z;,2r;) C Q s.t. r; > 0}, be a
finite covering of the curve S, where B(z;,2r;) denotes the ball of center z;
and radius 2r;. We define

B,' = B(z,-,r.—).

Applying the trace theorem for each B;, we obtain:

M M
2 2
l9llg,s < D 1ollgsnp, < D Cillvlly 5, » (5:23)
i=1

=1
where C;, i =1,..., M are constants which depend on SN B; and B;.
We note that for a parameter v > 0, if p = || then

o\
/B |Vy|? dz < .L( ) (?r'r—e) |Vy|? dz. (5.24)
[ Ti,2ri 4

Now we choose in (5.22) the function 6 = §;, where

)

bi(z) = { (2—"—’”)7 z € B(i, 2ry)
0 z € Q\ B(z;, 2r;)
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thus, using (5.23) we obtain

_7.(3_'51)..}.2(-7_ 1).(2_12).
do

At 2mg o (27':""/’)

vyl dz <
/1;'_| vl =7 2(g+2) Jo T

and the right side integral converges if and only if the exponent is greater than
—2, that is if ¥ > 4/q. Here we use the fact that ¢ has been supposed strictly
positive. Thus let us choose 4 such that

/ \Vyl? dz < C. (5.25)
B;

We conclude from (5.23) and (5.25) that ||yl|, s < C, where C is a constant
which does not depend on the control v. We conclude that &/ is bounded and
therefore U is not dense in L?(Q).

6 Numerical method

6.1 Discrete method

Let us consider a triangulation 7, of 2 where h is a discretization parameter,
and let us denote by I'y, I'os and Sj, the respective discretizations of T, I'y and
S induced by 7. In our implementation, we suppose that the triangulation
consists of triangles K:

Q= U K.

Kemp

We suppose that I'gp is formed by @ — 1 segments [p;, pi41], Si is formed by
M — 1 segments [g;, ¢i+1] and that each segment is a side of a triangle in 7,.
Therefore, Q and M are the total number of vertices in I',; and Sy respectively.
We will denote by NV the total number of interior vertices in Q.

We consider a finite dimensional subspace Ly of L%(S}), endowed with the
inner product and norm of LZ(S';,). The dimension of L; is a function of M

denoted D(M). Then Lj is generated by a basis {¢k}kD=(11”)

Ly ={é1,...,¢p(m))- (6.1)
Let us denote by

T :po € L*(S) = p € H}(R) (6.2)
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the linear operator which associates gy to ¢ by (1.5), i.e., the solution of the
variational problem:

/V(p-Vqu:c+/a<p¢dx=/<pg¢ds Vo € Hi (D). (6.3)
o Q s

If we consider a finite dimensional space Vos of H}(f2), then we can define the
following discrete approximation of T':

Th : pon € Ln — on € Vou (6.4)

where ¢, is the solution of

Von -V¢dx+/ agn b de =/ oondds  VHEVon  (65)
Q5 Qn Sh
If we define the matrices
_ O0Tror 0Tho
le = LOh 61/ Tdﬂ' (6.6(1)
Cu= ord: ds, (6.6b)
Sh
and using that for each g, € L, we have the decomposition
D(M)
Por = Z Bk Px, (6.7)
k=1
we can express the following quantities in terms of 8 = (81,...,8p)* (a

repeated index indicates summation)

: )|
2 Con

Besides, if we suppose that the projection g4 of ¥ on Ly is of the form y15 =
fik ®k, we have

2

8Thpon do OThor OThn

v e, Ov Ov
lousll, = [ Putpior do=pufi [ ousds=pCp

SOl do = 3 6 GB

1l

/S yinon ds = Befu | éud ds= B Chu.
h Sh

Therefore, we find the following finite dimensional forms of the functional J
and its differential J’ defined for § # 0: ‘

W) = Leesra(rosy-por 6
W(B) = GB+a(BCP)PCB-CH ~ (B#0) (6.9)
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Ifﬁ = (51, .. .,ﬁD(M)) is the solution of

In(B) = M%iun(m In(B) (6.10)

and if Pon =), ﬁk¢k, the discrete control ¥, on [yy, is given by

~ 3Th<P0h - Z 3Th¢k (6.11)

6.1.1 Operator T},

We introduce the standard finite element space of polynomials of degree less
than or equal to 1, which are piecewise continuous

Vi ={p e C°®) | ¢lr € P(K), VK € 1}

and we choose Vop = Vi, N H}(2). We denote by {w;}/\; the canonical finite
element basis in Vp,. Now, we define the matrix A and for each ¢; of (6.1) the
vector b(¢x) by

Aij = Vw; - Vw; dz + a w; w; de (6.12q)
Qo ’ Qn
bi(¢x) = / $i wj ds. (6.12b)
Sh
From (6.5) we obtain for k =1,..., D(M)
NV
Tho = Za.' w; where Aa = b(¢d). (6.13)

