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HIGH RANK ELLIPTIC CURVES OF THE
FORM 2 =23+ Bz

J. AGUIRRE, F. CASTANEDA and J.C. PERAL

Abstract

Seven elliptic curves of the form
v’ =123+ Bz

and having rank at least 8 are presented. To find them we use the
double descent method of Tate. In particular we prove that the
curve with B = —14752493461692 has rank exactly 8.

1 Introduction

Let E be a non-singular elliptic curve over Q. According to the Mordell-
Weil theorem the set I' of Q-rational points of E is a finitely generated
abelian group, the operation of the group being the classically named
“chord and tangent” addition of points.

The structure theorem for abelian groups tells us that

r=Te7,

T being the torsion part and Z" the free part of the group. The number
r is called the rank of the elliptic curve.

The structure of the finite group T is well-known due to a theorem
of Mazur, ([MZ1] and [MZ2]), stating that the only possibilities for T
are

T = Z/n, 1<n<10orn=12,
T Z)2Z/(2k), 1<k<4,

and that all these 15 possibilities occur. On the other hand, the theorem
of Nagel and Lutz gives, in our case, a direct way for finding the points
of finite order with a modest amount of computation.
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The determination of the rank is more difficult: no algorithmic pro-
cedure is known, given a particular curve, for the determination of its
rank or the generators of the group I

As mentioned above, the maximum order that a torsion point can
have is 12. A bound for the size of the rank it is not known. Even though
a generally accepted conjecture states that there are elliptic curves of
arbitrarily large rank, the largest ranks known until now are the Nagao
example, ([N1]), where a curve with rank 21 is exhibited and a curve
with rank 22 found by Fermigier ([F2]).

The following table shows how the largest known rank has increased
in time:

1948  Wiman ([W1]) r>4
1975 Penney, Pomerance ([PP1]) r>7
1977  Grunewald, Zimmert ([GZ1]) r > 8

1977 Brumer, Kramer ([BK1]) r>9
1979 Nakata ([NK1)) r>9
1982 Mestre ([M1]) r>12

Later on, in a series of papers, ((M2] and [M3]), Mestre constructed
curves over Q(t) with Q(t)-rank at least 11 and 12. By specializing, he
gave examples of curves whose rank over Q is at least 15 ([M4]).

The same kind of ideas have been used by other authors to give
examples of curves and families of curves with high rank, both over Q
and Q(t), and of curves whose torsion group is assumed to be one of the
groups allowed by Mazur’s theorem.

For example, for curves with torsion group equal to Z/2, Fermigier
([F1]) has shown a family of curves over Q(t), with a torsion point of
order two and Mordell-Weil group of rank greater than 8, and an example
of a curve with a torsion point of order two whose Mordell-Weil group
over Q has rank 14.

Kihara in a series of articles, ([K1], [K2] and [K3]), has shown an
infinite family of curves over Q with rank at least 14, and other results
where the torsion group has a predetermined shape.

Nagao in [N2] considers a special family of elliptic curves having
torsion group equal to Z/2 and invariant j = 1728, namely, curves of
the form

v’ =23+ Bz, (1)

18 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 1, 17-31



J. AGUIRRE, F. CASTANEDA AND J.C. PERAL HIGH RANK ELLIPTIC CURVES . ..

He constructs a polynomial P(t) € Q(¢) for which the elliptic curve
y? = 23 + P(t) z has four independent points over Q(t). By specializing
t to rational numbers he finds infinitely many elliptic curves over Q of
the form (1) and whose rank is at least 4. Moreover he finds two curves
of the same form whose rank over Q is at least 6.

The purpose of this note is to present seven elliptic curves over Q of
the form (1) with rank at least 8. As in Nagao’s article, our curves have
torsion group equal to Z/2 (and j = 1728), but our method is different
and more elementary.

2 The method

In what follows we restrict our attention to elliptic curves of the form
v’ =24+ A2z’ + Bz with A2 —4B #0, (2)

and later on we will construct our examples with A = 0, showing in
more detail the computations for one of the curves.

