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Generalized Fourier expansions for distributions
and ultradistributions.

S. N. MELIKHOV

Abstract
Let D, (I1,) be a space of distributions 01; ultradistributions of
p
Beurling type on p-dimensional parallelepiped I, := [] [-a;.q;] C
i=1

RP. We investigate the following problems:

1} When can any element of D,(I1,) be expanded in absolutely
convergent series in a system of generalized exponentials
(€A(ny Jnene With special exponents Ag,), n € NP. 2) When can a se-

quence of the coefficients {cn)nene in an expansionsu = 3 Cn€arn,
ngfr
be chosen so that it depends in a continucus and linear way on

u € Du{[y), where 0 < b; <ajforall1 <j<p.

Introduction

The expansions of the distributions and the ultradistributions in gener-
alized exponential series have been investigated by many authors (see
Vladimirov [25] (Ch.lI, § 7}, Edvards [5] (12.5), Meise [14], Franken,
Meise [6], Braun, Meise [2]). Here the elements of kernels of convolution
operators have been expanded in the series of exponential solutions of
the corresponding homogeneous convolution equations, in particular, the
periodic distributions and ultradistributions. All these representations
have the uniqueness property, i.e. any distribution or ultradistribution
can be expanded in a unique way. This paper concerns the systems of
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generalized exponents (ex , }nene in the spaces of distributions or ul-

)
tradistributions on the p-dimensional parallelepiped [1, := ] [~g;, a;],
j=1
where p € N and a; > 0 for any 1 < 7 < p, that admit a nontrivial
expansion of zero. First fundamental results for such systems of expo-
nentials (in the spaces of analytic functions in convex domains in C)

were obtained by Leont’ev (see [13]).

In presented paper we solve the following problem. Let D,(I1.);
be the space of the ultradistributions of Beurling type or the distrib-
utions on the parallelepiped TI, with the strong topology. Let Aln) 2=

(/\g))?:l, n € NP, be a sequence of the exponents where ()\ii))meN for
any 1 < j < p are all zeros of an entire (in C) function L; and any
zero of L; is simple. In part one of the paper we show necessary and
sufficient conditions that any w-ultradifferentiable on [1, function can
be expanded in a generalized Fourier series in the system (e,\(n))neNp

absolutely convergent in D, ([1,)3. These conditions are established in

traditional terms of lower bounds of |L;| and |L;(/\£,{))| forall 1 <j<p.
We show too that if these conditions are fulfilled then any u € D, (I1.)}
can be expanded in an absolutely convergent series in (eaqn )nene. In the
terminology of Korobeinik [10] this means that the systen (ex(,) Jnenr
is an absolutely representing system (ARS) in D.(N.)5. Moreover we
show that this system (e,\(n))nENp is an ARS in an ultradistribution or

distribution space D, (K)} for any compact set K C Il,.

In part two we study when a sequence of the cocfficients (¢q)neme in

an expansions u = }_ cz€y,, can be chosen so that it depends in
neN?

a continuous and linear way on u € D (I1); where 0 < b; < a; for all

1 < 7 < p. In other words, we solve a problem when a corresponding

representation operator R : ¢ — 3 cney,, has a continuous lincar
nely
right inverse. In addition for an entire function @ in C* with Q(z,z) =

)
[T L;(2;) for all z € € we introduce an interpolating functional Qg :
j=1

C?? x D, (M), — Csuch that for any z, iz € C? the functional Qg (z, . )
is continuous and linear on D, (I1,)5. [f a continuous linear right inverse
for the representation operator exists we show that one of them is the



Generalized Fourler expansions for distributions. ..

aoperator

P
et | (=)0 (M) A w)/ [T £5008)
=1 neNP

We note that a part of the the results of this paper which are related
to the case of the distribution space were annonced in [21].
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1 GGeneralized Fourier series for ultradifferen-
tiable functions in a space of ultradistribu-
tions

1.1 Definition. A continuous increasing function w : [0, 400} —
(0, +o0) is called a weight function if it satisfies the following conditions:

(o) w(2t) = Ow(t)) ast = Foc
TLdt < 00
1

(v) logt = o(w(t)) as t = +o0
(6) p = wocexp s convex on R.

We denote by @™ the Young conjugate of o, i.e. @™ (2) := sup{zy—
y20
()} forall z > 0.
Let w be a weight function. For a compact set & C R? we define a
space

ELR) = {f € C=(K)|

bul) S“p If ‘ (.1 ")\p —I“y 1 m < oo} r()[‘ H.“ ] e N
(HEF\IO. .EEIL'
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endowed with the natural topology of a Fréchet space.
For an open set Q C RP let

£l (S2) == Kpécg"sz(K).

For a set K C RP the elements of £,(K) are called w-ultradifferentiable
functions of Beurling type on K.
For a compact set K C R? we put

D (K) = {f € £&,(R?) |supp(f) C K}

and endow D, (K) with the topology induced by &, (R?).
For an open set ) C R? we define

D,(Q) := hggn D, (K).

For w(t) = log®t and a compact or open set K C R? let
D, (K) = D(K) := {f € C*(RP)|supp(f) is compact in K}

and

E.(K) = C™(K).

The spaces D(K) and C*(K) will be equipped with the natural
topologies.

By Du(K)j (resp. £u,(K)j5) we denote the dual space of D, (K)
{resp. £,(f)) endowed with its strong topology.

If wis a weight function, the elements of D, (K) are called w-
ultradistributions of Beurling type on K.

For a convex compact set K C RP let Hy denote its support lunction,
ie.

[{]\(y) =s8sup < L, ¥y >, YE Rp:
e

»
where < A,z >:= 37 A;z; forall Az e CP.
j=1

For some »,¢ € R? we write r > q if r; > ¢; forall 1 < j < p and
r>qifr;>qiforalll <j7<p
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p
For any r € RP such that = > 0 we put I, := [[[-r;,r;] and
i=1

r
H, := Hp,. Note that H,(y)= Y r;ly;| forall y € R?. Hereafter,
i=1

2] =< 2,2 >'/2, w(2) = w(lz]), Imz:= (Imz;)’_, forall z€ CP.

For any r > 0 and ¢ € £,(I1,) its Fourier-Laplace transform ¢ is
defined as
() == plexp(—i< A, >)), A€ C.

We call the following elements ey € D,(I1,)’ the generalized expo-
nentials:

ex(f) = f()), fe D,(L,), xe C.

