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On generation of jets for vector bundles.
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Abstract

We introduce and study the k—jet ampleness and the k—jet
spannedness for a vector bundle, £, on a projective manifold. We
obtain different characterizations of projective space in terms of
such positivity properties for £. We compare the 1—jet ampleness
with different notions of very ampleness in the literature.

Introduction

Let £ be a rank r vector bundle on an n—dimensional projective manifold
X. If r = 1, there is a well understood and accepted notion of very
ampleness. If £ is a vector bundle there are a number of notions of very
ampleness that turn out to be different. Restricting to notions with
good properties, e.g., direct sums of very ample bundles are very ample,
we have two main notions. One definition is that £ is very ample if the
tautological bundle & on P(£) is very ample, and the second stronger
definition is based on the existence of enough sections to separate 1—jets.

In §1, we study these notions and define k—jet ampleness of £, the
natural generalization of the second notion to the case when global sec-
tions separate k—jets (the first notion does not generalize to the case of
k-jets with k > 1).

In §2, we study the behavior of k—jet ampleness under direct sums,
tensor products, and blowing up of finite sets. We also point out the
analogue of the Chern class inequalities of [3] in the case of k—jet ample
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vector bundles. '

In §3, we give lower bounds on the numbers of sections and det(£)"
for a k—jet vector bundle £, and we give characterizations of (X,£)
when the lower bounds are taken on. We discuss the behavior of k—jet
ampleness under adjunction and make some conjectures of what should
optimally be true.

In §4, we compare the different definitions used in the preceding
sections.
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1 Background material

Throughout this paper we deal with complex projective manifolds X.
We denote by Ox the structure sheaf of X and by K x the canonical bun-
dle. By a vector bundle we mean a locally free sheaf (of @x —modules)
of finite rank.

1.1 Notation

In this paper, we use the standard notation from algebraic geometry.
Let us only fix the following.

hi(F), the complex dimension of H'(X, F), for any coherent
sheaf F on X

A denotes linear equivalence of line bundles;

I'(£) = HO(£), the space of the global sections of a vector
bundle £ on X. We say that £ is spanned if it is spanned at
all points of X by I'(£);

| V |, the linear system associated with a vector subspace,
V C T'{£), for a vector bundle £ on X.
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If J is an ideal sheaf of X and £ is a vector bundle on X, we write
E)T for £ (Ox/T).

Line bundles and divisors are used with little (or no) distinction,
Hence we freely use the additive notation.

1.2 k—th order embeddings

Let X be a smooth algebraic variety. Let £ be a rank r vector bundle
on X. For each point z on X let m; be the maximal ideal sheaf of z in
X, i.e., the stalk of m; at a point y # z is Ox 4, and at z is the maximal
ideal m;Ox , C Ox ;. Let V C T'(£) be a subvector space of I'(£).

We say that £ is k—jet spanned at z with respect to V if V gives
global sections with arbitrarily prescribed k—jets at z, i.e., if the evalu-
ation map

X xV 3 T(EQ (Ox/mEt))

is surjective. We say that & is k—jet spanned with respect to V if € is
k—jet spanned at z with respect to V for each point z € X.

We say that £ is k—jet spanned at z (respectively £ is k—jet spanned)
if V' =I'(£) in the above definitions.

Let z;,...,7: be t distinct points of X. Let m; be the maximal
ideal sheaves of the points z; € X,i = 1,...,t. Consider the 0—cycle
Z =z --+x4. Wesay that £ is k—jet ample at Z with respect to V if
for every t—ple (ku, ..., k) of positive integers such that $i_, k; = k+1,
the evaluation map

X xV = T(€® (Ox/ Qe mb)) (= &f, I(€ ® (Ox /mF)))

is onto. Here mf-“ denotes the k;—th tensor power of m;. We say that
£ is k—jet ample with respect to V if, for any t > 1 and any 0—cycle
Z=zy+--+ 1z, where z,, ...,z are t distinct pointa on X, the vector
bundle £ is k—jet ample at Z with respect to V.

