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A p-adic behaviour of dynamical systems.

Stany De SMEDT, Andrew KHRENNIKOV

Abstract

We study dynamical systems in the non-Archimedean number
fields {i.e. fields with non-Archimedean valuation). The main
results are obtained for the fields of p-adic numbers and complex
p-adic numbers. Already the simplest p-adic dynamical systems
have a very rich structure. There exist attractors, Siegel disks and
cycles. There also appear new structures such as "fuzzy cycles”.
A prime number p plays the role of parameter of a dynamical
system. The behaviour of the iterations depends on this parameter
very much. In fact, by changing p we can change crucially the
behaviour : attractors may become centers of Siegel disks and
vice versa, cycles of different length may appear and disappear...

1 Introduction

During the last 100 years p-adic numbers were considered only in pure
mathematics. But last years numerous applications of these numbers to
theoretical physics were proposed by [.Volovich, P. Freund, E. Witten,
G. Parisi, [. Aref‘eva, E. Marinari, B. Dragovic (string theory, see [1],
(5], (11], [16]), [17]}, V. Vladimirov, E. Zelenov (quantum mechanics)
[15], A. Khrennikov (p-adic valued physical observables) [6] and many
others, see the books [7], [15]. A number of models of p-adic physics
might not be described by the ordinary theory of probability based on
Kolmogorov's axiomatic [10]. A new class of probability models, p-
adic valued probability models, was investigated in [7]. Here p-adic
probabilities are defined as limits of relative frequencies vy = n/N but
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with respect to a p-adic metric on the field of rational numbers Q (fre-
quencies are always rational numbers) . There exist random sequences
w, see {7], where limits of vy do not exist in R, but they exist in one
of the p-adic number fields Q,. This situation can be considered as the
classification of chacs. A sequence, which is totally chaotic from the real
point of view, may have a definite p-adic structure.

In the present paper we study dynamical systems (with analytic
functions} in non-Archimedean number fields. The most interesting ex-
amples of such fields are the fields Q, of p-adic numbers and C, of
complex p-adic numbers. We start with general results for an arbitrary
non-Archimedean field K and then apply these results to study the be-
haviour of the dynamical system y = z™ in Q, and C,. Already this
simplest dynamical system has a very rich structure. We obtain some
general results about this dynamical system. However, many proper-
ties of this dynamical system change crucially by changing p. Here we
could not find some general laws!, but we illustrate these properties by
numerous examples. We further continue these investigations with the
aid of a computer with the aid of the complex of programs for p-adic
dynamical systems.

As we hope that this paper would be interesting for scientists working
in applications (mathematical physics, dynamical systems, chaos), we
present all primary notions about non-Archimedean fields and p-adic
numbers (see, for example, [4], {13]} in the next section.

2 Non-Archimedean fields, fields of p-adic
numbers

Let 7 be a field. Recall that a valuation is a mapping |- [ : F — Ry
satisflying the following conditions :

VNfzlp=0&=2z=0
(2) fzy|r = |zlrly]lF
(3) iz + ylr < |z|F + |vtr

1 . . .
Probably, it is impossibie to find such laws, because the set of prime numbers has

a very complicated structure.
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The last inequality is the well known triangle axiom. A valuation is said
to be non-Archimedean if the strong triangle axiom holds, i.e.

lz + ylr < max(lz|z, lylF)- (1)

A field F with a non-Archimedean valuation is said to be a non-Archi-
medean field.

Everywhere in what follows K denotes a complete non-Archimede-
an field with a nontrivial valuation | - |x. ? The case Char K =0 is
considered.

We shall often use the following property of the non-Archimedean
valuation |- |k :

|a + bl = max(lalk, [blx) if |alx # |6k (2)

Set Up(a) = {z € K : |z —a|lg <r},e € K,r > 0. This is by
definition a closed ball in K with center in @ of radius r. The term
“closed ball” is only a terminology. In fact, these balls are at the same
time closed and open (“clopen”). We introduce also open balls U (a) =
{z € K :|z —a|x < r} which are also clopen sets. Set S, {e) = {z € K :
|z — a|p = r}. This is by definition the sphere in K with center in a of
radius r. It is also a clopen set.

The following simple fact will be very useful for us :

Lemma 2.1. Let a € 51(0). Then 5,(0)\ U (a) C Si(a).

Set |K| = {r = |z|x : = € K}. A function f : U (e} = K,r €
|K| is said to be analytic if it is expanded into a power series f(z) =

© o falz — a)", fn € K, which converges uniformly on the ball I (a).
Set {|flls = maxn |fe|kr™. This is the norm on the space of analytic
functions f :U.(a) = K (see, for example, [4] for the theory of analytic
functions).

The field of real numbers R is constructed as the completion of the
field of rational numbers Q with respect to the metric p(z,y) = |z — y|,
where | - | is the usual valuation given by the absolute value. The fields
of p-adic numbers Q, are constructed in a corresponding way, by using
other valuations. For any prime number the p-adic valuation | - |, is
defined in the following way. First we define it for natural numbers.

2 A valuation is called trivial if it is equal to 1 for any nonzerc element.
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Every natural number n can be represented as the product of prime
numbers : n = 2723 ... p".... Then we define |nf, = p~"», and set
0], = 0 and | — n|, = |n|,. We extend the definition of the p-adic
valuation | - |, to all rational numbers by setting for m # 0 : {n/m|, =
|ntp/lmlp. The completion of Q with respect to the metric pp(z,y) =
|z — yl, is the locally compact field of p-adic numbers Q,. It is well
known (Ostrovsky‘s theorem), see [4], [13], that |- | and |- |, are the
only possible valuations on Q. The p-adic valuation satisfies the strong
triangle inequality. Denote the ring of p-adic integers by Z,(= U, (0)}}.
For any z € Q, we have a unique canonical expansion (converging in
the | - |p-norm ) of the form

T=dG_pnp "+ -Fag+---+ akpk + = g 0O, OOy, (3)

where a; = 0,1,...,p — 1, are the "digits” of the p-adic expansion.
We shall use the following property of the binomial coefficients C* =
Wnﬂé'l?ﬁvk < n: |Ck, < 1. The proof can be achieved by observing

that the binomial coefficient b,(;—lb), is integer and, therefore, its p-adic
norm is < 1.