We define for all » > 0 the following spaces of entire functions:
Aun(rp) = {f € A(C°}|

WAl = sup |£(z}] exp(—H(Im z) + nw(2)) < oo}, n € N;

Au(r,p) = proj A, a(r,p), Au(p) :=ind A,(r, p);
n r>0

Bum(r,p):={f € A(C}|
gm(f) = SEU([; |f(z) exp(— H,(Im z) — mw(z)) < oo}, m € N;

Bw(‘f', P) = }]?3 Bw.m(r: P)

By Paley-Wiener-Schwartz theorem for ultradistributions and dis-
tributions (Braun, Meise, Taylor [3} (3.5 Proposition), Meise, Taylor
[17] (3.6 Proposition) and Hormander [8] (Theorem 7.3.1)) the following
lolds

1.2 Proposition. Let w be e weight function or w(t) = log*t. The
Fourier-Laplace transform F : ¢ @ is an isomorphism of D (I1;)
onto Ay(r,p), of E,(I1); onto B,{(r,p) for all r > 0 and of D, (R?)
onto A,(p).

1.3 Definition. As in Meise, Taylor [17] we call a weight function w a
strong weight function if in addition the following holds
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(£) there are 1 < Cy < C such that w(Ct) < Cw(t) for large ¢.

Note that w is a strong weight function if and only if the (equivalent)
conditions of 1.3 Proposition of [17] are fulfilled.

1.4 Convention. TFor the sequel, let w be a strong weight function
or w(t) := log*t. We fix @ € R? such that @ > 0 and put E{e,p) :=
D, (.} Forany | <j<plet L; € B,{(qj,1). (A&J))nEN denotes the
set of all zeros of L; and any zero of L, is sitple.

We write

My = AL L(2) = T L), £ (wy) = H L (A,

p
(z—p)! = H (z; —p¢5) forall n € NP and z, ;0 € CP.
=1

By 1.2 for any n € NP there exists a unique functional ¢, € £,(I1,)’
such that

Enlz)(z - ,\(n])lll'(z\(n)) = L(z) forall z € CF and n ¢ N

The system (g@.)nenr is biorthogonal to (f-',\(”))nENPr i.e. g,l(c‘\(kl) =
éng for all n,k € NP, We call for any v € £,(I1,) the series
2 wn(v} ey, the generalized Fourier series of v.

S nelir

1.5 Remark. Note that the set of the functions Liny = L/(- = A,
n € NP, is bounded in B,(a,p), ie. there is s € N such that

sup ¢s(Lin)) < 0o,
nelNr

We put forany r > Oand m e N

el = sup |w(F~'(N| we D (Y,
1/lm<t

and

(l';u(f) -= Ssup |f_l(g)(f)! fe é:»(“:)

qm(g)ﬁl

If we identify the dual space of A, (r.p) with D, {I(,)" by means of the
bilinear form < - >, then < fiex >= f(A) forall A € C and f €
Ay(r. p). Therefore for any A € CP and in € N

Healln, < exp(He(ImA) = mw(A)).



o
o
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To accurately desribe the space of the sequences of coefficients of all se-
ries in the system (e, Jnenr that are absolutely convergent in D, (11.)
lower estimates of [[enl|s, are necessary.

1.6 Definition. A weight function we call a {DN)-weight function if for
it the (equivalent) conditions of 3.4 Theorein [16] are fulfilled.

By Meise, Taylor [16] (3.1 Proposition) w is a (DN)-weight function
if and only if
for all € > 1 there are Ky > 0 and 0 < é < | such that

wH (CR)W™(OR) < (w™'(R))? for all R> Ry. (1

1.7 Examples. The functions w in (a)-(b) below are strong weight
function and {(DN)-weight functions.

(a) w(t) :==t*(log(l +t)}° where0 < a<1and o > 0.
() w(t) = exp(a(log(l + 1)) (log(1 +t))* where o, 3 > 0 and ¢ > 0.

1.8 Lemma. () For any r > 0 there are the functions uy and vy, A€
CP, which are plurisubharmonic on CP, such that u (A} > 0, uy(A) >0
and for any k € N there are m € N and C > 0 with

urn(z) < Hy(Imz) — H.(im A) — kw{z) + mw(A) +C
and

va(z) € Ho(Imz) ~ Ho(Im A) 4+ mw(z) — kw(A) + C
Jor all A,z e CP,

{11} The following assertions are equivalent:

(1) There arc the functions uy, A € CP, which are plurisubharmonic on
C?, such that ux(A) > 0 and for any k € N there are m € N and o
constant C with

ur(z) < mw(z) — kw(X)+ C for all A,z e CP.

(it} w is a (DN)-weight funection.

Proof. The statement (1) holds by Langeabruch {12] (4.10 Lemma: see
its proof too).
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(11): (¢) = (i1): By Langenbruch [12] (3.1 Theorem b)) from (7} it
follows that

there is -y > 0 such that for any C > 1 and forany n € N
there is /{n + 1) € N with

(W™ (nR/(2 (n + 1)P"w™ (CR) < (W (R)F - (2)

for large R.

For any C' > 1 we shall take n € N such that Cy/n < 1, choose
I{n+ 1) > n according (2} and put é := n/(27/(n+ 1)). We have by (2)
that for large R

W ER) _ [w'GRN\“" W Y(R)

w(R) “\w'(R)) “wl(CR)

Hence (1} holds and w is a (DN)-weight function.
(17} = (): We note that by Meise, Taylor [16] (3.1 Proposition) (i)
is equvalent to

For any d > 0 and any C > 1 there exists Ky and 0 < § < |
such that for all R > Rg the following holds

wHCR)(w ™' (6R))* < (W' (R)'FY. (3)
By Langenbruch [12] (3.1 Theorem a}} (z} follows from

there are € > 1 and v > 0 such that forany n € N
there is /(n) € N such that for large R

(w‘I(nRU]n“)cﬂn < w(R)

w1 (R) o (CR)’ )

For any n € N and for d := 2/n, C := 2 we choose 0 < & < 1 and Ry
according (3) and f{n) € N such that n/I{n) < 4. Then by (3) for all
R > Ry

Wl RN fw GRS W (R
( 5( ) S STCRY

wU(R) ) w(R)
Hence (4) (with ¥ = 1) and (%) hold.
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1.8 Corollary. For any r > 0 there are functions fy, A € CP, which are
entire on CP, such that fi(A) = 1 and for any k € N there are m € N
and C > 0 with

1fa(2)| € Cexp(H,.(Im z)— H,(Im ) = kw(z)+mw(A)) for all A,z C.