We say that £ is k—jet ample at Z (respectively £ is k—jet ample)
if V. = I'(£) in the above definitions.

Hence in particular £ k—jet ample implies that £ is k—jet spanned.

Note that £ is 0—jet ample if and only if £ is 0—jet spanned, if and
only if £ is spanned by its global sections. Moreover, for r = 1, i.e.,
£ = L is a line bundle, L is 1-jet ample if and only if L is very ample
(see §4 for the case k = 1).
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Note also that for a line bundle L, 1-jet spannedness with respect
to V is equivalent to V spanning L and the map given by | V | being an
immersion.

We refer to [1} and [4] for more on k~jet ampleness in the case of
line bundles. We also refer to [9] for results in the case of surfaces.

1.3 The k—th jet bundle

Let X be a smooth algebraic variety of dimension n and let £ be a rank
r vector bundle on X. By the k—th jet bundle of £, denoted Ji(X, €} or
Jx(£) when no confusion will occur, we mean the vector bundle of rank
r(*t") associated to the sheaf p*£/(p*€ ® J51), where p: X x X = X
is the projection on the first factor, the tensor product is with respect
to Oxxx and Ja is the sheaf of ideals of the diagonal, A, of X x X.
Note that Jx(£) = UzexJi(€)z, where the fiber over each point z € X
is Jg(€)s 2 E;/mETL. Note also that Jo(£) = £. Moreover there is a

natural map jx := jf : & = Ji(€), defined on the sheaf level and which
is not a bundle map. It sends a germ of a section to its k—jet.

Interpreting Jx(€) as the bundle of k~jets of £, i.e., Taylor expan-
sions of holomorphic sections of £ truncated after the k—th term, one
has an exact sequence

«(*)

02Ty ®E = J(E) o J—1(E) = 0, (1)

where Ty := §* (T'%) denotes the k—th symmetric power of the cotan-
gent bundle T%. In particular there is a surjective natural map Ji (&) —
Je(€) = 0 for k' < k. Then it follows from (1) that

o If Ji(£) is spanned by its sections for some k, then Ju/(£) is
spanned by its sections when k' < k.

Note that j; gives rise to a natural evaluation map, which we denote
by the same symbol, ji : X x ['(£) = Ji(€). This map takes (z,s) €
X x I'(€) to the k—th jet ji(s(z)) € Jr(€). Since for each point z € X
there is a canonical isomorphism £ ® (Ox/mitl) & Ji(£),, it follows
that

e £ is k—jet spanned if and only if the evaluation map ji, is surjective.
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We have the following general result.

Lemma 1.4. Let £ be e bundle on a smooth projective variety X. Let
p: P(£) = X be the bundle projection and let £¢ be the tautological line
bundle of P(E). Then J\(€) = p.J1(&e).

Proof. One has a natural surjective map p*£ — &£ — 0 which induces
a surjective map a : J;(p*€) = Ji1(€g) — 0. We also have a canonical
exact sequence

- p:J]_(S) — J](p*g) — T;)(E)/X ®p‘£ -3 0,

where T}‘,(g) /X denotes the relative cotangent bundle. Applying p. to
this sequence and noting that p.(Th x) is the zero sheaf we get
Ji(E) 2 puJ1(p*E). Thus, it suffices to show that

PaJ1(p*°E) = puJi{&e)- (2)

To this purpose consider the commutative diagram with exact rows and
columns

0 0 0
1) ] 3
| . ! i

0 — K = ker(a) — L) — Sy — 0. (3
} 1] \

0 — Theyx ®Ee — e — &i —0
+ 4
0 0 0

The isomorphism (2) will follow if we show

1. that p,X = 0; and

2. that there is an injection 0 = p()K = pyJ1(p*€)-

Since the derived functors p(,-)(Tf;(g) /x® &e) are zero for all ¢ > 0,

we conclude that p, X = p,,(T;;(E)®T ;‘,( £)/X ®£¢). To see that this sheaf
is zero, consider the exact sequence