Denote the ring of residue classes with respect to mod n by F,, F,, =
{0,1,...,n — 1}; F is its multiplicative semigroup (if » = p is a prime,
then [}, is a field). Using (3) it is easy to show that Z,/pZ, = F,. As
usual we introduce the factor map Z, — F,,z — Z.

The greatest common divisor of natural numbers n and m is denoted
by (n,m). If (n,m) = 1, then n and m are called relatively prime.

Denote the algebraic closure of Q, by Q. It is an infinite dimen-
sional space over Q,. We note that an extension of any finite order of
Q; is not algebraically closed. The p-adic valuation |-|, can be extended
canonically to the valuation on Qg (see [4], [13]). However, the field Qp
is not complete with respect to this valuation. By Krasner’s theorem
[4] the completion C, of Q3 is algebraically closed. We use the same
symbol | - |, for the valuation on C, which is constructed as the unique
prolongation of the valuation on Q;. The roots of unity in C, will play
an important role in our considerations. Denote the group of m-th roots
of unity, m = 1,2, ..., by (") Set

C=up, I T =022, P Ty = Ugn izt T

By elementary group theory we have I' = I', - ', [, N T, = {1}. Denote
the kth roots of unity by 64,7 =1,..,k,8, ¢ = 1.
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Lemma 2.2. Let y* = a,a = 8, for some j =1,2,..,n -1, and
y#a. If(n,p) =1, theny € Si(a).

jFrom this lemma we get the well known consequence :

Corollary 2.1. 'y C 5((1).
The following two results can be found, for example, in [4], [13].

Lemma 2.3. ]C:dp < 1/p forall j =1, oy pF— 1,

Lemma 2.4. T, C U (1).

To find fixed points and cycles of functions f(z) = z" in Q,, we
have to know whether the roots of unity belong to Qp. Denote by
&,1=1,2,..., a primitive {th root of 1 in C,,. We are interested whether

El = Qp‘

Proposition 2.1. (Primitive roots) If p # 2, then § € Q, if and only
ifl| p— 1. The field Qq contains only & =1 and & = 1.

In fact, this proposition is a consequence of the same result for /7,
(which is well known in the elementary number theory) and the Hensel
lemma (see appendix).

Corollary 2.2. The equation z* = 1 has g = (k,p — 1) different roots
n Qp.

The same result is valid for F}.

3 Dynamical systems in non-Archimedean fields
We study the dynamical system :
U—-U,z— f(z) (4)

where U = Ug(a) or K and f : U — U is an analytic function. First
we shall prove a general theorem about the behaviour of iterations z, =
f*(z0),z0 € U. As usual f*(z) = fo ..o f(z). Then we shall use
this result to study the behaviour of the concrete dynamical systems,
f(z)=z",n=2,3,..,in the fields of complex p-adic numbers C,.

We shall use the standard terminology of the theory of dynamical
systems : fixed and periodic points, cycles, stable and unstable points,
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attractors, basin of attraction (we denote the basin of attraction for the
attractor a by A{a)), repeller (sce, for example, [3], [12]).

We have to be more careful to define a non-Archimedean analogue
of a Siegel disk. Let @ € U be a fixed point of a function f(z). The
ball #7(a) (contained in I) is sald to be a Siege! disk if each sphere
S,(a),p < r, is an invariant sphere of f(z), i.e. if one takes an initial
point on one of the spheres S,(a},p < r, all iterated points will also
be on it. The union of all Siegel disks with center in a is said to be a
maximal Siegel disk. Denote the maximal Siegel disk by SI(a).

In the same way we define a Siegel disk with center in a periodic
point a € Y with the corresponding cycle vy = {a, f(a), ..., f*"'(a)} of
the period n. Here the spheres S,(a), p < r, are invariant spheres of the
map f*(z). |

As usual in the theory of dynamical systems, we can find attractors,
repellers and Siegel disks using properties of the derivative of f(z).

Let a be a periodic point with period n of the C'-function ¢ : & — .
Set A = %g"(a). This point is called : 1) attractive if 0 < |A|x < 1; 2)
indifferent if |A{x = 1; 3) repelling if |A|, > 1.

Lemma 3.1. Letl f: U — U be an analytic function and lef o € I and
f'(a) # 0. Then there exists r > 0 such that

L&

5= Inax
n! dzn

2<n<o0

< f @)k (5)

K
If r > 0 satisfies this inequality and U, (a) C U, then

1f(z) = fW)lw = 1/ (a)lklz — vl (6)
Jor all .,y € U, (a).

Proof. We consider the case U = Ur(a). We have : f(z) — f(y) =
[f'(a) + T(z,y,a)j(z ~ y) with

o (in i
T(e,,0) = Y = @)l 4 (y - a) o)t (y-a) )

Denote the expression in the square brackets by B, (z,y,a). Let 2.y €
Up{a), r < 1. Using the strong triangle inequality, we get @ [ B, (x, y. )|y <

Tl GQat
| duf

nl drn

a{p} = max

n--2
2€<n<oo - r P> 0.

(a)
K
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By analyticity of f on Ur(a) we have o(R) < [|f||r/R? < oo. As
o(r) < o(R) for any r < R, we get :

sup |T(z,y,a)|x < ro(R)— 0,r = 0. (7
zy€lr(a)

Hence, if f’(a) # 0, then there exists r > 0 satisfying (5). By (2) we
obtain (6) for such r.

Theorem 3.1. Let a be a fized point of the analytic function f : U — U.
Then :

1) If ¢ is an attractive point of f, then it is an atiractor of the
dynamical system (4). If r > 0 satisfies the inequality :
1d*f
mdz“(a)

ol <l (8)
K

q:

max
1<n<eo

and U.(a) C U, then U, (a) C A(a}.