Proof. This assertion follows from 1.8 Lemma and Hormander [9] (4.4.2
Theorem).

1.10 Corollary. Foranyr >0 and k € N there are me N and ¢ > 0
such that for any A € C7 the following holds

cexp(H.(Im A) — mw(A)) < {leallr € exp(H,(Im A) — kw(A)).

Proof. The upper estimate for ||e,||; follows from the definition of ||-||}.

To prove a lower estimate, we take by 1.9 the functions fy € A, (r, p},
A € C?, with fi(A) = 1 such that for all £ € N there are m € N und
C < oo with

[fa(2)] £ Cexp(H,(Im z) — H,(Im A} - kw(z) + mw(A)) for all A,z € C°.
For the functions gy := C~Vexp(H,(Im A} — mw(A)) fn we have
< gn,exn >=C lexp(H,(Im A) — mw(A)) and |[gallx < 1.
Consequently for ¢ := C~! and for all A € C7
leally > cexp(H,(1m ) = mw(2).

1.11 Corollary. For any k € N there are m € N and B < oo such that
for any A, h € CP with || < p the inequality |lexqn||y, < Blleal|} holds.

1.12 Sequence spaces. Representation operator. Now we intro-
duce for all r € R? such that r > 0 the spaces of sequences corresponding
to the system (ex, Jnens:

Kp(r) = {c = (ca)nenr C C|

lelm = z lea] exp(Ho(Im Agn)) = muw(A(n))) < 00}, m € N,
neNpP
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K(r):=ind Kn(r);

m—
Am(r) = {c = (cn)newr C C|
|Z|n1 := sup |e,] exp(—H,(Im Am) + mw(Any)) < oo} m € N;

nele
Ar) = projAn(r).
=T

The space A(r} can be identified with the dual to K(r) space by the

bilinear form < e, d>:= 3 epdy, ¢ € K(r), d€ A(r).
neNe
it follows from 1.10 Corollary that a series Cn€ipn s where ¢, €
neNP
C for all n € NP, is absolutely convergent in D, ([1,); if and only if

(Cn)HENP = [{(T‘).
As representation operator R we define by R(c) := 3 Crl ()
nelNe
¢ € K(r). It maps continuously and linearly K(r) into D, (11, )5 By

Korobeinik [10] we call (€x(n Jnenr an absolutely representing system
(ARS) in D (T1.)5 if R : K(ri — D, (I, )} is surjective.

In the first section we show that the system (9,\[n))nENP is an ARS in
E(a,p) under the natural {traditional) conditions for the functions L;
(as in Leont’ev [13], Korobeinik [10]).

At first we characterize those functions L; as in 1.4 for which the
generalized Fourier series of v converges absolutely in 2(«, p) to v for all
v € £,(11,). This question originates from Leont’ev’s study [13] for the
functions analytic on a convex domain in C.

du
We put Dj(u):= —, u€ E{a,p), 1 <j<p.
3Ij
1.13 Lemma. If for some A € C? and some v € E(a,p) the equality

D;(v) = —idjv holds for all 1 < j < p, then there exists yp € C such
that v = pey.

Proof. We give a brief proof of the well known fact. Since Dj(v)+idv =
0 forall 1 € j < p, applying the Fourier-Laplace transform, we obtain,
that < (z; — A;) f(2),v. >=0for all f € A {a.p)and 1 < j < p. If
g€ Ay (a,p)and < g,ex>=0,1e. g(A) =0, for any 1 < j < p there is

»
g; € A,(a, p) such that g(z) = 3 (z; — Aj)g;(z) for all z € C'. Then
=
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)
< g,v >= 3, < (z; — A;)gj(2),v. >= 0. Consequently there exists
1=1
j+ € C with v = pej. )
1.14 Lemma. If M C CP is an uniqueness set for A,(a,p) then M is
an uniqueness set for B, (r,p) for any 0 <r < a.

Proof. Let f be a function in B,(r,p) such that f = 0 on M. We
choose zg € M and a function g € A,{a — r,p} with g(z) # 0. Since
fg € A,(a,p) and fg = 0 on M, we obtain that fg = 0 on C? and
consequently f = 0 on CP.

We note that D, (I1.);; for any 7 > 0 is a regular (LB)-spase. Hence
by [18] (Theorem 5) a series TGZNP u, converges.absolutely in D, (I, )5 if
and only if there exists m € N with 3 |[un][Z, < o0.

neENP
1.15 Theorem. Let L;, 1 < j < p, ¢q,n € NP, andw as in 1.4. The
Jollowing assertions are equivelent:

(i) For any v € E,(I1,} the series ngr:qpcpn(v) €x, converges absolutely
in E{a,p) to v.

.. . L{A)
(i7) For any A € CP the series
& O A"

€\ny COTVETgES
absolutely in E{a,p) to ey.
(iii) For any 1 < j < p the series (L}(/\,(,,{)))'l e\ converges ab-

meN
solutely in E{aj, 1) to 0.

. . . L;(z)
(iv) For any 1 < j < p and z € C the series Y 2 —€ ()
men Ly Nz - A

converges absolutely in E(a;, 1) toe,.
(v} Forany 1< j<p

1) there exists an increasing sequence R, > 0, s € N, such that lim R, =
800

+oo and there is ¢ > 0 with
1L;(2)] > ¢~ 'exp(a;|lm z| — cw(z))

for all s € N and = € C satisfving |z| = R, and
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2) |L'(/\£,{))[ > ¢ texp(a,|lm A,(,f;)| - cw(/\g))) for allm e N.

(vi) For all f € Ay(a,p) and A € CP the Lagrange’s interpolation for-
mula holds:

LA
10 = 3 1000 g

neNP

where the series converges absolutely (in C).

Proof. (i) = (i¢): This holds since by 1.4 for all A € C? and n € NP
wnler) = Bn(A) = LAY/(L' M) (A = A ).

