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Quantitative estimates for interpolated
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Abstract

We describe the behaviour of ideal variations under interpola-
tion methods associated to polygons.

0 Introduction

The behaviour of weakly compact operators under interpolation methods
for N-tuples defined by means of polygons has been considered by Cobos,
Fernindez-Martinez and Martinez [5] and by Carro and Nikolova [4].
Among other things, they showed that the interpolated operator acting
between two K-spaces or two J-spaces is weakly compact provided that
all but two restrictions of T (located in adjacent vertices of the polygon)
are weakly compact. Moreover, a similar result holds for other operator
ideals sharing certain properties with weakly compact operators (see (5],
Remark 2.9). :
In this paper we investigate how far the interpolated operator can
be from being weakly compact. In a more general way, we estimate the
distance of the interpolated operator to a given operator ideal. In the
case of the classical real method for Banach couples, this question has
been recently studied by Cobos, Manzano and Martinez [9] and Cobos
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and Martinez [10], [11], where they have established estimates for the
measures y; , 3; related to a given operator ideal Z. We consider here
similar questions in the multidimensional context of interpolation spaces
associated to polygons. Qur techniques use some ideas introduced in
[9] combined with the geometrical elements which are natural to the
interpolation methods that we deal with. .

We start by reviewing in Section 1 some basic facts on ideal variations
and on J- and K-methods associated to polygons. Then, in Section 2,
we establish estimates for v, and 3, when one of the N-tuples of Banach
spaces degenerates into a single space. Finally, in Section 3, we deal with
the case of general N-tuples assuming that the operator ideal 7 satisfies
the ,-condition (see [14]).

1 Preliminaries

Let A and B be Banach spaces. By L(A, B) we denote the collection
of all bounded linear operators from A into B, endowed with the usual
operator norm. The closed unit ball of A is designated by Uy, and A*
stands for the dual of A. We put ¢,(U,) for the Banach space of all
absolutely summable families of scalars (Aa)ae, With U, as index set.
The map Q4 : £1(Us) — A defined by Q4(),) = Yoaet, Xa@ i8 a
metric surjection. The space £, (Ups) is formed by all bounded families
of scalars indexed by the elements of Ug.. Write Jg : B —+ £ (Uge)
for the isometric embedding given by Jpb = ((f, b)) felge:

A class 7 of bounded linear operators is said to be an operator ideal
if each component ZNL(A, B) = Z(A, B) is a linear subspace of L(A, B)
that contains the finite rank operators and satisfies that STR € T (E, F)
whenever R € L(E,A), T € I(A,B) and S € L£(B,F). The ideal T
is called closed if each component Z(A, B) is closed in £(A, B). The
ideal 7 is said to be surjective if for every T € L(A, B) it follows from
TQ4 € I(61(Ua), B) that T € I(A, B). The ideal T is called injective
if for every T € L(A, B) it follows from JuT € I(A,£5(Ugs)) that
T € I(A, B). Compact operators K or weakly compact operators W
are examples of closed injective and surjective operator ideals. Strictly
singular operators S is an ideal which is closed and injective but it is not
surjective, while strictly cosingular operators C is closed and surjective
but it is not injective (see [17]).
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Given an operator ideal Z, we put Z* for its closed surjective hull,
that is, the smallest closed surjective operator ideal containing Z. For
T € L(A, B), it turns out that T belongs to Z°(A, B) if and only if for
every € > 0 there is a Banach space E and an operator R € Z(E, B)
such that

T(U4) C R(Ug) +cUp (see [15]). ..

The characterization for the elements of the closed injective hull Z¢ of Z
is as follows: Let T' € L£L(A, B). The operator T belongs to Z*(A, B) if
and only if for every £ > 0 there is a Banach space F' and an operator
S € I(A, F) such that

Tzlls < ISz|lr +elizlla, € A

It is natural then to associate with Z the functionals defined for each
T € L(A, B) by

1 (T) =7 (Ta,g) =inf{o > 0:T(Us) C oUs + R(Ug),
R € I(FE, B), E any Banach space},

B:(T)=p;(Tap) =inf{o > 0: there is a Banach space F and
S € I(A, F) such that |Tz||g < oljz)|la + ||Sz||F, z € A}.