2. If a is an indifferent point of f, then il is the center of a Stegel
disk. If r > 0 satisfies the inequality (5) and U, (a) C U, then U.(a) C
Si{a).

3. If a is a repelling point of f, then a is a repeller of the dynamical
system (4).

Proof. If f'(a) # 0 and r > 0 satisfies (5) (with . (a) C U), then it
suffices to use the previous lemma.

If a is an arbitrary attractive point, then again by (7) there exists
r > 0 satisfying (8). Thus we have |f(z) — f(y)|x < qlz —ylx,¢ < L, for
all z,y € U.(a). Consequently, e is an attractor of (4) and U, (a) C A(a).

We note that (in the case of an attractive point) the condition (8) is
less restrictive than the condition (5).

To study dynamical systems for nonanalytic functions, we can use
the following theorem of non-Archimedean analysis [13] :

Theorem 3.2. (Local injectivity of C'-functions) Let [ : U.(a}) = K
be C at the point a. If f'(a) # 0 there is a ball Us(a), s < r, such that
(6) holds for all z,y € U,(a).

However, Theorem 3.1 i3 more useful for our considerations, because
Theorem 3.2 is a so-called "existence theorem”. This theorem does not
say anything about the value of 5. Thus we cannot estimate the volume
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of A(a) or SI{a). Theorem 3.1 gives us such possibility. We need only
to test one of the conditions (8) or (5). Moreover, the case f'(a) = 0
is "a pathological case” for nonanalytic functions of a non-Archimedean
argument. For example, there exist functions g which are not locally
constant but for which ¢’ = 0. In our analytic framework we have not
such problems.

The Julia set J for the dynamical system (4) is defined as the closure
of the set of all repelling periodic points of f. The set Fy = U \ Js is
called the Fatou set. These sets play an important role in the theory of
real dynamical systems. In the non-Archimedean case the structures of
these sets are more or less trivial.

We shall also use an analogue of Theorem 3.1 for periodic points.
There we must apply our theorem to the function f*(z).

4 Dynamical systems in the field of complex
p-adic numbers

As an application of Theorem 3.1, we study dynamical systems with
Pa{z) = 2™, n = 2,3, ... in the fields of the complex p-adic numbers C,.
It is evident that the points a = 0 and ¢ = oo are attractors with basins
of attraction A(0} = U (0) and A(oo) = C, \ U;(0) respectively. Thus
the main scenarios is developed on the sphere $,(0). Fixed points of
pn(z} belonging to this sphere are the roots ;1,5 = 1,..,n— 1, of
unity of the degree (n — 1}. There are two essentially different cases : 1)
n is not divisible by p; 2) n is divisible by p.

Theorem 4.1. The dynamical system p,(z) has (n — 1) fized points
a;=0;n_1,j=1,...,n— 1, on the sphere 5,(0).

1. Let (n,p) = 1. Then all these points are centers of Siegel disks
and 51(a;) = U (a;). If (n — 1,p) # 1, then SI(a;) = SI(1) = U (1)
forallj=1,...,n-1. If{n~1,p) =1, then a; € 51(1),7=2,...,n-1,
and 51(e;)NSI{a;) =0,i# j. For any k = 2,3, ... all k-cycles are also
centers of Siegel disks of unit radius.

2. If (n,p) # L, then these points are attractors and U (a;) C Ala;).
For any k = 2,3, ... all k-cycles are also attractors and open unit balls
are contained in basins of attraction.

Proof. 1.Consider the first case. There we have |p)(a;)], -
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Theorem 3.1 all points a; are centers of Siegel disks. We are interested
in the radius of the maximal Siegel disk. We use the condition (5). As

{ﬁ%’l(bﬂp = |C}|, for any b € $;(0), the condition (5) has the form

r max r*2CE < 1.
2<k<oo

If r < 1, then this condition is satisfied. Thus U; (a;) C S1{a;). We
need only to show that the spheres S;(2;) are not invariant sets for
Pn. There Lemma 2.2 is used. We choose 7o = y where y™ = a; and
y € S1(a;). Then pa(y) = a;.

If (n — 1,p) # 1, then by Lemma 24 all a; € U, (1). Hence
U (a;} = U (1) and SI{a;) = SI(1}). Thus the dynamical system p,(z)
describes the following motion in the ball U (1). There exist (n — 1)
points ay,...,an—y such that for any initial point zo € U (1) the dis-
tances between iterations z, of xg and these points are constants of the
motion.

If (n - 1,p) =1, then by Corollary 2.1 a; € S1(1) forj=2,...,n~1.
Thus there are (n — 1) different Siegel disks which have empty intersec-
tions.

To study k-cycles, we use the fact that (n*,p) = 1 if and only if
(n,p) = 1. Hence each fixed point of the map pX(z) is the center of a
Siegel disk.

2. Now we consider the second case. Let n = pFm, &k > 1, with
(m,p) = 1. Then we have |p,(a;)|, = 1/p*. Thus all points a; are
attractors. Further we are interested in basins of attraction. We use the
condition (8) which has the form :

¢ = max(1/p*, r|C2|,, ..,r" ) < 1

If r < 1, then this inequality is satisfied. Thus U] (a;) C A(a;).
To study k-cycles, we use the fact that (n*,p) # 1 if and only if
(n,p) # 1. Hence each fixed point of the map p%(z) is an attractor.

Corollary 4.1. Let (n,p) = 1. There ezist an infinite number of k such
that (n* — 1,p) # 1. Any k-cycle ¥ = (ay, ...,ax) for such k is located
in the ball U (1); it has the behaviour of a Siegel disk with SI(vy) =
u;;,u;(a,) = U (1). During the process of the motion the distances
c; = ppl{zo,a;),j = L,...,k, where zo € U (1) is an arbitrary initial
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point, are changed according to the cyclic law @ (¢, ¢z, ...;Cn_1,Cn) —
(€nyCly ooy Cne2y Cnt} = ..