(12) = (did): We fix A € CP with A; # AD for all m € N and

o L{})
1<7<p Y (”) € nEZNP L'(/\(n))('A_" A(n))
converges absolutely in F{a,p). This implies that for all f; € A,{a;,1)

[/ = <1‘[ fi(z), (e,\)z> =
=1 =1

T€1,, Where the series

ey | PN
! _ ’\(n))l 3 iy
i Li(A; ;
(> gopegon)

i=1 \meN L;(Ag))(’\.i =

We fix 1 < k& < p and obtain by (ii)

0 =iAgex+ Dilen) =

. Li(A;) - Li(A;) :
1 E o - 6.\(" 1 ([))
nene L (An)) j=]l.:;1¢k LS-()\SSJ )(A; - AE})) }

where the series converges absolutely in E(a, p). Choose g; € A,(a;j, 1)
for any 1 < j < p with j # k such that g;(X;) # 0. We have by (6) for
all f € Au(ax. 1)

0= (Z Li(Ar) f()\’(ﬁ))) ﬁ (Z L) 9,‘(*55)))'
meN Lk(’\m]) j=1,j#k \meN L}('\r(ﬁ’))('\j - )\Si))
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From the last equality by (5) it follows that for all f € Au(ax, 1)

_ Z Lk()\k) f )\(k)) < Z ( k) >

k k
meN 1,08 men Ly L% ))

Since Li(Ax) # 0, we obtain 0= 3 (Lf,c(/\g,’f)))"le\(k, where the series
meEN o
converges absolutely in E(ag, 1).

(iii) = (i): We use the idea of the proof of {20] (Thm 1, 1} = 3}).
By (#ii) and 1.10 there is k € N such that

A= Z 1L ]”e,\(“)”k < 2. ()

neNP

By 1.5 the set {L/(- — Am))! = BnL/(A@n)) |n € NP} is bounded in
B, (a, p). Consequently there are s € N and C; > 0 with

C,
len(v)l < g5 (v)gs(@n) < mqs( v)

for all v € £,(11,) and n € NP. Hence by (7) 3 |wn(v)lllexllk £
neNP
C,Aqz(v) for all v € £,(I1.) and a continuous linear operator

Z‘)Dn EA(),UEE(H)
nelNe?

from £,(I1;) into E(a,p) is defined.
We prove that T : £,([1y) = E(a,p) is the embedding map. Let

vy :=T(ex), A € C. From vy = Y @n(A)ey, it follows that for any
neNy

P
(Di(va) + idevr)e (H fj(ﬂ«‘j)) =

j=1

. Lk(/\k) (8 ) . ( Li(As) () ) —
1 —ECEL i (AR (Y ) =0
(S asgren) 1L (% e

for all A € € and f; € D,([—a;,a;]). Since by Braun, Meise, Taylor
[3](8.1 Theorem), Meyer [22] (if w is a weight function) and (7] (Ch.II,

L<k<p
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§ 3, Ex.4) (if w(t) = log*t) the set of all functions IEI fi(z;), where

i=t
fi € Du(l-aj,a;]) for any 1 < j < p, is total in D,{I,), we have
Di(vy) + idguy =0 forall A € C” and 1 € k < p. Hence by 1.13
Lemma for any A € € there is h(}A) € C with vy = A{A)ey. By the
definition of T" we have k(X)) = 1 for all n € NP. Let 7” be an adjoint
to T" operator from A, (a, p) into B, (a,p). Then T" is the multiplication
operator with the function h,ie. T'(f) = hf forall f € A,(a,p). We
prove that A € B,(0,p). Since T' : A,(a,p) — B.(a,p) is continuous,
by Grothendieck-Theorem there exists { € N such that T’ is continuous
from A, (e, p) to B, (a,p). Consequently for any k € N thereis B > 0
such that for all f € A,(a, p)

sup [1(2)(2)] exp(~ Ha(Im 2) = o(2)) <
B sup [ f(z)l exp(~Hq(Im z) + kuw(2)). (8)
zeCr

From (8) with f := fy, where f) are the functions from 1.9 Corollary,
it follows that there are m € N and C > 0 with |A(A)| < BC exp({m +
(}e(A)) for all A € €. Since Af € By(a,p) for all f € A,(a,p), the
function h is entire in C7. Hence k € B, (0, p).

Since h(A)ey = g{%p(pn()\)m‘ , for all A € €, where the series

converges absolutely in E(a, p), we have k(A = Y @a(A (Amy)
nENP

for all f € A, (a,p). Therefore for any f € A, (a p) with f()\(n)) =0

for all n € NP it follows hf = 0 and because f = 0. Consequently

{A(ny|m € NP} is the uniqueness set for A,(a,p). By 1.14 Lemma it is

the uniqueness set for B, (0, p), too. Hence A = 1 and T'is the embedding

map of £,(I1,) into E(a, p).

(#i¢) => (iv): This holds by (iti) = (i) for p = 1.

{tv} => (i12): This holds by (i) = (ii1) for p = 1.

(#12) = (v): The proof of the conditions on L; as in {v) goes from
Leont’ev [13] (see Korobeinik [10] (p. 114,115) and [20], Note, p. 66, too).
We fix 1 < § < p. Since the series %N(L;-(,\L{)))—m‘\sg) converges ab-

m
solutely to 0 in E'(a], ) and the operator Dy is continnous in E(aj, L),

the series > (Li(A; A )) ID¥(e \(J)) converges absolutely to 0in £{q;, 1)
melN
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too. Hence there is & € N satisfying

1 .
K=y ———(1+ MDD,k < oo (9)
,% 1L (A8 A
Lj(z)

By (iii) = (iv) we have e, = , .
i) = mZe:N LASTE=—E)
We put B, :={z € Cl|z - ,\S,{)| < (1+ ]/\Sﬁ,)l)‘z} for any m € N. By
(9) for all z € C\(UmenBm) the following holds

€0 for any z € C.
Am

flellk < K1L;(2)I- (10)

Since L; is an entire function of exponential type, we have 3 (1 +
meN

|)\$,{}|)_2 < o0. Hence there ts an increasing sequence ft; > 0 such that
{z € C{lz| = Rs} N (UmenBm) = @ and consequently (10) holds for all
s € Nand z € C with |z]| = R,. From here by 1.10 we obtain (v}, 1).
From (9) and 1.10 it follows (v}, 2}.

(v) = (#31): From (v), 2) it follows that ZN(Lg(AS"J")))_Ie.\H) con-
verges absolutely in E(a;, 1)} forall 1 <5 < p.EBy (v), 1} it converges

to 0 (see the proof of Theorem 5 in [20]).
Since the Fréchet space D,{I1,} is nuclear, by Pietsch [24] (4.4.2
Proposition) {77} is equivalent to (vi}.