0= p*Tx = Tpey = Tpeyx = 0 (4)
tensored with They y ®&e. Since letting r denote the rank of £ we have

HYTp—1 (1)) =0
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and

HO(T s @ Tpens (1)) = 0,

we conclude that

P(P"Tx @ Tpeyx ® &) = Tk @ pu(They x ® &) = o

and

P-(Theyx @ Thigy x ®€e) =10
respectively. Thus using again sequence {4} tensored with TP(E) /X @&
we have p.(Tp,) © TP(E) /x ® &e) squeezed between two zero sheaves
and thus zero. ;I‘Lus P.K is zero.

Note that p.(TP(£)®p &) — p.,(T;,(s)®£g) is an isomorphism (both
are isomorphic to T% ® £). Using this and the fact that p(l)(Tj‘;( &/x®
&) = 0, a diagram chase shows that there is an injection 0 — )k -
p)J1(p*€} if there is an injection

0= py(Tpey @ p°E) = pyJi(p7E). (5)
To show (5), consider the diagram with an exact row and column

6

i
Theyx ®r¢
I

00— p*(T} @ E) e Jl(p'g) — Jllx(p*g) — 0,
i}
pre
+
0

where J,;x (p*£) denotes the relative 1—jet bundle (defined by the hor-
izontal exact sequence above). Since p)(p*(Tx ® £)) = p1)(Op(e)) ®
T @ € = 0, we have a surjection

pJi(p'E) = E(Z pupE) = 0, (6)

if we have a surjection p.Jy;x(p*€) = £ — 0. Letting p~'Ox denote
the topological inverse image of Ox, and noting that j; gives a p~10x
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splitting of the vertical séquence, the last surjection follows from the
decomposition, p;)Ji/x (p*E) = py(p™E) @ p)(Tp(gy x @ P7E),1 2 0.
By looking at diagram (3), we see that surjection (6) implies (5), which
in turns gives the desired isomorphism (2).

|
For further general properties of jet bundles we refer to [8] and [13].

2 Some general properties

In this section we will examine various functorial properties of the defin-
itions given in §1. In this section X always denotes a smooth projective
variety.

Proposition 2.1. Let £; be a bj—jet ample vector bundle on X, j =

1,...,m. Then &, - -BEy is a minj=1,. m{b;}—jet ample vector bundle
on X.

Proof. Assume e.g., that b = min;=;, m{b;}. Let {21,...,2.} be
a collection of ¢ distinct points of X and let (ky,...,k) € Z% such
that Y°¢_; k; = by + 1. Then, by assumption, we have surjective maps

: HO(&;) — HY(&;/ @, mk i),7 = 1,...,m. Thus, by composition,
we get a surjective map :

HO(EB;";lgj)

Il

em,
T HOE) = @, HO(E;/ ®f-, mbk)
= Hﬂ((@?:lg.?)/®1=l m.?:.')'
]

Proposition 2.2, Let £ be a k—jet ample vector bundle on X. Then
E/F is a k—jet ample vector bundle for each subvector bundle F of £.

Proof. Let {z1,...,z;:} be a collection of ¢ distinct points of X and let
(ki,...,ke) € Z% such that ¥f_; k; = k + 1. Note that, by tensoring
with Ox / QL mf_f', the surjection £ = £/F — 0 induces a surjective
map £/ !, mk' — (£/F)/ ®!_, mk. Thus the assertion follows from
the commutatw:ty of the diagram

H(E) —  HO(E/®l, mk)

i +
HYE/F) ~ HO((E/F)/ @iy i)
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where the upper horizontal arrow is surjective by assumption and the
right vertical arrow is surjective by construction.