The (outer) measure v; was introduced by Astala in [1], and it shows
the deviation of T from Z* in the sense that

v.(T) = 0 if and only if T € Z°(4, B).

The (inner) measure 3, was introduced by Tylli in [19] and it gives the
deviation of T from I*. These funtionals are subadditive

Y (S4+T) L1 (S)+ 7 (T) , B (S+T)<B,(8)+ B, (T)
submultiplicative
Ye(8T) S v (S {T) 4 B(ST) £ B,(8)B,(T)

satisfy that
max {7, (T), B;(T)} < |IT)|
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and moreover the following minimal properties hold
v, (JBT) = min{y,(§T) : j: B — F isometric embedding} (1)

B.(TQ4) = min{B,(Tr) : = : E — A metric surjection}  (2)

(see [1], pag. 21 and {9], §2 ).

Let us see now some concrete cases. Choose Z = K, the ideal of
compact operators, so K = K = K. It can be checked that v, (T)
coincides with the (ball) measure of non-compactness of T

¥ (T) =inf{o > 0: there exists a finite number of elements
b1, ..., b € Bsuch that T(Ua) C UL, {b; + oUs}}

while 8,(T) = limpqe0 cn(T), where (¢,(T)) is the sequence of the
Gelfand numbers of T'. The measures v, and 3. are equivalent. More
precisely

%% (T) < B (T) < 29, (T)  (see [16]).

B _Ta.ke_z next T = W, the ideal of weakly compact operators. Again
W = W* = W. The measure v, (T) is equal to the measure of weak
non-compactness introduced by De Blasi [13]

Yw(T) =inf{o > 0: there is a weakly compact set W in B
such that T(Us) C W + oUg}.

As in the previous example, 3,, (T'} = 7,, (T}, but this time ,, and 3,,
are not equivalent (see [2]).

For T = 8, the ideal of strictly singular operators, one has & = §
and 8° = R, where R stands for the ideal of Rosenthal operators (see
[17]). The functional 3, is the relevant one to show the deviation of an
operator from being strictly singular, while 74 = 7,, gives the deviation
of an operator from being Rosenthal.

Cosingular operators C satisfy that C* = C and €' = R. The relevant
functional to work with C is then ~,.

Next we review the definition and some basic results on interpolation
methods defined bx means of polygons.

Let 1 = P, ... Py be a convex polygon in the plane R?, with vertices
P; = (z,¥;),7=1,...,N. By a Banach N-tuple we mean a family A =
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{Ai1,..., An} of N Banach spaces A; which are continuously embedded
in a common Hausdorff topological space. It will be useful to imagine
each space A; as sitting in the vertex P;.

By means of the polygon Il, we define the following family of norms
onL(A)=A 4+ -+ An

N

N
K(t,s;a) = inf {Zt”fs”i”ajHAj ta= Za,- , a; € Aj}, t,s > 0.

i=1 1=1

The corresponding family of norms on A(A}) = A, N---N Ay is
- — 1 oy
J(t,s0) = R {t”Js JllallA,}, t,s > 0.

Given any interior point (a, 8} of I [(a, 8) € Intljand any 1 < ¢ <
0o, the K-space A(, g)q;k consists of all a in £(A) which have a finite
norm

1
T

—am— m an q .
lalwaax =] X (27*mfnk (2™, 2%a)) (if ¢ < o0)
(mmn)eZ’
lallag00 = sup  {27™FnK (2™, 2% a)}.
(m,n)522

The J-space ﬁ(‘,,ﬁ),q; 7 is formed by all those elements a in Z(A)
which can be represented as

8= Y. Ump (convergence in £(A))
(m,ﬂ)EZz
with 4y, » € A(A) and

> (emtmaEm 2 una)) | <o
(m,n)Ezz

(the sum should be replaced by the supremum if ¢ = co). The norm in

A(a,p)q: 18
1
q

. —am—pn q
”a"(a.ﬂ).q;.} = inf Z (2 am-4 J(2m,2n;um’n))
(m.n)eZ"’
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where the infimum is taken over all representations (%, ») of @ as above.