Proof. By the Fermat theorem zP~! = 1 for any z € £y, Thus, as
(n,p) = 1, we have n7(P=1} = 1 mod p.

Now we prove the cyclic law for the distances. It is a simple conse-
quence of Lemma 3.1 :

|21 — a;lp = [ F{zo) = flaj—1)lp = 1 (@j-1)|plmo — @j-1lp = ¢jt.

Thus in the case (n,p} = 1 the motion of a point in the ball U] (1)
is very complicated. It moves cyclic (with different periods) around an
infinite number of centers.

Examples. Let n = 2 in all following examples.
1. Let p = 3. Then (n?* —1,p) # 1 and (n?**! — 1,p}) = 1. Thus all
even cycles (and only they) are located in the ball 24, (1).
2. Let p=>5. Then (n** —1,p) # land (n**+i — 1 p)=1forj=1,2,3.
Thus all 4k-cycles (and only they) are located in the ball U (1).
3. Let p=17. Then (n®* — 1,p) # 1 and (n®* - 1,p) =1 for j =1,2.
Thus all 3k-cycles (and only they) are located in the ball 24 (1).

Now we find the basins of attraction A(a;),7=1,..,n—1,{(n,p) # L,
exactly. We begin from the attractor a; = 1.

Let n = mp*, (m,p) =1 and k > 1.

Lemma 4.1. The basin of attraction A(1} = Ul (€) where £ € Ty
these balls have empty intersections for different points £,

Proof. 1. Let £ € ', and y =&+ 7, {vl, < 1. Then

nd —1
nt 1 et nt 1
" =1, =D CLEYYT <<l
=0
r

i.e. the j-th iteration of y belongs to the ball U (1) € A(1). Hence
U7 (€) T A(l). These balls have empty intersections for different &,
because |a — b| = 1 for any a,be 'y, ¢ # b.

2. Now let s = m,a > 0,(s,p) = L, (t,m) = 1,t # 1, and £ €
PE AT, Then € = wo,v € TM™) v € T and v # 1. Let y =
&+ v,]vl, < 1. Then y”k = {”k + 3 where {5, < 1, i.c. y“Jk S L{l'(‘f"k),
It suffices to show that {“k € S1(1) for all sufficiently large k.
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First we note that if £ > a, then w™ = 1. Further let n¥ = ji + q
with the remainder ¢ = 1,...,t — 1. If £ > «, then we have {"‘k = 7.
Let v =&} A =1,...,t — 1 (as usual & is a t-th primitive root). Then
v? = g;“’. Finally we have to show that Ag # 0 mod . Suppose that
Ag = Omod t. It implies that (¢,t) = w # 1. Thus m*p* = j'w. It
contradicts the condition (m,t) = (p,t) = L.

Thus it has been shown that U7 (£) C C, \ A(1) for any £ such
that it is a s-th root of unity, (s,p) = 1, and it is not a m’-th root of
unity, 7 > 1. Finally we use the following fact which can be obtained by
Lemma 2, p.103, [13] :

S1(1) =uly (&) where £ € [y, € #£ 1.

Corollary 4.2. Let n =p',{ > 1. Then Si(1) is the invariant sphere of
the dynamical system p,(z).

Examples. 1.Let n = p',{ > 1. Then A(1)} = U; (1).
2. Let p# 2 and n = 2p!,1> 1. Then A(1) = Ul (£) where £ € [y,

Theorem 4.2. The basin of attraction A{agx) = Ueld; (Ear) where € €
[',.. These balls have empty intersections for different points &.

Proof. This theorem is a simple consequence of Lemma 4.1. We intro-
duce the map Ty : Uy (1) = Uy (ar), Trz = arz. It is an isometric map.
If z¢ € Uy(1) and zj = Tk(:z:g) then we have for the iterations of the
initial point z§ € Ui {ar) : =y = p (z}) = Ti(zn) where zn = pN (z0).
Thus the behaviour of the dynamical system p,(z) in the balt U;(ax)
can be obtained as the Ti-image of the behaviour in the ball ;(1).
The dynamical system p,{(z) has no repelling points in C, for any
p. Thus the Julia set J,, = @ and the Fatou set F,, = C,. Therefore in
the p-adic case the Julia set does not play the role of a set where “the
scenarios of chaos is developed.” It seems to be interesting to study the
behaviour of dynamical systems on the intermediate set which is defined
as INT; = U\ [(UaA(a)) U (UpST(b)})] where {a} are all attractors and
{b} are all centers of Siegel disks of a dynamical system In the case
(n,p} = 1 this is the set INT,, = S5{0)\ U}Z 1 81(a;); in the case
(n,p} # 1 thisis the set INT,, = S1(0)\U]Z, l A( ) These sets contain

cycles of all lengths.
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5 Dynamical systems in the fields of p-adic
numbers

Here we study the behaviour of the dynamical system p,(z} = z*,n =
2,3,...,in Q,. In fact, this behaviour can be obtained on the basis of
the corresponding behaviour in C,. We need only to apply the results
of the second section about the roots of unity in Q,

Proposition 5.1. The dynamical system pp{z) hasm = (n — 1,p— 1)
fized points a; = 80j,,7 = 1,...,m, on the sphere 5,(0) of Q,. The
character of these points is described by Theorem {.1. Fized points a; #
1 belong to the sphere 5(1).

Proof. The first statement is a consequence of Coroliary 2.2. We must
only show that all fixed points a; # 1 belong to S;(1). As m = (n -
1,p - 1), then {m, p}) = 1. Finally we use Corollary 2.1.

We remark that the number of attractors or Siegel disks for the
dynamical system p,(z) on the sphere S;(0) is less than or equal to
(p—1).

To study k-cycles in Q,, we use the following numbers : m; =
(leyp~1),k=1,2,..., with iy = »F — 1 (i.e. m =m,).