Proposition 2.3. Let £ be an a—jet ample vector bundle on X and let
F be a b—jet ample vector bundle on X. Then £ @ F is an (a + b)~jet
ample vector bundle on X.

Proof. It is a straightforward modification of the proof of [4, Lemma

(2.2)].
.

As an immediate consequence of (2.2) and (2.3) we have the follow-
ing.
Corollary 2.4. Let £ be a k—jet ample vector bundle of rank r on X.

Then A™E and S™(&) are mk—jet ample vector bundles. In particular
det(£) is a rk—jet ample line bundle on X .

Remark 2.5. Note that if in (2.1) we assume that the vector bundles
£; are b;j—jet spanned for each j and similarly in (2.2), (2.3), (2.4) we
assume that the vector bundle £ is k—jet spanned, then all the cor-
responding conclusions hold true for jet spannedness as well. This is
an immediate consequence of the above proofs, by noting also that the
proof of the key-lemma [4, (2.2}] makes only use of jet spannedness.

Proposition 2.8. Let 0 =+ £ - F - G — 0 be a short exact sequence
of vector bundles on X. Assume that £ is k—jet ample and G is k—jet
ample with respect to V := Im(I'(F) = I'(G)). Then F is k—jet ample.

Proof. Let zy,...,z; be t distinct points and let k,, ..., k; be positive
integers such that Y!{_, k; = k + 1. Let m; be the ideal sheaves of the

points z;,¢2 = 1,...,t. We have the commutative diagram with exact

TOWS

0 - X x (&) — X x I'(F) — AxV - 0
| e {er {eg

0 - TI(&/, m:"i) - T(F/ei,mf) — TG/, mf) — o,

T

where the vertical arrows are the evaluation maps. By hypothesis eg, eg

are surjective. By a diagram chase we see that e is surjective, so we are
done. [ ]
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The following is the rank > 1 version of [6, Proposition (3.5)] (com-
pare also with [3, Corollary (1.1)] and [4, Lemma (3.1)]).

Proposition 2.7 Let £ be a k—jet ample vector bundle on X. Let
Zy,..., 2 be t distinct points on X and let ay,...,a; be t posilive in-
tegers. Let w : X — X be the blowing up of X at %1,...,7;. Let
E; = n~Y(z;) be the exceptional divisors, i = 1,...,t. Then ™€ @
Og(— iz 6:E;) is p:= min{k — TI_, @i, a4, ..., a;}—jet ample.

Proof. It is a straightforward modification of the proof of [6, (3.5)].
|

In the setting of Proposition (2.7), if we blow up a single point
z€ X, n: X = X, we have that 7€ ® Oz(—-kE) is spanned by global
sections only assuming that £ is k—jet spanned. Therefore, comparing
with Corollary (1.5) of [3], we see that a formal extension of the argu-
ments of [3] gives us the following lower bounds for the Chern classes
and the Segre classes of £.

Corollary 2.8. Let X be an n—dimensional smooth projective variety
and let £ be a k—jet spanned vector bundle of rank r on X. Then

Loci(€) - ci(EY 2 k() - () for 0L i <ryin+---Fie=mn;

2. 50, (€)- o84, (E) 2 KT (T for 0 i it oo
I =n.

In particular ¢, (€) > k* () and s.(€) > k*("771).

Remark 2.9. It is worthwhile to note that the same argument as in
the proof of Lemmas (3.2), (3.3) in [6] gives us the following result.

Let X,,..., X; be t smooth projective varieties and let £;,...,& be ¢
vector bundles on X1, ..., X; respectively. Let p; : X1 % --x X; = X; be
the projections on each factor, ¢ =1,...,t. Fori=1,...,¢ assume that
&; is k;—jet ample and let k := min{ky,..., k:}. Then pi&1 ® - @ pi &
is a k—jet ample vector bundle on the product X; x --- x X;.