These interpolation spaces were introduced by Cobos and Peetre in
[12]. One can find there continuous characterizations of A(, g)4x and
A(q,3).¢:0+ Using integrals instead of sums, but they will not be required
here. An important difference with the classical real method for couples,
where K- and J-spaces coincide to within equivalence of norms (see [3]
and [18]), is that in general A(, g)q.x 7 /i(ah@)'q 7. We only have now
that A(a 8).q:7 18 continuously embedded in A, g)q;x (see [12], Thm.
1.3).

Let B = {Bi,..., By} be another Banach N-tuple which we also
imagine as sitting on the vertices of another copy of the polygon II. By
T € L(A, B) we mean a linear operator from X(4) into £(B) whose
restriction to each A; defines a bounded operator from A; into B;,
j=1,...,N. Let M; = ”T“AJ,B

If T E C.(A B), then the restriction of T to A(y,g),¢:k &ives a bounded
linear operator T : A(a B).q:K B(a”g) q:k- The norm of this interpo-
lated operator has been computed in [8], Thm. 1.9. It turns out that
< Crmax {MF M* M : {i,k,r}eP}. (3)

r

IITllz(a,g, K vE(a..B) K

Here C) is a constant depending only on Il and (a, 3), P stands for the
set of all those triples {7, k,r} such that (a, 3) belongs to the triangle
with vertices P}, Py, Py, and (c;, ¢k, ¢,) are the barycentric coordinates of
(e, B} with respect to P, Py, F.. A similar estimate holds for J-spaces.

When the interpolated operator is considered from a J-space into a
K-space then a better estimate is valid. Namely

N
9.
“T”E(u..ﬂ)-q;J'B(a.ﬁ).q:K <G H Mj:‘ (4)
i=1
Here 0 < 6y,...,8y < 1 with 0,8, = 1 and =X, 8;P; = (a,8)
(that is, 8 = (91, ., 0n) are some barycentric coordma.tes of ( ,3) with

respect to the vertlces Py,...,Py), and C; is a constant depending only
on & (see [8], Thm. 3.2).
Estimate (1.4) implies that

N
6, —
”a’"(o,ﬁ),q;K 5 C?- H "a”;{_’ , @€ A(A) (5)

=1
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On the other hand, inequality (1.3) in the case of J-spaces yields that

lafia,g).0:0 < Camax {{lallF, llallZ, llallg, = {i,k,7} € P}, a e A(A).
(6)

2 Estimates for degenerated cases

The following result describes the behaviour of the ideal variations when
one of the N-tuples reduces to a single Banach space.

Theorem 2.1. LetZ be an operator ideal, let 11 = P, ... Py be a convez
polygon with vertices P; = (z;,y;), let (o, ) € IntTl and 1 < ¢ < oo.
Define P and 8 = (61, ...,0n) as before. Assume that A = {A;,..., AN}
is @ Banach N-tuple and that B is a Banach space.

IfT € £(E(A), B) then

a) ‘YI(TA(G,_B),q;KlB)
< Dymax {y,(Ta;8)" 7(Tas,8)* 12(Ta,,B)" : {i, k,r} € P}.

N
) v (Th, 4 0sB) < D?H'YI(TAj,B)Bj-
i=1

IfT € L(B,A(A)) then
C) ﬁI(TB,A(a.ﬁ)'q;J)
< Dymax{8;(TB,a,)" B;(TB,a,)* B;(TB.4,)" : {i,k, v} € P}.

N
d) ﬂz (TB,j(a'ﬁ),q;K) < D4Hﬂ1 (TB,Aj)ej'

J=1
Here Dy and D3 are constants depending only on Il and (a, 3), while
Dy and Dy are other constants that only depend on 8.

Proof. Since A, g)4:x <+ Aa,5),00;k With norm less than or equal to 1,
in order to establish a) it is enough to consider the case ¢ = co. Observe
that there is a constant C, depending only on Il and (e, 3), such that

sup 4t s PK(t,s;a0) } < Cllalliasrcoic s @€ Afas)ook-
t”po{ (t,53) } < Cllallia,p),001K (@8) 00K
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Hence, given any ¢,¢t,s > 0anda € U; Alap),00,c 1+ WE €N find a decompo-

sition ¢ = EJ_ a; with a; € A; and ||aJ]|AJ < (1+E)C't° Tigh=¥i , 1<
J<N.So
N
UA(a,ﬁ).m;K g Z(l + E)C"ta-xJ 8.3"'!11 UAJ"
=1
Let o; > v,(Ta;B). According to the definition of v, there exists a
Banach space E; and an operator R; € Z(E;, B) so that

T (UAJ.) Co;Up +R; (UE,.) , 1<j<N.