Proposition 5.2. The dynamical system p,(z) has k-cycles (k > 2) in
Q; f and only if my does not divide any m;,j = 1,...,k — 1. All these
cycles are located on S1(1).

Proof. 1. Suppose that m; does not divide m;,1 < 7 < k-1. We
choose ay = &, . It is, a primitive mg-th root. Then we have a’l‘k =a.
Suppose that a’l" = a; for s < k. Then a** = 1. Hence m; divides m,.
It is a contradiction.

2. Suppose that my divides m; for some j < k. Let al]" = 1. Then
a]®* = 1 and, consequently, a;n’ = 1. Thus ay = 1. Thus the cycle
¥ = 7(a1) has length < s < k.

In particular, if (n,p) = 1 (i.e. all fixed points and k-cycles are
centers of Siegel disks), there is no such complicated motion around a
group of centers in U (1)(= Uy, (1)).

Corollary 5.1. The dynamical system p,(z) hes only a finite number
of cycles in Q,, for any prime number p.
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Example. Let n = p/,{ > 1. Then m; = p— 1 and there are p — 1
attractors a; = #;,_4,5 = 1,...,p — 1, with the basins of attraction
A{a;) = Uysp(a;) and there is no k-cycle, ¥ > 2. As we can choose
a; = j mod p, then U p(a;) = Ul/p(j). As 5,(0) = U?;}Ullp(j), the
intermediate set is empty. In particular, if p = 2 then all points of the
sphere S;(0) are attracted by a;.

To study the general case n = ¢p',! > 1,(¢q,p) = 1, we use the
following elementary fact.

Lemma 5.1. Let n = qp',l > L{gq,p)=1. Then my = (lg,p—1) =
(¢ - 1,p-1),k=1,2,..

Proof. Set a = (¢*~1,p—1),a' = (Ix,p—1). We have: ¢* =ab+1,p=
ac+1, where b,c € N. Hence iy = n*—1 = (ab+1)(ac+1)* —1 and all}
and, consequently, a|a’. On the other hand, we have n* = a'd 4+ 1,p =
a'z+1, where d,z € N. Hence ¢*(a’z+1)¥ = (¢* ~1)(a’z+ 1)¥ +(a'z +
1}¥ = a'd + 1 and, consequently, a’|(¢F — L)(a’z + D)¥, i.e. o|(¢* — 1).
Thus a'|a.

Examples. 1). Let n = 2p,p # 2. There is only one attractor a; = 1
on 5,(0) for all p. To find k-cycles, & > 2, we have to consider the
numbers mg, k = 2, .... However, by Lemma 5.1 my = (2¥ - 1,p — 1).
Thus the number of k-cycles for the dynamical system py,(z) coincides
with the corresponding number for the dynamical system py(z). An
extended analysis of the dynamical system p2(z) will be presented after
Proposition 5.4. Of course, it should be noted that the behaviours of
k-cycles for poy{z} and pa(z},p # 2, are very different. In the first case
these are attractors; in the second case these are centers of Siegel disks.

2). Let n = 3p,p # 2. There are two attractors a; = 1 and ¢y = —1
on S;(0) for all p.

3). Let n = 4p. Then there is a more complicated picture : 1 attrac-
tor for p = 2,3,5,11,17,23, ... and 3 attractors for p = 7,13, 19,29, 31, ...

4). Let n = 5p. Then we have : 1 attractor for p = 2; 2 attractors
for p=3,7,11,23,31,... and 4 attractors for p = 5,13,17, ...

Now we study basins of attraction (in the case n = qp', I > 1,(q,p) =
1). As a consequence of our investigations for the dynamical system
in C,, we get that A(1) = Ugld;,(€) where £ € ', N Q,. We have
TN Qp# {1} if and only if (¢,p— 1) # 1.

Examples. 1). Let p=5and n = 10,ie. ¢ = 2. As (¢%,p— 1) = 4,
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then T2 1 Qs = ' and A(L) = Ul Uyys(04). Thus A1) = 5:(0). Al
points of the sphere §,(0) are attracted by a; = 1.

2). Let p=T7andn=21,i.e. gy=3. Thenm; =(g—-1,p—1)=2.
Hence there are two attractors; these are a; = 1 and a; = —1. As all
mj = (¢ —1,p—1) = 2,5 = 1,2,..., there are no k-cycles, k > 2. To
find the basins of attraction, we compute (¢,p ~ 1) = 3. Thus A(1} is
the union of balls U, /7(8;3),7 = 1,2, 3. It is evident that 855 = 2,033 =
4 mod 7. Therefore A(1) = Uy 7 (1) U Uy 7(2) U Uy y7(4) and A{-1) =
Uy pr(=1) UL 7 (3) U Uy 47(5) (since 2(—1) = 5,4(~1) = 3 mod 7).

3). Let p=7and n=14,ie (¢g,p—-1) =2 Thus [;NQ7 = r
and A(1) = Uy 7 (1)Ul s7(6). There INT, , = u§:2u1,7(j). Asmy =3,
there exist 2-cycles in INT,,,. It is easy to see that that the 2-cycle is
unique and v = (by, bz) with by = 2,53 = 4 mod 7. This cycle generates
the cycle of balls on the sphere S;(1) ; v/} = (U1 7(2), Uy y7(4)) (Fluzzy
cycle”). The other two balls on Sy(1) : U/2(3),Uy17(5), are attracted
by ¥/} (by the balls U, /7(2) and U s7(4) respectively).

The last example shows us that sometimes it can be interesting to
study, not only cycles of points, but also cycles of balls. We propose the
following general definition.

Let z — g(z},z € Qp, be a dynamical system. If there exists balls
U,(a;),7 = 1,...,n,such that iterations of the dynamical system generate
the cyele of balls vI) = (U {ay), ..., Us(ay)), (r = p', 1 =0,%1,..) then
it is called a fuzzy cycle of the length n and the radius r. Of course, we
suppose that the balls in the fuzzy cycle do not coincide.