3 Characterizations of projective space

Let £ be a k—jet ample or k—jet spanned vector bundle on a smooth
projective variety X of dimension n. In this section we give a lower
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bound for h°(£) and the degree of det(£). We also study the “boundary
cases” when either h%(€) or (det(£))™ reaches the lowest possible value.
For any merely ample vector bundle £ we also consider the special case
when the k—th jet bundle J;(£) is trivial for a given k (compare with
[13] for the line bundle case). This gives different characterizations of
projective space. As a consequence of these results we obtain.an ad-
Junction type result concerning the jet spannedness of Kx + det(£) for
a k-jet spanned vector bundle £.

Theorem 3.1. Let £ be an ample vector bundle of rank r on a smooth
projective variety X of dimension n. Assume that Ji(€) is trivial for
some k > 0. Then (X,£) = (IP*,®"Opn(k)) (hence in particular £ is
k—jet ample).

Proof. By dualizing and by tensoring with £ the exact sequence (1) we
get a surjective map Jx(£)*® & — T_grk) ®EQRE—=O.

Notice that we have an injection Ox — £* @ £. By dualizing and by
tensoring with T)((k) we obtain a surjective map T_g(k)®€ "QE — T)(f Y 0.

Thus by composition we get a surjective map Ji(£)*®E — T‘gc) — 0.
Since Ji(£) is trivial and £ is ample, we conclude that T &k) is ample. It
thus follows that —Kx = det(T’x) is ample, so that X is a Fano manifold.
Therefore Mori’s theory applies to say that X contains an extremal ray
R = R.[y], where v is a possibly singular reduced irreducible rational
curve satisfying the numerical condition —Kx -y < n 4+ 1. Let f :
P! — C C X be the normalization of any irreducible reduced rational
curve C C X, in particular any deformation of 4. Note that f*(T)((k}) o
(f*Tx)*} is ample since T&k) is ample. Thus f*Tx is ample on P!.
Therefore, by using Mori’s proof of the Hartshorne conjecture (see e.g.,
[11, section 4] for a discussion) we conclude that X 2 P*. By dualizing
the exact sequence (1) we get a surjective map Ji(£)* — T}k) ®E* 0.
Since Ji(&) is trivial it follows that T}k) ® £* is spanned. Take a line
£C P" 2 X. From the normal bundle sequence of £ in P,

0T, OPI(2) — TX/E — Ngfx o @""IOPI(I) — 0,

we get T)((kl)z > (Tx ;)™ = (@10 p1(1) @ Op1(2))%). Therefore we see

that Op1(k) occurs as a direct summand of T)({kl)t
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The restriction of £ to £ is £ = ®!_,0p1(a;) for some positive

integers a;,1=1,...,r. Since, by the abave, the restriction (T}({k) ®E*)e
is spanned and contains O p:(k — a;) as direct summands we conclude
that a; < k,i=1,...,r.

For a rank r vector bundle £ on X it follows that

k+n

det(J(£)) & %(n i

)(erX + (n+ 1) det(£)).

Since the assumption on Ji(£) implies that det(Jk(£}) is trivial and
X = P*, we get det(£) =~ Opr(kr). On the other hand, det(f) =
Opn(a; + -+ + a,). Then we infer that a; + ---+ a, = kr. Since
a; <k,i=1,...,r, we then conclude that a; = k fori=1,...,r.

Therefore (£ ® Opn(—k))e =2 & 0. From [12, (3.2.1), p. 51] it
follows that £ @ Opn(~k) X @ Opn, ie., £ = @ Opn(k).

The result above has the following consequences.