Therefore
T (Uj(a,m.oo,x)

N N
C Y (L+&)Ca;t* =i~ %iUp + 3 (1 +€)Cto %1 =% R; (Ug,)
i=1 i=1

(1+¢e)C (Zt“"”—‘ P Yig. ) Up + R.::(Ug).

Here E = {(z1,...,2n) : 2; € E_,-} normed by |l(zy,...,2n)|lE =
max{llzjllg; : 1 < j < N} (ie, E = (@X, Ej), ), and R, ., :
E — B is the operator deﬁned by R”,(zl, G2EN) =
(1+¢)C EN_I t*=%i sP=¥i R, z; . 1deal property of Z implies that Reis €
I(FE,B). Hence

t,5>0 =1

N
¥2(T4(a gy ic.8) < C inf {Zta_mjsﬂ_yj'fr(TAj:B)}

.

< NC inf to~%5 gb—vj
int { max (=550, (1,00}

= NC max {7,(T4,; B)% Y7(Ta,,B)* Vz(Ta. B)* : {i,k,r} € P}

where we have used (8], Thm. 1.9, in the last equality. This establishes
a).
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To prove b) let again a; > 7,(T4,,B), and consider the following
norm on £(A)

N N
llell = inf{z agillalla; 1 a=> aj,a;€ A,-} .
J=1

=1

Take any a € Uz ,, ., and € > 0. Using the Hahn-Banach theorem,

we can find f € (Z(A),[-1)" such that f((14¢)~la) = J(1+¢)lal
and ||f||A; <o0;,1<j<N. By (4), the norm “f”(ﬁ(a.m.w)' of the

restriction of f to A(, )4,y is less than or equal to C I'[ff__l Ug’ . Whence
lal = (1 + &)l f((1+€)a)|
N

N
<L +e)C I o7+ &) Dy < 1 +)C [ o7

=t =1

This allows us to find a representation a = Y_I\., a; of a with [a;|| a; <
(14¢e)Co®t .. .org’_l .. .aﬁ,” , 1 < j < N. Choosing again Banach spaces

E; and operators R; € I(E;, B) with

T(UAJ-) Co;Up+ R; (UEJ-) , 1<j<N,

it follows that

N
8-
T (Ug(a,ﬁ),m) C (1+£)CZaf‘ N A ...a?v"T(UAJ-)

7
=1

N
C(1+6)CNal .. .oRUs+ (1+6)CY ol .. af ™ .o R;(Us,)
i=1
C (1+€)CNol' ... 0% Ug + R(Ug)
where F = (@?f__lEj)l and R € I(FE, B) is the operator defined by

N
R(zl,...,zN) = (1 +E)CZO‘?' ...Ugj—l .- .Ug‘;ijZj.
J=1
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Consequently
af ]
Tz (Tﬁta'ﬁ),qﬂ,ﬂ) <CN H 7I(TA,'.B) 7.
i=1

To proceed to ¢) and d), assume that T € £(B, A(A)) and let o; >
B:(TB,a,), 1 £ j < N. By the definition of §;, we can find Banach
spaces F; and operators S; € Z(B, F;) so that

ITb]| 4, < a;|[bliz + ||S;bllF;, b€ B.