From the proof of (#4) = (v} in 1.15 Theorem it follows

1.16 Remark. Every of the assertions (i) — (vi) of 1.15 Theorem is
requivalent to

(v} Forany 1 <j<p

1) there are a sequence of circles By 1= {z € Cl]z = ps| < 5} and «
constant ¢ such that 3 t, < 0o and

seN
|L;(2)] > ¢~ exp{H,(Iin z) - cw(z)) for all z € C\ (UsenBs)

and

2) 1!4'(/\5,{)]] > ¢ lexp(a;|Im /\,(-;P| - Cw()\gi})) for all m e N.

From Korobeinik [10] {(Theorem 7) we recall
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1.17 Lemma. For any sequence (i hiene n CF with |pg| — oo the
system (e#m);Emp isan ARS in E(a,p) f and only if for any k € N there
are m € N and a constant C such that

I71le < CfuNIiU(ﬂ(!))lEXP(“Ha(lmﬂ(n)'*'mw(#(t))) forall fe A,(a,p).
€

1.18 Theorem. If the assumptions of 1.15 Theorem are fullfilled and
one of ils statements (i) — (vi) holds, then (e, )nenr is an ARS in

Ela, p).
Proof. To apply 1.17 Lemma, we use a method of Napalkov [23]. We
fix £ € N. By 1.5 Remark and 1.15 Theorem, (v) there are m; € N and
a constant C; such that forall A € CP and n € NP

|L(A)]

=2 < Cyexp(Ho(Im A) + myw(A))

and
IL' (A 2 C7 " exp(Ha(Im M) = miw(Agy))-

Note that there exists K € N such that

e 14

wQ ) S KO wlt))+ 1) for all ty,...,t; > 0.

=1 =t

Since w is a subharmonic function of finite order on C, by Yulmukhatne-
tov [26] (Theorem 5) there are a function go € A(C), a sequence of
the circles B, := {z € C||z — p,] < ¢;} and a constant C, satisfying

> ts <oo and
sEN

| K (my +k+1)w(z) —log|ga(2)]| < Calog(l+]z]) for all z € C\(U,enBs).
(For w(t) :=logTt we put go{2) := zX(mi+:+1) 4 follows C; = 0.) Let

B:={XA€C||Aj —pus| > t; for all s N and 1 < 57 < p}.

For a function g(A) :=
AEDB

go(A;) there is a constant Cy such that for all

P
=1

J



Generalized Fourier expansions for distributions. .. 365

(L4 |AD " exp((ms + k + Dw(A)) < [g(M)] <
(14 | M) exp(K p(mi + k + Hw(X)).

(For w(t) = log*t we have C3 = 0.) In a standart way (with the help of
the maximum principle} we deduce from the last inequalities that there
are a constant Cy and ms € N such that |g(A)| < Ciexp(mow(A)) for
all A € €. By 1.15 (vi) for any h € A, {e,p)

L(})
(X)) for all A e C?. (11)
n%;p ) I (A= Am))!
Since fg € Au{a,p) for all f € A,(a,p}, by (11) we have forall A € B
L({A)
fOm)9(Am
n%;,, ()90 ) A LA — Aw))!
and
sup [ f(A)] exp(=H,(Im A) + kw(A)) <
reB
Clzc'i E |f(A(n))l exp(mgw[,\(n)) + mlw(’\(n)) - Ha(]m ’\(n)))
neNP
sup exp(Calog(1 + X)) — ()
eCr
< s Su}i[) |f()‘(n))| exp(—Ha(Im A(n)) -+ MQw(/\(n))),
neNpP
where

Cs := CICyexp (sup (Cilog(1+ |A]} — w(A))) Y. exp(—2w(A)) <
relr ngNP

oo and mg:i=my 4+ mg+ 2.

By the maximum principle there are C' > Cs and m > mg such that for
all f € A, (e, p) we have

”f"k < c S:rgp If(/\(n))l exp(—Ha([m ’\(n)) + mw(’\(n)))-

By 1.17 Lemma (ey , Jnenr is an ARS in E(a, p).
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Because statement (») of 1.15 Theorem is valid for the functions
L;(z) :=sin(ajz), 1 < 7 < p, the following corollary holds, where n/a :=
(nj/a;)f., for all n € 27, !

1.19 Corollary. The system (erna)nezr is an ARS in E(a,p). Every
function v € £,(Il,) can then be erpanded z'nto a Fourier series ab-

solutely convergent in Ea,p): v= Y ¢.(v Jennta, Where the system
nEZLP

{@n)nezr C EL(I1,) is such that

Gu(2)(z—-n)' = |"| H a, ’sin(a;z;) forall z € CP and n € Z°.

1.20 Corollary. Let K be a compact set in RP. For all a > 0 such that
K C U, and for all functions L;, 1 < j < p, salisfying the statement (v)
of 1.15 Theorem the system (ex , Jnenr is an ARS in D, (K)j. Every
function v € £,(11,) in addition can then be ezpanded into a generalized

Fourier series absolulely convergent in D, (K)j: v= 3 en{vien
neNP

where the system (@n)nene in E,(M1) as in 1.4.

1.20 Corollary follows from Hahn-Banach theorem, 1.15 Theorem
and 1.18 Theorem.

1.21 Remark. As in [19] we can prove:

"ADDED IN PROOF. The condition {v) of 1.15 Theorem is satisfied for the entire
functions L, of exponential type such that for each 1 € § < p there is a constant K
with

0< inf |Ly(z}exp(—a,[lmz]) < sup [L;(zNexp(—a,]lmz]} < 400
Mim z|> K [lm z{> N

and inf AV — )\S,” > 0, where A££,’ meti 5 the set of all zeros of L, and any zero of
a1 E I}

L, is simple. The functions as above are called the functions of sine type; the class
of such functions (for &, = =) was introduced by B. Ya. Levin. Other examples of the
functions of sine type, besides sin{a,z), may be found in the paper of B. Ya. Levin and
Yu. I Lyubarskii "Interpolation by entire functions of special classes and expansions
in exponential series connected with it”, lzv. Akad. Nauk USSR Ser. Mat. 39
{1975), No 3, 657-702 (Russian); English trans. in "Math. USSR lzv.” 9 (1975). In
particular, the condition (v} of 1.15 Theorem is satisfied for the functions [.,(z) :=
A oxp(ia,..}+ Byexp(—iu;z) + C;, 2 € C, with 4,8, C, € C, 4,8, #0, C? #
44,8, 1 <5< p.
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Let (jury)ken be a scquence in CP such that lit(iyl = oo and the system
X = (e, Jken is an ARS in the space £,(11,) of it endowed with induced
topology from E(a,p). Then X is an ARS in E{q, p) too.