Proposition 5.3. There is a one Lo one correspondence between cycles
and fuzzy cycles of radivs r = 1/p of the dynamical system pp{z) in Q,.

Proof. 1.Let v = (ay,...,ax) be a k-cycle of the dynamical system
palz). Then pn c Uyypla;) = Upplajer) {with aps = 1), ie ) =
W /(1) oy pylax)) s 2 Fuzzy eycle. 2.Let 1) = Uy /p(51), o lhy/p(01))
be a fuzzy cycle. Then b?k"l = 1inod p, i.c. b satisties the equation
¢(z) = z™ — 1 = 0 mod p (sce the remark after Corollary 2.2.). By
the Hensel lemma (see appendix) there exists « = b; mod p such that
#{a) =0in Q,. As a € Uy;,(by), then @ € Uy, (b)). Since these balls
have cmpty intersections, the point a generates the cycle of the length
k.

The situation with fuzzy cycles of radius r < 1/p is more compli-
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cated,

Examples. Let p = 3,n = 2. There exist 2-cycles of radius r = 1/9
which do not correspond to any ordinary cycle. For example, v/} =
(4,7). Further there exist fuzzy 6-cycles with r = 1/27; fuzzy 18-cycles
with r = 1/81,... '

Proposition 5.4. Any point z € INT,, is attracted by some cycle.
Proof. By Proposition 5.3 it suffices to show that any point zo € INT,,

is attracted by a fuzzy cycle. We have INT, = uf;;’“"‘u,,p(q,) where
my = (n—1,p—1) and ¢ are natural numbers 2 < ¢ < p— 1. Thus we
can reduce our considerations to iterations of ¢; mod p. However, there

is only a finite number of different q,"k mod p.

Examples. Let n = 2 in all following examples.

1). Let p = 2. There is only one fixed point a; = 1 on 5;(0). It is an
attractor and A(1) = Uy o(1) = 51(0). Thus Q; = A(0) U A(1) U A(cc)
and INT,, = 0.

2). Let p # 2. The point a; = 1 is the center of the Siegel disk
Urjp(1). So INTp, = S1(0) \Uyp(l) =

{$=QO+GIP+"'+ﬂ’nPn+"':ajzoals---:}"—110'07&0,1} (9)

The behaviour of the dynamical system on the intermediate set is not
described by our general theorems. It must be investigated in each
concrete case.

3). As [ are odd numbers, then m; must also be an odd number.
Therefore there are no k-cycles (k > 1) for p =3, 5,17 and for any prime
number which has the form p = 2* + 1 [14]. In these cases I N7}, does
not contain any periodic point. By Proposition 5.4 INT,, is attracted
by the Siegel disk U, /,(1).

4). Let p = 7. There my can be equal to 1 or 3. As my = 3, there
are only 2-cycles. It is easy to show that the 2-cycle is unique. By
Proposition 5.4 INT,, is attracted by the Siegel disk U,,,(1) and the
fuzzy 2-cycle YU} = (¢4, /,(2), U1 ;,(4)) which corresponds to the ordinary
two cycle.

5). Let p=11. There my = 1l or 5. As my = ma = 1 and myq = 3,
there exist only 4-cycles. There is only one 4-cycle : y(&s).

6). Let p=13. There mg = 1 or 3. As mg = 3, there exists only the
(unique) 2-cycle.
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7). Let p = 19. There my = 1 or 3, or 9. As my = 3, there is
a {unique) 2-cycle. However, although m4 = 3, there are no 4-cycles,
because my divides ms. As mg = 9 does not divide my, ..., ms, there
exist 6-cycles and there are no k-cycles with & > 6. There is only one
6-cycle : y(&g).

8). Let p = 23. There m; = 1 or 11. Direct computations show that
there are no k-cycles for the first £ = 2,...,9. As mp = 11, there is a
{unique) 10-cycle. There are no k-cycles with £ > 10.

9). Let p = 29. There my = 1 or 7. As ma = 7 and mg = 1, there
exist only 3-cycles. [t is easy to show that there are two 3-cycles : (&)
and 7(€3).

10}. Let p = 31. There my = 1,3,5,15. As my = 3, there exits
a (unique) 2-cycle. As my = 15 and mg = I, there exist 4-cycles :
¥(&15), v (€35), 7(E7s). There are no k-cycles with k # 2, 4.

11). Let p = 37. There my = 1,3,9. As my; = 3, there exists a
(unique) 2-cycle. As mg = 9 and my = mq = 3, m3 = ms = 1, there
exist G-cycles. It is easy to show that there is the unique 6-cycle: ¥(&s).
There are no k-cycles, k& # 2, 6.

12). Let p = 41. There my = 1,5. As my = 5 and all previous
m; = 1, there exist 4-cycles. [t is easy to show that this cycle is unique
: ¥(€s). There are no k-cycles with k # 4.

It is sufficiently complicated to continue these computations for large
p.

It is interesting that we have never observed any 5 or 7-cycle. Do
they exist? According to our formalism, this question is reduced to the
following question of number theory : Are there prime numbers p such
that p = 1 mod 31 or mod 1277 As 31 and 127 are prime numbers, then
by the Dirichlet theorem (see, for example, [14], p.129) there exist an
infinite number of such prime numbers p.

Further we study the behaviour of the dynamical system p,(z) on the
intermediate set. We consider the case p # 2 where this set is described
by (9). We shall use the following result.

Proposition 5.5. Let p # 2 and n = 2. Let the canonical expansion
of a p-adic number zy € INT,, has the form z = ...ap...cqy where
g =..=0ar =p~1and ap_y # p— 1. Then the first iteration of the
inttial point Ty belongs to the sphere Syjr41(1).

Proof. We have zg = (1 4+ a1 )p*t! — 1 mod p**2. Thus z; = 22 =
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1 — 2(1 + okq1)p**! mod p*+2. Finally we remark that 2(1+ akyy) # p.
By this proposition the set U, ,(p— 1) is attracted by the Siegel disk
S1(1) = Uy, after the first iteration.