=1

6.1.2 Normal derivatives

To calculate the normal derivatives in (6.6a), we multiply (1.5) by ¥ € H}(Q)
and after integrating by parts we obtain

/ —Yds=— /Vga Vil)dz+/a<p¢dz+/<po¢dz

We recall that {px },?___1 is the set of vertices in I'o5 and we denote by {1x}<_, the
canonical finite element basis in V;, associated to these vertices, i.e. ¥;(px) =
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d;k. If we use now a Simpson quadrature formula to compute the left hand side
in the equation above, we see that

Z'r'k—(Pk Pi(ng) = / Ve- V¢1d2+/ apy;dz,

where 7, are specific weights. We supposed that the mesh is sufficiently refined
to separate the curve from the supports of the functions . Therefore we
obtain for k=1,...,Q the formula

Op 1
BV(Pk) T ( o V¢'V¢kd3+/ agot/)kch;).

(278

See for example [Gl-Li-Li] and [GI-Li-Tr] for a discussion about this and
other possible methods to calculate the normal derivatives.

-

6.1.3 Basis in L;

We have discretized S; in M — 1 segments I; = [gi,¢i+1] of length I; which
are sides of triangles of 7,. We tested two different discretizations of L%(Sh),
the piecewise constant functions on each segment and the continuous functions
which are piecewise degree < 1 polynomials respectively:

L%O) = {¢ € L*(Sn) | ¢l1. € Po,i=1,...,.M -1}
D — (e LSh) 4l eP,i=1,...,M-1}.

:

We have dim L;,O) = M -1 and dim Lg) = 2(M —1). We can choose orthogonal
basis in this spaces, for example, with the following functions:

o3 neh L magn [ fEEm) 2Ek

0 otherwise otherwise
Then
(0) (¢(0) - (0) D L(l) <¢(0) . (o) ¢(1) . %14)-1) (6.14)

and it is easy to see that
¢<0)¢(0) ds = I; &;; / 6060 ds = / $0p() ds =

Therefore, the diagonal C matrices associated to L;,o) and L;ll) are respectively

CO® =diag(l,...,lnu—1) , CH =diag(ly,....In-1,1/3,...,lu-1/3).

433



434 A. Osses and J.- P. Puel

6.2 Test examples

We solve the L2-approximate controllability problem (1.1)-(1.3) for N = 2 with
J =0 and a = 1. Using the expression (6.13), we compute the matrices G and
C in (6.6), then we minimize the functional (6.8) and we compute the control
by using the identity (6.11).

We will use three different geometries (see Figure 5), all of them satisfying
the geometrical hypothesis (1.4). We work with the parameters a, y;5, and
Ton. Table 2 summarizes the implementation of the discrete method applied to
these examples and shows the added dependency of each stage on the principal
parameters of the problem.

TaBLE 2. The numerical implementation.

Stage Applied method Dependency on
M%i};ya‘:;:iaal.fge‘:n’ P; -finite elements Qh
System Choleski with D(M) S
NV XNV right sides h
Normal Variational-quadrature r
derivatives algorithm Oh
Minimization Quasi-Newton BFGS @, Y1h

For the mesh and the computation of the elementary matrices we use a
standard finite element package. The system NV x NV shown in (6.13) with
the D(M) right sides is solved by a Choleski decomposition.

In order to obtain the matrix G, defined in (6.6a), we use (6.13) and the
variational and quadrature methods explained in Section 6.1.2 to calculate
the normal derivative on the boundary. In practice, G is an ill-conditioned
matrix. To overcome this problem, it is necessary to work with double precision
variables and to do, for example, the following preconditioning;:

B = diag (G; /%8 (6.15)

Matrix C defined in (6.6b) is computed following the directives of Section
6.1.3 to have a sparse profile. We observe in our calculations that in the case
Ly = Lgo) (see (6.14)) the condition number of G (normalized with (6.15))
is better than in the case L, = Lgl). This result could mean that the basis

{¢,,}sz(11”) must not have /superﬂuous elements. Therefore, we choose C = C(%)

in all our calculations.

To solve the minimizing problem we use the variant Broyden—Fletcher—
Goldfarb-Shanno (BFGS) algorithm [Pr-Te]. We make some modifications of
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this method according to (6.15) and we choose the initial guest parallel to f;.
This amounts to minimizing J;(Af;) with respect to A € R. We easily obtain

3 ((fICH)E ~ o)
fiGh

The stop test is a “small” gradient or a limit of the precision machine.