2 A right inverse for a representation operator
and a formula for it

In this part we solve the following problem: Assume that a sequence of
exponents {A(u))nenr as in 1.5 is such that the statements (1) — (v1) of
1.15 Theorem are valid. We fix b € R? with 0 < b < a. By 1.20 Corollary
the system (e,\(n))nem is an ARS in D, (). When does the surjective
representation operator R : K(b) = D, (ITy)}; admit a continuous linear
right inverse (in the sequel, a right inverse})? As in the first section we
put E(b,p) := D.(I1s)5.

Foru € E(b,p)and 1 < j < plet ugul) denote an antiderivatives of
(-1

u as in Bremermann [4] (2.11) such that D;(u; ') = u.

We choose ¢; € Dy ([—b;,b;]} with [ ¢;{t}dt =1 (the function ¢;

exists by Braun, Meise, Taylor [3], 2.6 Corollary). For any f € D (Il;)
and z € RP we put

xy
fj(m) = / (f(xls sy Tty {'! T4y -1y IP)_
-0
[ew)
(1) [ F(@rr oo Zjm 0 T, - T)dY)dE and ol (f) = —u(fy).
The map u uﬁ-_l) is continwous und linear in £2{b, p).

For example |

. -1 — .
—ix (el = en = B 0y g1dy) fOT any A € 7 (12)

i (-1} (-1 =1
For any w € E(b,p) we put ut=1 = { .. (u, )2 :

1‘)
The map u— ul=" is continuous and linear in £(b, p).
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To derive the formulas for a right inverse for the representation op-

erator, we will use the following definition with goes back to Leont’ev
[13].

2.1 Definition. Let @} be an entire function in C? such that for any
i € CF the function Q(-, u) belong to 4,(p). The functional

(21 w) = (ex(ue) V) (F7UQL, 1), 21€C, ue DR,

we call a @-interpolating functional.

2.2 Lemma. Let Q be an entire function in A(C®) such that Q(-, ) €
Au(b,p) for any p € C°.

(1) For all z,t € CF

(=8)7(t = 2)'Qo(z, 2, e0) = Q(t, 2)+

P k
: Z(_l)k Z ( asm(tsm - Zsm)) Q(S(Z,i), 2)1 (13)

k=1 1<s1 <52 <. <5 <p \m=

where s(z,t) € CP and s(z,t); = z; if j = s,y for some 1 < m < k and
s(t,z}ji=t; if j# s, forall 1 <m < k.

(1) For all z,pu € CP the functional Qg(z, p, ) is continuous and linear
on E(b, p).

P
(i) We assume that Q(z,n} = [] Q;(z;, p;) for all z, p € C° where Q;
i=1

are entire functions in C* such that Q;(zj, z;) = Lj(z;) for all z; € C
and for all 1 < j < p and for any k € N there are m € N and o constant
C satisfying

1Q(2, )| < Cexp(Ho(Im 2) + Hyp{Im p2) — kw(z) + mw(p))

for all z,pp € C°. Then for any k € N there are s € N and B < oo such
that

,QQ(’\(nla Afn)> u}| < Bexp(Hq_p(Im )‘(n)) + sw(/\(n)))HuH;

for all v € E(b,p) and n € NP,
Proof. (i) follows from (12}.
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(i5): The map u — e,(ue;)(~!) is continuous and linear in E(b,p).
Since F~U(Q(-, ) € Do (II}), the linear functional v v(F~1(Q(-, #)})
is continuous on E(b,p). Hence §(z,p,-) € E(b, p)'.

(#i1): By (13) for all t € C and n € NP we have
(-)P(t — /\(n))lQQ(z\(n), /\(n), e) = Qlt, )\(n)) and QQ(A(H),A(R), e) =
(=1)PQ(t, Agm))/(t — A(n))'. We fix & € N and choose m for £ by 1.11
Corollary. From the estimates from above for |@Q| and 1.10 it follows
that there are [,s € N and Ci1,Cy < oo such that for all t € CP with
lt; — ,\,(,J)| > 1for all r € Nand 1 < j < p the following holds

12 (A(n)s Anys €] S 1Q(L Ayl £
Chexp(Hp(Imt) + Hap(Im Ay)) — lw(t) + sw(A(n))) <
Coexp(Hu_p(Im Ay} + sw(Any)) lleell;, for all n € NP

By the maximum principle applying to the entire in C? function £
Qg (A(n)» A(n)s €1) thereis C3 < co such that for all t € C? and n € NP

tQQ(A(n)! ’\(n)l er)] <Cs exp(Hq-p(Im ’\(n)) + Sw(’\(n)))”etlli-

We put hy(t) := Qg(Amy, Ag), &) for all £ € €7 and n € NP. From
the estimates from above for |Q] and (13) it follows that h, € A, (b, p).
Since the linear functionals w — Qg (A(n), A(n), #) (by 2.2 (¢7)) and v =<
hn,w > are continuous on E(b,p), for all t € CP we have < hn, e >=
Q0 (M) Mn)» €¢) and the set {e;|¢ € CP} is total in E(b, p), the equality
< bnyu >= Qo {An) A(n), ) holds for all uw € E(b, p) and n € NP. Hence
120 (Anys Ay )| < Hlullzralx for all » € NP and v € E(b,p). By 1.10
Corollary

[hrllx = su({}; he () exp(—Hy(lm¢t) + kw(t)) < sup
te

Caexp(Ha_s(Im Ay} + sw(Ay)) for all n e NP

The proof of the following lemma is based on an idea of S. Momm.

2.3 Lemma. Let a; > b; for some 1 < j < p orw is a (DN)-weight
function (see 1.6). Then there is a function Q; € A(C?) such that
Q;(z,2) = L;(2) and for any k € N there are m € N and a constant C
with

log|Q;(z, t)] < b;Im z{+{a;—b;)Im t]—kw(z)+mw(t}+C for all z,t € C.
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Proof. By 1.8 Lemma there are the subharmonic on C functions Uy
and vy, A € C, such that uy(A) > 0, vA(A) > 0 and for any k € N there
are m € N and a constant €' with

un(z) < b;ilm z| = b;|lm A| — kw(2) 4 mw(A) + C
and
va(t) < (a; = b;)Imt] — (a; — b;)|Im Al + mew(f) — kw(A) + C

forall z,2, A € C. The upper semicontinuous regularization w(z,t) of the

function sup(ux(z)+va{t) +b;{1m A|+(a;~b;)|Im A]) is plurisubharmonic
AeC

on C? and such that w(z, z) > a;|Im z| and for any k € Ntherearem ¢ N

and C < oo with

w(z,t) < bj[lm =]+ (a; — b;)|Imt| — kw(z) + mw(t) +C for all 2,t € C.