Examples. Let n = 2 in all further examples.

1}). Let p = 3. There all points of the intermediate set satisfy the
condition of Proposition 5.5. Thus after the first iteration INT,, is
attracted by SI(1).

2). Let p=35,i.e. INT,, =Uys(2) Ul 5(3) VU, y5(4). The last ball
will be attracted by S7(1) after the first iteration. Direct computations
show that the balls U /5(j),7 = 2,3, will be attracted by SI(1) after
the second iteration. Thus after two iterations the configuration space
of the dynamical system on S1(0) will be reduced to SI(1).

3). Let p = 7. There we consider the balls U, /7(5),j = 2,3,4,5
(the case j = 6 is described by Proposition 5.5.). It is evident that
there exists the fuzzy cycle : v/} = Uy 7(2),U; /7(4)). Thus after the
first iteration any point zo € INT,, arrives to one of the Siegel disks :
Us p7(1) or Uyy7(2) U Uy 7(4).

[t should be noted that the field of complex p-adic numbers C, is
an infinite dimensional linear space over Q,. Thus dynamical systems
in C, are, in fact, infinite dimensional dynamical systems over Q,.

6 Computer calculations for Fuzzy cycles

The following results were obtained with the aid of the package p-adic
arithmetic, which was created by S. De Smedt [2] on the basis of the
standard program packet MATHEMATICA [18].

Example. Consider the function p3(z) = 23 in Qs. Then we found
among others the following fuzzy cycles.
Cycles of length 2 :

(3); Up(7) - Up(18); U (57) - U

125 125

(68)
Cycles of length 4 :
U%(Q)—UE%(S)—U%(IQ)—U%(?»)

Us(9)= Uy (4) = Uy (14) - Uy (19)
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U%() Uﬁ%(lﬁ)*Ué(?l)—U%(ll)
U, (22) - UL(23)—U_13(17)—U2_15_(13)

25

_;_(7) - Ul (93) - U (107) - U_l%(‘ilf)

125

U (24)-U, (14)-U
Ui (26) - U1 (76) - U
U (18)-U, (82)-U

125

(99) — U"r‘;-s“ (49)

1
125

1 (101) - U (51)

125

(112) = Ui (32)

1
125 125

Cycles of length 20 :

U (6) = U1, (91) = U (71) = U_(36) — U (31) = Uy_(41) = U 1_(46)—

U (86) = Uy (56) = U 4 (116) = U ,_(21) = U 1 (11) = U_1_(81) - U 1_(66)—
Uy (121) = Uy (61) - Uy (106) — U _(16) — U ,_(96) — U#(lll)

As we have said in the previous section, if pa(z} = 72 in Qa, there
are fuzzy cycles of the length 2,6,18,... On the basis of these examples
and Propositions 5.2. and 5.3. we propose the following :

Let us consider the function f(z) = z™ in Q,. To find cycles of
length m, we have to solve f™(z) = z. Now f*(z) =z <=z =0or
z™ ! = 1. So 7 is the member of a cycle if and only if 7 is a root of
unity of degree n™ — 1 or 5 = 0. Considering the Hensel Lemma, we
thus need to solve the congruence z*" ~! = 1 mod p. This congruence
has exactly (n™ — 1,p — 1) roots.

So we might conclude that there exist (n™ — 1,p — 1) members of
cycles of length m. Of course, we have each time to subtract the number
of members of cycles of length a divisor of m.

Let us take an example to explain it. Let n =3 and p = 17.

There should be (2,16) = 2 members of cycles of length 1 and thus 2
cycles of length 1. Indeed U#(l) and U_l%(lﬁ) are.

There should be (8, 16) = 8 members of cycles of length 2. Subtracting
the previous 2 (1 and 16} there remain 6 members, which allows us to
construct 3 = 6/2 cycles of length 2. And indeed we find

Up(2)-Us(8); Uy(d)—Uy(13) and Uy (9) = U (15)

17 17 17
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There should be (26, 16) = 2 members of cycles of length 3. It is 1 and
16 which we already found as cycles of length 1. So there are no cycles
of length 3.

There should be (80,16) = 16 members of cycles of length 4. If we
delete the 8 previously founded cycles of length 1 and 2, there remain 8
members which allows us to construct 2 cycles af length 4

U

(k4

(3) = U (10) = U (14) = U1 (7)

~1

and

Ui (p)—U.(6) - U_If(l?) 1_7(11)

7

3=
-

And there are no more cycles with balls of radius ﬁ since we used the
17 possible centers.
In general we obtain the following proposition :

L I

Proposition 6.1. The number of cycles of length m = p]' p32. 2 2
with radius :la for the function f(z) = z™ in Q, is equal to

(7" ~1,p~1)= (271" ~1,p=1)_

- fork=1
M 1p— 1)+ (k~1 —1Lp=-1)=-FF (' —Lp-
( P } ( )*(" m!p ) Zl:l(" —‘J)—]-)forkz-z

As we mentioned already in the previous section, the situation for
cycles with radius r < % is more complicated.

Example. Consider the function p;(z) in Q7 This dynamical system
has the following attractorson 5;(0} 1z, = 1; 29 = — 1;

T3 = 2.46302624344521214611...; x4 = 3.46302624344521214611..;

z5 = 4.203640423221454520565...; zg = 5.20364042322145452055...

p-adic arithmetic gives the possibility to study more complicated
dynamical systems. However, we cannot find exact cycles with the aid of
the computer. As a consequence, of a finite exactness, we could find only
fuzzy cycles. Therefore we shall study fuzzy cyeles and their behaviour.
We define fuzzy altractors and fuzzy Siegel disks by direct generalization
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of the corresponding definitions for point cycles. Let f(z) = z® +z The
following fuzzy cycles were found in case p is a prime less than 100.

Cycles of length 2 for p = 5,13, 17,29,37,41,53,61,73,89,97. More-
over, we proved the following general statement.