Bo = (fiCf1) fi. (6.16)

Figure 5 shows three examples of controls computed with the described
method. On the left column, we show the curve S, (dashed line) and Ty
(solid line). Example 1: (NV = 1287, M = 20, Q = 30) a square domain with
a rectilinear curve S near the upper side I'g. Example 2: (NV = 991, M = 20,
Q = 110) a square domain with a circular curve; Here I'y are the left, right
and upper sides. Example 3: (NV = 1983, M = 30, Q = 90) a curved domain
and a central curve. I'y is one half of the boundary.

In all the examples of Figure 5, the aim is to obtain a minimal norm control
function v, such that the solution y of (1.1) satisfies y(¥s) &~ y1n = 1 on Sj.
In the right column, we represent schematically the control ¥ by straight lines
following the normal on Ips. The associated solution ys (v4) is indicated with
gray levels in the range (—2.00,2.00) in all cases. Level 1.00 & 0.03 is marked
out in white.

Figure 4 shows two other examples with the same geometry as Example 1,
but a different y14. In Example 4 y;5 is a sinusoidal function. In Example 5
114 a Heaveside function. The trace on Sj, of the calculated solution yj (V) of
(1.1) (solid line) and the desired function yis (dashed line) are shown.

The total computation time in Example 3 was approximately 60 sec in
a work station HP9000. The percent of the total computation time in this
example for each stage was: mesh and elementary matrices 33.0%, system
50.0%, normal derivatives 13.3%, minimization and control 3.3%. The situation
is similar for the other examples.

To solve the system, the memory storage is of order (NV + D(M)) x NV,
but in practice A is a sparse matrix. In the other stages, we must store the
normal derivatives on I', G, f; and C, i.e. of order (Q + D(M)) x D(M).

The precision is studied by introducing the following errors: the theoretical
error {ly — yillpa(sy = min{e, [jy1||o s} and the numerical error ||y» — yinllo,s,,»
where y;, is the solution of a discretized version of (1.1) for the computed
control U. Let us notice that here there is an added error, due to this new
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discretization. We work with relative errors, i.e. the errors are multiplied by
100/ lly1ally,s,, -

In all our examples we observe a similar relation between the numerical and
theoretical errors. Figure 3 shows this relation for the initial mesh of Example
1 (NV = 1287, M = 20, Q = 30) and two other refinements with the same
geometry. Refinement 1: (NV = 2552, M = 30, Q@ = 40) more elements
everywhere. Refinement 2: (NV = 2063, M = 20, Q = 100) more elements
near I'p.

We observe that the numerical method does not improve the precision under
a minimal value of alpha (1% in Figure 3). Below this value, the numerical
relative error does not decrease as expected theoretically. It is not only a
discretization problem, since we observe that the more the mesh is refined, the
worse is the conditioning of the minimization problem. We can see in Figure
3 that the situation is not as good as we would expect after the refinements.
This is a classical situation in the numerical algorithms for control and inverse
problems.

lf; Error on 8
10 E
10
]
E 10’ E
§ 10t L
[4 - E
T ,/ theoretical E
U S 4
£ 7 3
Z/’ = Initial mesh ]
10° b = = refinement 1 4
===+ refinement 2
r ~~ ~ theoretical q
g0 beiind v il s il i
10° 10° 1t 10° 10! 10* 10’
relative aipha

Fic. 3. Comparison between the theoretical and numerical errors.

In Examples 1, 2 and 3, the minimal numerical relative errors are 0.8%,
0.3% and 6% respectively. In Examples 4 and 5, they are 1.6% and 29%
respectively. The important error in the last case is fully justified: we can
not obtain a discontinuous function due to the smooth effect of the Laplace
operator.

The time required to update the control represents only 3.3% of the total
CPU time in the case that y;5, or a are modified (for instance only 2 sec in
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Example 3). The stockage required in this case is small as well. It is due to the
fact that we have to repeat only the minimization stage (6.10), which is uncou-
pled to the resolution of the whole finite element system (6.13). The size of the
minimization problem is only related with the total number of discretization
nodes of the curve D(M). This fact reduces notably the degrees of freedom
and consequently the stockage and computation time.

Finally, we would like to emphasize the fact that the presented numerical
implementation can easily be adapted to other similar linear control problems
in which the dimension of the discretized observed space is small compared
with the dimension of the discretized state space.

v Values on the curve Sp————+r—r— AR +—r-r—| Valnes on the curve Sh———r1r
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Fic. 4. Controlled solution yp (il\h) (solid line) and desired value Y14 (dashed line) on Sh.-
Example 4 (top): Y1, sinusoidal function. Example 5 (bottom): Y15, Heaveside function.
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S

S

/
/

ool

w

Fic. 5. Boundary control with 15 = 1. Examples 1 (top), 2 (middle) and 3 (bottom).
Right: Control shown as normals. Solution in gray scale, level set 1 & 0.03 white.
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