By 1.4 there is s € N such that |L;(z}| < sexp(a;|hn z| + sw(z)) and
consequently |L;(z}| < sexp(w(z, z) + sw(z)) forall z € C. From a
modification of 4.4.3 [8] the existence of a function (); follows.

2.4 Lemma. There is no a family of the convex functions fi, £>20, on
[0, +00) such that fi(t) > 0 and for any k € N there are 1 € N and «
constant C' with

fi{z) <C —~ kt+ ma forall t,z > 0.

Proof. We assume that such functions f; exist. We put gi(z) =
limsup fue(na)/n for all {,2 > 0. Then g are the convex functions
n—oo

satisfying g¢(t) > 0 and for any & € N there is m € N such that

gi{z} < =kt + ma forall 2 >0,

Since g1(0}) < —k for all k € N, we have g(0) = —oc and hence a
contradiction.

2.5 Lemma. from (i) follows (ii):
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(2) There is a right inverse for the representation operator R : K(b) —
E(b, ).

(1) For any 1 < s < p there are functions vy, A € C, which are subhar-
monic on C, such that v\(A) > 0 and for any k € N there are m € N
and ¢ constant C with

ua(t) < (as — b} |Imt] — (as — bs)[Im Al + mw(t) — kw(A) + C
for allt, A e C.

Proof. We assume that there is a right inverse for B. Then there is a
continuous linear left inverse & for ' : A, (b,p) = A(b). We put f, =
s(er), where e} := {6mn)mene for all n € NP. Since & : A(b) = AL(b,p)
is continuous, for any £ € N there are m; € N and (| < oo such that
forallne NP and z € CP

(=)l < G exp(Ha(ln 2) = Hy(Im Any) = ko(2) + miw(A)). (14)
We fix 1 < s < pand choose z; € C and g; € D, ([}, b;]) for any

1 €7 < pwith j # s such that L;(z;) # 0 and §;(z;) #£ 0. We put for
any z,, ps € C

To(zs, pbs) ==

(ML) 3 222y = 20 (WG . 019

nelNe s — /\n_.

where [T denotes Ip_[ . By L.5, 1.10, (14} the last scries converges
j=1#s
absolutely in E(bs. 1) for all z;, iy € C. Since & is a continuous linear
feft inverse for R’ : A, (b, p) = A(b), for all g€ A, (b, p) and XA & C the
following holds
g(A) =Y gAm)fa(2). (16)
nele
Hence
€)= Z fn(/\)e_\(", for all A € C7,
neNP
where the series converges absolutely in £(b, p). This implies that in

E(b. p)

0= idex+ Dy(en) =i Y falA) (X = AD)ey,, for all AeCP. (17)
neke

371
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By (15) and (17) we have for all g, € D, ({~b;,b,]} and z,, 45 € C

< Gy ipsTs (Z_,,[.LS) + D (T: (zsa ,u,)) =

i (IVL;(z;)) Z Ly(pts) fn (2) (25 — ALY (ﬁ A(J) )

nclip

By 1.13 for any z, € C there exists a function h,, : C -+ C such that
Ts(zs, pts) = hz, (pts)eu, for all p, € C. (18)

From (15} and(18) it follows that for all z; € C the function &, is entire
in C. By (15), (16) and (18) we have for all g, € D, ([—bs, bs]) and
z, €C

hey (25)9s(2s) = (H Li(z; ) POWAE (H J(,\gi))) -

7=1 neNpP 1=1
Ls(zs) (n Lj (Zj)gj(zj)) gs(zs)-
Consequently, there exists a constant B := I1'L;(2;)g;(z;) # 0 such that

ha,(zs) = BLs(z,) for all z, € C. (19)

From (14), (18) and 1.10 it follows that for any & € N there are m; € N
and a constant C, such that for all z,, u, € C

loglh'zs (J”ﬁ')l < bs“m zsl + (as - bs)llm#sl - kw(zs) + m'?w(nu's) + Cs.

By 1.16 Remark and (19) there is a sequence of the circles By := {z, €

C||zs — »| < ti} with 3 t; < oo and such that there are my € N and
leN
C's < oo with

log|hs, (25)] = loglLs(z5)| + log B > ag|lm z,| — maw(z,) — Cy

for all z; € C\(UienB:). We put tp := Y £ and
leN

P, (ts) == sup loglh,, {1s + w)|, zs,ps € C.
[w]|<tq
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The function FP,, is subharmonic in C and such that there are my € N
and a constant Cy with

P,,(z5) > as|im 24| — maw(z;) — Cy for all z, € C
and for any k& € N there are m € N and a constant ' with
P, (1ts) < bgllm z4| + (@, - be)llm psf = kw(z,) + mw(ps) +C

for all =z, p, € C.
We can take now as vy the functions

ua(t) := Pa(t) — as]Im A| 4+ maw (A} + Cy.

For any weight function o, any ¢ € R? with ¢ > 0 and any function
h € Bs{c,p) we denote by M; the multiplication operator with the
function A, i.e. My(f) = hf. Forall r > 0the operator M} is continuous
and linear from A, (r,p) into Ay (r 4+ ¢,p). Let (D) the adjoint to My
operator from D, (Il;4.)j into Dg(Il,)5. Note that for each z € C7 the
equality A(D)(e,) = h(z)e. holds. :

If ¢ = 0 we say that A(D) is an ultradifferential operator of class o.

2.6 Theorem. (I) Let w(t) = logtt. The represeniation operator R :
K(b} = E(b,p) has a right inverse if and only if b < a.

(IT) Let w be a strong weight function. The representation operator
R : K(b) — E(b,p) has a right inverse if and only if a > b or there is
1 <j<pwitha; =b; and w is a (DN)-weight function.