Before giving the examples we have found and explaining how we
searched for the values of B producing these particular curves, we outline
the procedure we have followed to get estimates for the rank. As general
references for these and many other related topics, see [H1], [S1] and [S2].

We use the two isogenies method together with some considerations
for a guided search for “good” values of B. In particular, we use several
congruence relations related to the Birch and Swinnerton-Dyer conjec-
ture, and we restrict B to a certain bi-parametric sequence where a
minimum set of solutions for a crucial diophantine equation appearing
in the process is guaranteed.

First we sketch these ideas and then we present the main results of
our search.

Associated with the elliptic curve (2) is the curve

y? =123 —2A42% + (A — 4 B)z. (3)

We denote by I' and T the group of rational points in the curve and the
associated curve respectively.

From the formula for doubling a point, if (z,y) = 2P with P € T,
then z € Q*2, that is, z is the square of a rational number. The same is
true for T.
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The mapping a: ' — Q*/Q*? defined by

z- Q2 ifz#0,
a((m,y)) = B- Q*2 if (.’L‘, y) = (0)0)7
l- Q*2 if ((L‘, y) =0,

where O is the point at infinity, is a group homomorphism, as well as
the analog application & defined on T *

The following theorems of Tate (see [T1] or [ST1]) are the principal
theoretical tool used to estimate the rank in the case, as is ours, of curves
with a torsion point of order two.

Theorem 1. (Tate). The rank, r, of the curve y?> = 2° + Az? + Bz
satisfies the identity B
j(T)] - [&(D)

4 k)

where | - | stands for the cardinality of the corresponding set.

2" =

Thus, estimating the rank is equivalent to calculating the cardinal
of the images of a and &. The next theorem gives a description of these
images in terms of the solutions of certain diophantine equations, called
the homogeneous spaces associated with the curve.

For each divisor d of B consider the equation"

U‘*-d+V‘ﬂ—§-+U2-V2-A=N2 (*)q

in the unknowns (U, V, N), with U -V # 0, and the primality conditions
ged(U,V) = 1, ged(U,N) = 1, ged(U,B/d) = 1, ged(V,N) = 1 and
ged(V, d) = 1. Observe that for each integral solution (U, V, N) of (x)4,
a rational point of the curve is given by the formula

dU? (B/d)-UV)

(z,y) = ( RN

Theorem 2. (Tate). The image of a is given by
o) = {Q%, BQ**} U{dQ*?: d|B and (+)q has a solution.}  (4)
The analog statement is valid for &(T').
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The idea behind the proof of these theorems is to use the Mordell-
Weil theorem and the fact that the operation of doubling points is given
by a rational function of degree four that can be factorized as the com-
position of two rational functions ¢ and ¢ (called isogenies), ¢:I' — r
and ¥:T — T, each of degree two, with ¢(/(P)) = 2 P and each being
a homomorphism of groups. Next, it is proved that the kernels of ¢ and
1 are the images of the applications o and @ respectively, and finally an
argument about the order of these groups gives the theorems.

In that way the problem of calculating the rank is reduced to deciding
whether or not the equations (*)4, one for each divisor of B, and the
analog equations for the divisors of b = A% — 4 B, have a solution.

The main difficulty with this approach is that no method is known
for deciding if such an equation has a solution. Even worse, there are
equations of this kind without solution, but with solution modulo m for
all the integers m. Thus, in some cases, they can’t be discarded by con-
gruence arguments and more involved ideas are needed to decide about
the existence of solutions. In other words, the local-global principle of
Hasse, valid for other kind of diophantine equations such as the ones
related to the conics, is not valid in the present context.

Another theoretical tool used as a guide in the process of our search
for the values of B, is the conjecture of Birch and Swinnerton-Dyer,
which links the rank of an elliptic curve with the order of the zero at
s = 1 of the L-function attached to that curve, predicting that both
numbers are the same. If the Birch and Swinnerton-Dyer conjecture is
true, then to a curve with high rank corresponds an L-function with a
zero of high order at 1.