Proposition 3.2. Let £ be an ample vector bundle of rank r on a
smooth projective variety X of dimension n. We have:

1. If€ is k—jet spanned et a gi’ven point x € X, then R%(£) > r(kt");

2. If equality happens and £ is k—jet spanned, then (X,£) =
(", 8" Opn (k).

Proof. For a given point z € X, the map H%(£) » H%(£ @ Ox /mk+1)
is onto and therefore

hO(€) > h°(€ ® Ox/mit) = rh®(Ox /mg*!) = r (k : n) '

Since £ is k—jet spanned, the evaluation map jx: X X I'(£) = Ji(€) is
surjective. If h%(£) = r(**") = rank(Ji(£)) it thus follows that jy is in
fact an isomorphism and therefore Ji(€) is trivial. Then Theorem (3.1)
applies to give the result.

37
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Proposition 3.3. Let £ be an ample k—jet spanned vector bundle of
rank r on a smooth projective variety X of dimension n. Then

1. det(£)" = (rk)® if and only if (X, €) = (P, & Opn(k));
2. det(£)" > (rk)}*~Y(rk + 1) otherwise.

Proof. Since det(£) is rk—jet spanned by Corollary (2.4) and Re-
mark (2.5), we have (det(£)})” = (rk)" if and only if (X,det(£)) =
(P", Opn(rk}} by [4, Corollary (3.1)]; note in fact that the proof of
Theorem (3.1) and Corollary (3.1) in [4] makes only use of the jet
spannedness. Now, the same argument as in the proof of (3.1) shows
that £ = @"Opn (k) in this case. This proves 1).

Thus we can assume (X, det(€)) % (", O pr(rk)), so that 2) follows
again from [4, Theorem (3.1)].

Building up on the argument of [10, §1], we can now prove the fol-
lowing result for jets supported on a single point (compare with [3, (2.4)]
and [14] for related results in the case of a very ample vector bundle).

Theorem 3.4. Let £ be an ample k—jet spanned vector bundle of rank r
on a smooth projective variety X of dimension n. Assume kr > n. Then
Kx + det(€) is (kr — n)—jet spanned unless (X, €) & (P, @ Opn (k).

Proof. We have to show that for every z € X, the map
H(Kx ® det(£)) = HO((Kx ® det(£))/mik—+1)

is surjective. Let  : ¥ — X be the blowing up of X at z with E = P*~!
the exceptional divisor. Notice that det(£) is rk—jet spanned by (2.4)
and Remark (2.5). Hence we can apply [4, Lemma (3.1)], whose proof
only uses jet spannedness, to conclude that n* det(£) — rkE is spanned.
Moreover, by (3.3), one has (7* det(£) — rkE)" = (det(£)})™ — (rk)” > 0
unless (X, &) & (P, @ Opn(k)).

Thus by Leray’s spectral sequence and the Kawamata-Viehweg van-
ishing theorem (see e.g., [7]), we have

HY(Kx @det(E) @ mik—"+Y) = Hl(x"(Kx + det(£)) — (rk —n + L E)
= HY Ky + 7" det(£) — rkE) = 0. ]
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The above result gives some evidence to expect the following conjec-
tures to be true in the line bundle case.

Conjecture 3.56. Let L be a k—jet ample line bundle on a smooth
n—dimensional projective variety X,n > 2. Assume k > n. Then Kx +
L is (k — n)—jet ample unless (X, L) = (IP™, Opn(k)).

Note that the following conjecture is true for surfaces in the classical
case k = 1.

Conjecture 3.8. Let L be a k—jet ample line bundle on a smooth
n~dimenstonal projective variety X,n > 2. Assume k > n—~ 1. Then
Kx+L is (k—n+1)—jet spanned (perhaps even (k—n+1)~jet ample)
unless either (X,L) = (P",0pr(a)), with a = k,k+ 1, or (X, L) =
(Q, Oa(k)}, Q hyperquadric in P™ or X isa P" ' —bundle, p: X —
C, over a smooth curve C and L & Opa-1(k) for any fiber F = pr-1
of p.