(I11) If a right inverse for R : K(b) — E(b,p) exists, there exists the
function QQ as in 2.2 (iif) and a map
Qg (A n :’\ n) U
W t) e s,
{n) neNpP
is a right inverse for the representation operator R : K(b) = E(b.p).
(IV) Letp=1. If S: E(b,1) = K(b) is a right inverse for R: K(b) —

E(b. 1), then there 1s an unique function @ as in 2.2 (it} such that

Qo Ay Ay
o (b))
LAAR)) / nen

st += (-
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Proof. NECESSITY IN (f): We assume that there are 1 < 7 < p with
a; = b; and a right inverse S for R : K(b) — £(b,p). By 2.5 Lemma
there are the subharmonic in C functions vy, A € C, such that v (A) > 0
and for any £ € N there are m € N and a constant €' with

ur(z) < mlog™|z| — klog* A+ C for all A,z € C.

The upper semicontinuous regularization ; () of sup{v.(e'?;:) |8 € R}
is radial subharmonic function in C such that v¢(t) > 0 and for any
k € N there are m € N and a constant C' with

#,(z) < miogtz — klog™t + C for all t,z > 0.

Since the functions y — 0;(e¥) are convex on R, this contradicts 2.4
Lemma.

NECEsSITY iN ({7): It follows from 2.4 Lemma and 1.8 Lemma.

(I11) (AND SUFFICIENCY IN (/) aAND ([])) : If a right inverse for
R exists, by the necessity in (1) (resp. (/1)) e > b il w(t) = logtt
(resp. a > b or thereis 1 < j < p with a¢; = b; and w is a {DN)-
function). By 2.3 Lemma there exists a function @ as in 2.2 (iii). By
2.2 (iii) S is a continuous linear map of E(b, p} into K{b). We prove that
RoS = idE(b,p)-

By 2.2 (i) and 1.15 (¢i) we have for any z € C?

N Ro S (e — Q(z, Apmy) L
L(z)(f0 S)(e:) gpu)p(,\_y@() oy =

(Z L ’\(n) ,\( )) e’\(")) :Q(.‘-:, 3)(5:: = L(S)C:.

{From the estimates from above for [@Q] it follows that for each z € CP the
operator Q(z, D) is continuous from E(a, p) into E(b, p).) Consequently
(RoS)(c;) =¢. forall z € C. Since the set {e, ]z € C'} is total in
(b, p), this implies that (R o 8)(u} = u for any v & E{b, p).

(VY. Let S : £2(b, 1) - IK(b) be a right inverse for 2. Then its
adjoint operator 87 : A{b) = A, (b, 1) is a continuous linear left inverse
for B+ Au,(b, 1) = A(h). As in the proof of 2.5 Lemna we put ¢} :=

7
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(8in)ien; fu := S'(er)}, n € N, and choose a function k; € A{C) such
that

he(jt)e, = E p _(k) fa(2)(z = Amylen,, for all z,pe €. (20}

Let Q(z, 1) := h.{je), z,;¢ € C. From (20) it follows that Q € A(C?).
By the proof of 2.5 Lemma we get Q(z,z) = L{z) for all z € C. From

(20), 1.10 we have the estimates from above for |Q] as in 2.2 (iii).
By (20) the following holds

Q(Z, ’\(n))
LA}z = Ay}

To show that 5 = (—iQg(A(n); A(n)s )/ L' (A(n)))nen we note at first that
by (21) for all z € C and ¢ € A(b)

' Y Q( A(")) ’ _
S'(e)(2) = _ e "G L Oy =<8 (c),e: >=< ¢, S(e) >

neM

fn(z) =

for all z€ C and n € N. (21)

Z, A
Q= Aw)) ) . By (13} we have

Hence S{e.) = (
(¢:) (z = A L'(Ay)

Qo (Amy: Apn): 5
S(e) = [ -t Ay e:) for all z € C.
L’(’\(n)) neN

(_ QQ(’\(n):/\(n)a )\
\ LTxGy) 7 neN
tinuous from E(b,1) into K(b). Hence for all v € E(b,1) S{u) =

(_?- QQ(’\(n)r /\(n)s u)ﬁ
Ll(’\(n)) neN

To prove the uniqueness of (J, we assume that the functions Q. Q2
satisly of the conditions of 2.2 (iii) and for all v € [F(,1) and for all
n €N QQ‘ (A(n)! A(n), TL)/L’(/\(H)} = QQ[ ()\{u), ’\(n)v Tt)/L’(z\(n)). Then
by 2.2 () Lemma Qy(z. Ay} = Qa(z, Agyy) for all z € Cand n € N.

We fix z € €. The estimates from above for |Q]. [Q2f imply that
Qi(z,),Q2(z,-} € Bu(a—>.1). Since by 1.15 Theorem, (vi} (An))ner is

By (//I} the linear operator 1 — is con-

375
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the uniqueness set for A, (e, 1), by 1.14 Lemma (A(n))nen is the unique-
ness set for B,{a — b, 1)) too. Hence Q1(z, 1) = Q2(z,p) for all p e C
and Q; = @, in C2.

We give in conclusion an adding to 8 Theorem in Braun [1].

2.7 Corollary. For any b > 0 and any weight function o with w(t) =
o{c(t)} as t — 4oc there are an ultradifferential operator of class o

h(D) : £,(Ty) = Dy(T)5 such that there is a continuous and linear
operator T : E(b,p) — E,(Ily) with h(D) o T = id s p)-

Proof. We exploit an idea of Korobeinik of the construction of a right
inverse for a convolution operator with the help of a right inverse for a
representation operator. By 1.19 Corollary and 2.6 Theorem there is an
ARS (ex ., )Inene in E(b,p) with A,y € R? for all n € NP and such that
the representation operator R : K(b) — E(b, p) have a right inverse S.
By Braun [1] (Theorem 7) there is a function b € B, (0,p) such that
|h(z)| > exp{o(z)) for all z € RP. The ultradifferential operator h(D)
maps D, (Ilp)}; into D, (Ils); and, consequently, £, (Ty) C Dy (T1,)5 into
D, (1) continuously and linearly. We put

SN (1))
T = 3 gyt € B

By the estimates from above for the norms of ey, in £,(ITy) (see Braun,
Meise, Taylor [3], 7.1) this series converges absolutely in &, (1) for all
v € [(b,p). Hence by Banach-Steinhaus theorem the operator T is
countinuous and linear from E(b, p) into £,(I1;). Moreover we have

h{D)oT(u Z (S(u))ner, = u forall uwe E(b,p).
neNP

We note that if w is a weight function, by Braun, Meise, Taylor [3]
(1.6 Lemma) there exists a weight function ¢ with w(t) = o(co(t}) as
{ =+ +oo. [f w(t) := log™t, for any weight function o by 1.1 (v) we have
w(t) = o(c(t)) as t — +oo.
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