Put F' = (@ﬁlﬁy)e , 0 =min{oy,....on} and let S € I(B, F) be the
operator defined by1

Sb=max {oliat*al : {i,k,r} € P}o~1(51b,...,Snb).
Using (6) we get that
HTbll (o600 < C max {|ITBIS, ITBIG, ITONS, : {i,k,r} € P}

< Cmax {oj'c ol : {i,k,r} € P}blls + C|Sb||F,

and c¢) follows.
Finally, working with the operator V € I{B, F) given by

N
Vb=o"'([]of) (Sub, ..., Snb)
J=1
and using (5), we derive that

N N
£ a; 8;
I8l o0k < € TTITBIZ, < C TT (osllells + 1Ssblle;)

j=1 i=1

N 8, N
a. ]_ i) 8.
<CTIIe7 (1Blis + ZIRsbllr; )~ < CCT] o7)lIbll + ClIVH| .
a

i=1 i=1

This implies d) and completes the proof.
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Writing down Theorem 2.1 for the case T = W, the ideal of weakly
compact operators, we get a quantitative version of Thms 2.3 and 2.4 in
[5]. For Z = K, the ideal of compact operators, we obtain estimates for
the measure of non-compactness of the interpolated operator that are
analogous to those proved in [7], Prop. 3.1 and 3.3 for entropy numbers.
Recall that the measure of non-compactness is the limit of the sequence
of entropy numbers. Theorem 2.1 can be also applied to derive results
on strict singularity and cosingularity.

3 Estimates for the general case

We deal now with the case of non-degenerated N-tuples. It is not difficult
to show by means of examples that Theorem 2.1 fails in this general case.
However, assuming an extra condition on the operator ideal 7, we shall
be able to describe the behaviour of the ideal variations.

Given any sequence of Banach spaces (Zm ) (mm)e 2 any sequence
of non-negative numbers (z\m,n)(m N and 1 < g < o0, we denote by
£o(Am,nZm,n) the vector-valued £, space defined by

Li(AmnZmn) = {z = (#mm) : 2Zmm € Zmn and

1
Fllegtmnznm) = (Snmez? (rallemnllzna)?)* < 00}

Any operator T € £ ({g(AmmZmn); g(fimnYm.n)) between two vector-
valued ¢, spaces can be imagined as an infinite matrix with entries
QsTP,y. Here P,y : AypZyy — £;(AmnZmn) is the embedding
Py yz = (84,2}, where

{ 1 fm=un=v . and Q,, qu(#m,nYm.ﬂ) — frsYrs 1s the

0 otherwise

projection Q- , (ym.n) = Yr,s5-
For 1 < ¢ < oo, we say that the operator ideal I satisfies the X,-
condition if for any sequences of Banach spaces

()\m,an,n) ? (ﬂm,nym,n) a.nd any T € E (£q(Am.ﬂZm,ﬂ)1 fq(Pm,ﬂYm,n)) H
it follows from Q, T Puy € T (Au,uZuv, firsYr,s) for any r,s,u,v that
T €T (ly(AmnZmmn)s La{timnYmmn)) -

95
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Weakly compact operators, Rosenthal operators, Banach-Saks oper-
ators or dual Radon-Nikodym operators ate examples of ideals satisfying
the ¥-condition (see [14]). All of them are also injective surjective and
closed.

The following result shows the behaviour of the measure v With
K-spaces.

Theorem 3.1. Let Tl = P, ... Py be a convez polygon with vertices

= (z;,y;), let (a,8) € Intll, 1< ¢g< oo, and let T be an operator
zdeal which satisfies the ¥, -condztwn Assume that A = {A,,..., AN}
and B = {By,..., Bn} are Banach N-tuples and let T € L(A, B). Then
Jor the mterpolated operator we have

71' ([JB(alﬁ)vq;KT] A(a B Kltm(UB- 8.4 K ))
9

< D max{7;(Ta,,8.)" ¥2(Ta,.8.)* 12(Ta,,5,)" : {isk,r} € P}
where D is a constant depending only on Il and (o, §).

Proof. Let Frn = (By+...+ By, K(27,2%.), (m,n) € 22, and
form the vector-valued space ¢ (2"“”“5"F n). The map
J: B(a,,@)q Kk — £y(2-em—FnE n) deﬁned by jb={...,b,b,b,...) is an
isometric embeddmg By (1.1), it is then enough to show the inequality
for 5T.