Remark 3.7. Note that if £ is a k—jet ample line bundle on a smooth
surface X with k > n+ 1 = 3, then Kx + £ is very ample by Reider’s
theorem. Indeed, from [4, Theorem (3.1)] we have £2 > (n+1)2+ (n+
1) = 12. If Kx + £ is not very ample we know from Reider’s theorem
(see e.g., [5, (8.5.1)]} that there exists an effective curve C' on X such
that

£L.C-2<C-C<L-Cl2<2.

Thus C-C =1 and £ -C < 3. This contradicts the Hodge inequality
(C-CY}L-L)< (-0

4 Comparing definitions

In this section we compare the case k = 1, i.e., the 1—jet ampleness, with
some other positivity properties given in the literature. The following
two notions of “very ample” vector bundles have been introduced for
“ad hoc” setting and, as we will see, are not equivalent. We heard the
second notion to be attributed to Lazarsfeld (see e.g., [11, §3}).

Let X be a smooth projective variety. A vector bundle £ on X is
said to be very ample if the tautological line bundle & of P(£) is very
ample.
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A vector bundle £ on X is said to be strongly very ample if there
exists a very ample line bundle £ on X such that £ ® £! is generated
by its global sections. For example, the tangent bundle of IP" is strongly
very ample.

Note that for a line bundle, A, very ampleness and strong very
ampleness coincide since M@ M~ = Oy is spanned (see also ¢) below).

We want to show that 1—jet ampleness is a “middle point” definition
between the previous two, i.e.,

e strongly very ample = 1—jet ampleness = very ampleness.

Proposition 4.1. Let £ be a strongly very ample vector bundle on a
smooth projective variety X. Then £ is 1—jet ample.

Proof. Since £ is strongly very ample, there exists a very ample line
bundle £ such that £ ® £-? is spanned. Therefore Proposition (2.3)
implies that £ = (£ ® £71) @ £ is 1—jet ample (recall that for line
bundles, 1—jet ampleness is equivalent to very ampleness).

Proposition 4.2. Let £ be a 1—jet ample vector bundle on a smooth
projective variety X. Then £ is very ample.

Proof. Let r := rank(£), n := dim X and let & be the tautological
line bundle of the P"~!—bundle p : P(£) -+ X. We have to show that
&e is spanned by global sections. Since no less than all the sections of
Opr-1(1) span Op--1(1), we see that the mapping ¢ : P(£) = Py,
associated to | &¢ |, embeds all fibers of p. Thus we must show that

1. given two distinct points z, y of P(£) with =’ := p(z) # ¥y’ = p(y),
it follows that ¢(z) # d(y);

2. given a point z € IP(£) and a nonzero tangent vector 7, at z, then
the differential d¢(r;) is not zero.

Let z, y be two distinct points of P(&) with 2’ := p(z) # v’ = p(y),
and note that by the 1—jet ampleness of £ the map H%(£) = £, @&, is
onto. Thus we can choose sections sy, s, of H%(£) such that, regarding
81, 57 as sections of H%(&¢) under the isomorphism H®(£) = H%(p.&g),
one has s;(z) = 0 # s2(z) and s3(y) = 0 # s;(y). To see this recall
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that z corresponds to a one dimensional vector subspace of £, and y
corresponds to a one dimensional vector subspace of £,, and under the
isomorphism H%(&g) = HO(E) sections of £ are identified with linear
forms on the fibers of £*. Thus ¢{z) # ¢(y).

Now take any point z € P(£). Using the fact that £ is 1—jet ample,
we have that the map H°(£) - £/m?, is onto. Thus we can find .global
sections of £e;,e;; withi=1,...,rand j = 1,...,n such that

1. the ¢; span &, with e;(2') =0 for i > 1, e1(z') # 0;
2. e;j(z') = 0 for all 4,7, and

3. with respect to a local trivialization of £ and local coordinates z;
in a neighborhood of z' with z’ as origin, we have

dei,;

‘3—%*(3') = §ei(z")

where & is 0 unless k = 7, in which case it is 1.