Proposition 6.2. Let p = 1 mod 4. Then the dynamical system f(z) =
22 4 x has fuzzy cycles of the length 2. In case p = 5 these are fuzzy
cyelic attractors, in the other cases these are Siegel disks.

Cycles of length 3 for p = 11,41,43,59,67,89 (twicé), 97. In case
p = 89 one of the fuzzy cycles are attractors, all others are Siegel disks.

Cycles of length 4 for p = 19,43,47,71 (all Siegel disks).

Cycles of length 5 for p = 23,41,71,73 (all Siegel disks)

Cycles of length 6 for p = 47, 83, 89 (all Siegel disks)

Cycles of length 7 for p = 29,53,59,67 (cyclic attractors in case
p=29) '

Cycles of length 8 for p = 61 (all Siegel disks)

Cycles of length 9 for p = 31 (all Siegel disks)

Remark that for some primes we have fuzzy cycles of different lengths.
There are fuzzy cycles of length 2, 3 and 6, for example, for p = 89 There
are fuzzy cycles of length 2, 3 and 5 for p = 41

Some of these cycles (we suppose all of them, but we did not prove
this) contain subcycles. For example in case p = 11, we have the cycle
of length 3:

U1/11(2) - Ul/ll(ﬁ) - U1/11(9)

which contains subcycles of length 15 :
Uy (112) — Uy y191(72) = Uy 11 (53) — Uy 124 (79) — Uy g121(28) -
Ui121(86) — Uyy121{101) — Uy 121 (17) = Uy f121(64) — Uy j121(46) -
U1/121(105) - U1/121(119) - U1/121(2) - U1/121(6) - Ul/t21(42)
and
Ui121(35) — Uy 121(50) = Uy121(9) = U121 (90} — Uy /121(83)—
Uyj121(75) — U121 (13) — Uy j121(61) — Uy 121 (31) = Uy i (24) -
Ury121(116) = Uy /121(20) = Uy 121 (57) — Uy /121(39) — Uy/12:(108)

and ...
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In case p = 13, we have the cycle of length 2 :

U1f13(4) - U1/13(7)

which contains among others the subcycle of length 8 :
Ui f160(4) — Uy 169(20) — U1 1169(82) — U1/169(36) — U 169(134) —

Ui 169(7) — Ui 169(56) = Uy /169(150)
which contains among others subcycles of length 104.

One of the problems, which arise in our computer investigations of p-
adic dynamical systems, is that we could not propose a reasonable way
to create p-adic pictures which could illustrate our numerical results.
However, this is a general problem of the p-adic framework, since human
brain could understand only pictures in real space.

7 Appendix

Theorem 7.1. (Hensel lemma) Let F(z),z € Z,, be a polynomial with
coefficients F; € Z, Let there exists v € Z, such that

F(y) = 0 mod p***! and F'(y) = 0 mod p*, F'(7) # 0 mod p**+!

where & is a natural number. Then there exists a p-adic inleger o such
that

F(a) = 0 and o = v mod p**!.

Some results of this paper were published in the preprint [8] (see also
[9] for applications).

References

[1] Aref’eva L. Ya., Dragovich B., Frampton P. H. and Volovich L. V.,
1991 The wave function of the Universe and p-adic gravity, int. J.
of Modern Phys. A, 6, No 24, 4341-4358 .

[2) De Smedt S., p-adic arithmetic, Submitted to Mathematica in Ed-
ucation and Research (electronical available at MathSource, item
0208-392).



322

Stany De Smedt, Andrew Khrennikov

Ed. Bunde A. and Havlin S., 1994 Fractals in Science, (Heidelberg-
New York: Springer Verlag).

Iscassut A., 1995 Analytic elements in p-adic analysis (Singapore :
World Scientic).

Freund P. G. 0., Olson M. and Witten 2., 1987 Adelic string am-
plitudes , Phys.Letters B, 199, 191-135.

Khrennikov A. Yu., 1991 p-adic quantum mechanics with p-adic
valued wave functions, J.Math.Physics, 32, 932-937.

Khrennikov A. Yu., 1994 p-adic valued distributions in mathemat-
tcal physic {Dordrecht : Kluwer Academic).

Khrennikov A. Yu., 1995 p-adic classification of fractals and chaos,
Preprint Rehr-University Bochum SF1 n. 288 .

Khrennikov A. Yu., p-adic model of population growth, Proc. Int.
Conf. “Fractals in Biology and Medicine” Ascona March 1996 (to
be published).

Kolmogoroff A. N., 1933 Grundbegriffe der Wah (Berlin) English
translation by N. Morrison, New-York (1950).

Marinari I2. and Parisi G., 1988 Adclic approach to the string the-
ory, Phys.Lett. B, 203, 52-56.

Peitgen H. -O., Jitrgens H. and Saupe D., 1492 Chaos and Fractals
{Heidelberg-New York : Springer Verlag).

Schikhof W., 1984 Ultrametric Calculus, Cambridge Studies in Adv.
Math. 4 {Cambridge : Univ. Press.).

Sterpinski W., 1988 Elementary theory of numbers (Amsterdam:
North-Holland).

Viadimirov V. 5., Volovich |. V. and Zcienov E. 1., 1994 p-adic
numbers in mathematical physics (Singapore : World Sc. Publ}.

Volovich I. V., 1987 Number theory as the ultimate physical theory.
Preprint TH.47851/87.



A p-adic behaviour of dynamical systems 323

[L7] Volovich . V., 1987 p-adic string, Classical Quantum Grav., 4, L83-

[18]

L87.

Wolfram S., 1989 Mathematica : A system for doing mathematics
by computer (Addison-Wesley Publishing Company).

Faculty of Applied Sciences,
Vrije Universiteit Brussel,
Pleinlaan 2,

1050 Brussel,

Belgium

e-mail: stany.desmedt@kb.be

Department of Mathematics,
Rikkyo University,
Ikebukuro,

Toshima-ku,

Tokyo 171,

Japan

Recibido: 20 Septiembre de 1997
Revisado: 1 de Febrero de 1999