Let o; > v;(T4;,8,) and find Banach spaces E; and operators R; €
I(Ej;, B;) so that

T(UAJ.) C o;Us, + Ry (Vg;), i=1,..,N )

Put
Wan=(E1®...® EN)e,, (m,n)e Z?

and, for é > 0 and (r, s) € Z?, consider the operator
R : 4y(Won) — £ (272mF"F,, ) defined by

N
R(z1", ..., 20" = (2(1 +5)2(*%‘)('"“)2(ﬁ-v1)("+‘)fejz;“'“) :
j=1

This operator is bounded because
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R (", .., ) ”lq(z_am-ﬂnpm’“)

N
< ( Z (2-am—ﬂn Z(l + 5)2m:r:,'+ny,' 2(a-:cj)(m+,—)
(m,u)ez2 i=1

oL

—4;jinta m ?
26-5)+ N R b 127" k) )

<{(1+8)N 1'5'}2’% {g(a-z,‘)fg(ﬂ-—y,’)-’“RJ-"ELB,.} H(zT"s - 2™ Y g (W)

Moreover, since each entry
Qt‘wRPu,v(zly Tty ZN) =

0 if (t,w) # (u,v)
N
3 (1 + 820w Bogyif (¢, w) = (u,v)
j=1

belongs to Z({W, 2-ot=Bwpy ), the E,-property implies that
R €T (&(Wmp), (27" Frny))

We claim that
JT (Uj(acﬂ)lq;}{)

g [N(l + 6) lrsnjag%' {Qr(a—wj)+3(ﬁ—w)}] th(‘Z““’"—ﬁ“Fm,n)"l_R (qu(Wm_n)) .

Indeed, given any @ € Ug_ , _, We can choose dyn n == dm (@) > 0 with
gom=Brp (9™ 9" q) < dpy and ST d L < (148
(m,n)eZQ

Since
K (2m+r, 2n+s;a) < 20(m+r)2,6(n+s)dm+r‘n+s

we can find a decomposition a = )., a7 with o]'" € A; and

2(m+r}x,-2(n+a)y,'”a;’hﬂ“A_ < 2a(m+f‘)2ﬁ(ﬂ+5)dm+r nts-
§ = ¥
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Put _
p;n,n — 2(m+r)z_,-2(n+a)yj LIS i< N pgx.ﬂ — 2a(m+r)2p(n+a)dm+r'n+’_

By (7), we can choose 2" € Ug, such that

o
HT( i ;n") - Rjz;n'nugj < o;.

In other words,

m

m, -n“B.r < p?p,n 0; = 2(m+r)(0—31)2(ﬂ+s)(ﬁ—yj)o,jd
2

m+r,n+s-

\7 pﬂ
Ta™
f] PJ
Let

2= (14 8) M dmtrns 27, (14 8) dinirmss ).

Then z € qu(wmm) and
”(JT)G - Rz“gq(z-am—ﬁnp

m.v\)

N pm.n ¢
S e D e e
J

(mn)ed’ i=1

q
N
< Z [2—am—ﬁn (Z 2m-rj+n9_1‘2(m+r)(a—rj)+(ﬂ+a)(ﬁ—yj)o-j dm+r’n+s) }

(m,n)EZ: J=1

q
S[N max 2r(a—zj)+a(.5—yj)o-j}] Z d?

1< <N mtnnts
- (m,n)eza
(@—z)tsd-v5), 1]°
r{a—z;)+s(f=y;) ..
< [N(1+5)1§}§’§v {‘2 i 3 a,}]

Whence
. ric—z;}+s(B~y;) . .
1 (iT) < N(1+9) 1211%\’ {2 L Y a’_,} .
Here & > 0 and (r, s) € Z? are arbitrary. Therefore we derive that

; - rlo=z;)+3(8-y;) 5.
7UT) <N (r,:;gz2 [12’%’5\1 {2 ! ’ 6:}]
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< D inf | max {t"'“”sﬁ_”f.aj}]
t,8>0 [1<5<N

= Dmax {of of*c’ : {i,k,r} € P}
where we have used [8], Thm. 1.9, in the last equality. This implies that
12 (GT) € Dmax{y;(Ta,)" 7:(Tap8)* 7(Ta.B.)" ¢ {isk,r} € P}
and completes the proof. .