Using these sections it is straightforward to check that the differential
of ¢ at z has rank n+ r — 1. Therefore the differential of ¢ maps the
tangent space of P(£) at z isomorphically onto its image. We thus
conclude that £ is very ample.

We provide examples to show that the three “very ampleness” no-
tions considered above are in fact not equivalent.

Let us start showing that the 1-jet ampleness is stronger than very
ampleness.

Example 4.3. There are examples of scrolls V = P(£) in IP°, where
£ is a rank 2 vector bundle on a surface X, such that the tautological
line bundle & is very ample, and embeds V in IP?, but £ is not 1—jet
ample.

From the list of low degree threefolds in P° (see e.g., [2, Chapter
6]}, consider the following examples.

1. V = P(£) is of degree 6 and & is a rank 2 vector bundle over
X = IP? given by the exact sequence

0 0p2 =€ TJz(4) =0,
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where Z = x4 -+ 210 is a reduced 0—cycle of IP? supported on
10 distinct points in general position;

2. V = P(£) is of degree 7 and £ is a rank 2 vector bundle over the
blowing up X = P?(z,,...,z¢) of PP? at six points z,,...,%¢ in
general position;

3. V = IP(£) is a P'—bundle of degree 9 over a minimal K3 surface
X.

Note that in each case £ is not 1—jet ample. Assume otherwise. Then
in particular £ is very ample, and hence ample, by (4.2). Therefore
hO(X,E) > 6 by (3.2), 1). Since hO(IP(£),&) = h°(X,€) = 6 in each
of the examples 1), 2), 3), we would have X 2 IP? and £  Op2(1) @
Op2(1) by (3.2), 2), which is not the case.

More generally, P! —bundles of “middle dimension” in JP™ are other
examples.

Example 4.4. Consider a P?—bundle V = P(£), £ a rank d + 1 vector
bundle on a smooth projective variety X, embedded in IP" with either
dimV = Z if nis even ordim V = 24! if n is odd. Thus £ is very ample
but is not 1-jet ample. Indeed, otherwise, we would have by (3.2), 1),
the numerical contradictions

n+1=h¥V, &) = %X, E) > (d+1) (-g- + 1) > n+2, for n even, or

n+1
2

Let us show that strong very ampleness is stronger than 1—jet ampleness.

n+1=h%V,&) = h®(X,€) > (d+1) ( + 1) > n+3, for n odd.

Example 4.5. We construct here an example of 1—jet ample vector
bundle which is not strongly very ample. Let C be a nonhyperelliptic
curve of genus ¢ = 5 and let D be a non-effective divisor of degree 3 on
C. Consider the vector bundle £ := K¢ & K¢ (D).

Note that X and K¢ (D) are very ample line bundles on C and
hence they ate i-jet ample (see (1.2)). From Proposition (2.1} it thus
follows that £ is a 1—jet ample rank two vector bundle on C. Take a
very ample line bundle £ on C. Since there are no smooth curves of
genus 5 in IP?, we must have that T'(£) embeds C in PN with N > 3.
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Notice that, by Castelnuovo’s bound on the genus, £ must be of degree
> 7.

HERL = (Ke®L™) D (Ko (D)® L7!) is spanned then, since
deg(Kc ® £7') € 1, we conclude that £ &~ K¢. Thus £ @ L7 =
Oc¢ ® O¢ (D) is not spanned since D is not effective. Therefore £ is not
strongly very ample.

Remark 4.8. The previous example shows that strong very ampleness
is not a functorial property. In fact £ = K¢ @ K¢ (D) as in (4.5) is not
strongly very ample, but it is the direct sum of two very ample, i.e.,
strongly very ample, line bundles.

Note also that if £, F are strongly very ample vector bundles on a
variety X, then, as it clearly follows from the definition, £@F is strongly
very ample.
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