The operator J Biasyak is essential in Theorem 3.1 as we show next
by means of an example. We adapt an idea of [9], Remark 3.4.
Let T = W the ideal of weakly compact operators. According to

[2], Thm. 4, there is a Banach space E and a sequence of operators
(Rn)2% C L(FE, cg) such that

Tw(Ba') < 7w(Ba) < 1/n, (8)
Twi{Ry) =1 (9)
Put
T.=QgR, . F=Qg(E),
choose I1 as the simplex {(0,0),(1,0), (0,1)} and consider the 3-tuples
Az{‘el?ehfl} y B:{FaFafoo(UE)}

Let a>0,8>0witha+8< 1 (ie (ap8) € IntIl) and 1 < ¢ < oo.
IE is clear that A(a"@)‘q;x = ¢; with equivalence of norms. Moreover
B(ag) ik = F (equivalent norms) because F is a closed subspace of
£ (UE). Hence, if Theorem 3.1 would be true without Jg PP there

would exist a constant D > 0 such that for any n € N
Yw ((Tnler,F) (10)

—a— a 8
< Dy (Tl o) =~ s (Tl )" (Bl ) -
But Q% : E* — F'is an isometry onto, so (9) yields

Tw ([Tnle, F) = 1w ([Brley £) = 1.
On the other hand, by (8) and [1], Cor. 5.3, we get

Yo (Tiley teoe)) = w(Ta) = 1w (B < 1/m.
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Whence (10) reads _
1<Dn? forany ne N
which is impossible.
Our last result describe the behaviour of B, with J-spaces.

Theorem 3.2. Let Il = P,... Py be a conver polygon with vertices
P = (2j,y;), let (a,8) € IntTl, 1 < g< o0, and let T be an operator
ideal which satisfies the T,-condition. Assume that A = {A1,..., AN}
and B = {B,,..., By} are Banach N-tuples and let T € L(A, B). Then
for the interpolated operator we have

By ( [TQ’E(G.JB) .q;J]

tl(Uﬂ(u)ﬂ)’qﬂ)SB(a,ﬂ),q;J')

< D max {8,(Ta, ;)" B:(Tay,B,)™ B, (T4, B,) : {i,k,r} € P}
where D is a constant depending only on 1 and (o, B).
Proof. Put Gpn = (A1 N...N AN, J(27,27%)), (m,n) € Z2, and let
T (277G ) — Ay

be the metric surjection {uy,,) = 2 nez? Umn . Taking into account
(2), it suffices to establish the inequality for Tr.

Let o; > §,(T4,,B;). There exist Banach spaces Z; and operators
S; € I(A;, Z;) such that

”Tx”Bj < aj“'z”Aj + ”ij”Zj y T € A_i y 1S 7K N (11)

For each (m,n) € Z?, let Vinn = (E1©...@EN)qy, . Takeany (r,s) € 22
and let §: ¢, (2“"""6”‘Gm,n) — £4(Vin,n) be the operator defined by
S(tm,n) =

(261 admriga—B)n-s)g,yy, . olen=alim—r)glun=B)n=s) gy .-

Since
”S(um,ﬂ) “lq(vm,n) =

1
q

N q
z (Z g(zj-a)(m—r)g(yj—ﬁ)(n—s)HSJ.Hm’N”zj)

(m,n)€Z2 i=1
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N
< (Z 2(0*%%2@_%)3“51“A,',ZJ‘) ”(“m,n)”tq(z-am—ﬁnam.n)r
i=1

the operator § is bounded. Now, by the T -property, it is easy to check
that Se 7 (Zq (2’“"“‘3“0,,1,,,) R (Vm,,,)). A direct computation using
(11) shows that

IIT”(um-n)lls(ulp).q;‘;

S lgljasl'xN {0’12(0‘—21)72(.6_9'1)’} ”(um‘ﬂ)”!q(z—am-—,ﬂngm'n)+||S(um,n)”lq(vm'n).

This implies that

ola—ziIro{B—y;)e
ﬁz(Tvr)slgg.aég,{aﬂ ST }

Since (r,s) € Z? is arbitrary, taking infimum and using (8], Thm. 1.9,
the result follows.

Theorems 3.1 and 3.2 comprise Thm. 2.6 and Remark 2.9 of [5]. In
particular, they give quantitative estimates for the weak compactness
results mentioned in the Introduction.

Note that Theorems 3.1 and 3.2 do not apply to compact operators
because this ideal fails the Z,-condition. This problem has been studied
in [6] and [7).
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