The way we use the conjecture of Birch and Swinnerton-Dyer is the
following heuristic argument. For each prime p, let N, be the number
of solutions of y? = 2% + Az? + Bz over the finite field F, and

P

M, = Zl(ms ki Azz + BI), where (;) is the Jacobi symbol.
r=

Then Np = p + 1+ M,, and the value of the L-function at 1 is given
by [1, IJVT’; Thus, in principle, the bigger the M, the higher the order of
the zero of L at 1, and this should be reflected in a distribution of the
M, near to its maximum possible value for a substantial set of primes.
In consequence we look for values of A and B which maximize M, for
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small primes.

Now we explain how all this is used, why we impose additional re-
strictions on B, and finally present the results of our computer search.
The computations were carried out with the software Mathematica on
a desktop computer.

From now on we will take curves of the form

y? =23+ Bu, B #0.
The associated curve is
y* =z° + bz, b=—-4B.

Motivated by the ideas just explained, we look for values of B having
several divisors d which satisfy the diophantine equations corresponding
to the homogeneous spaces.

In order to automatically fulfill the primality conditions, we begin
our search by taking (U,V) = (1,1), so that we look for values of B
for which there are solutions of the form (1,1, N) for a large number of
equations (x)4. This is equivalent to

B
d+ - =2 perfect square for d a divisor af B. (5)

As mentioned in the previous discussion, we introduce another restric-
tion for the values of B in order to guarantee at least two solutions for
the equation (5). Consider

B =qdh,

where ¢ is a free (integer) parameter and d, h are chosen so that both d
and ¢d satisfy (5). This yields the equations

gh+d= m?
h+qd= n?

for some integers m and n. From this we arrive at

(¢>-1)d= gn®-m?
(> - 1)h = gm?—n2
22 REVISTA MATEMATICA COMPLUTENSE
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Since we want d and h to be integers we are forced to impose another
restriction on the possible values of m and n:

g® — 1 divides qn2 — m? and ¢m? — n?

Then

P£-1 ¢-1

For example if ¢ = 2, then 2m? — n? must be divisible by 3, which
implies that both m and n must be divisible by 3. Thus we get

d=3(2n% —m?), h=3(2m? —n?) and B = 18(2n% — m?)(2m? — n?).

Furthermore, it is desirable that d and 2d give raise to independent
points. This can be achieved by choosing n odd.

If we take ¢ = 4, then 4n2 — m? and 4m? — n? must be divisible by
15, giving rise to several possibilities.

There is something for and something against choosing ¢ a perfect
square, like ¢ = 4. On the one hand, the factorizations 4n? — m2? =
(2n+m)(2n—m) and 4m? —n? = (2m+n)(2m —n) guarantee that B
has a large number of factors and are an aid in lowering the computing
time. On the other, d and 4d are equivalent modulo Q*2.

A new restriction comes from the desire of maximizing the Jacobi
sums

B =3 (S,
=1

For p = 3mod 4 these sums are equal to zero for every value of B. For
p = 5, the maximum value is achieved when

B = 3mod 5,

a condition that we impose in most of the runs of the program. In fact
when we run an unrestricted search, only a small percentage of the B’s
found do not satisfy that condition. Other conditions of this kind were
used during the running of the program.
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3 Results

We present the results obtained in table 1. In many cases the number
found in our search had as factors fourth powers. The number appearing
in the table is then that number reduced modulo Q**. An easy argument
shows that this does not affect the value of the rank.

Table 1: Curves with » > 8.

| B | Factorization of B |
—14752493461692 —-1-2%2.32.7.23.71-113-281-1129
—22574232092412 | —1-22.3%.7.11-13-17-19-23-37-43-53
—130692175866252 | —1-22-3%2.7-11-13-17-19-23-53-61 - 151
—173761825769532 | —1-22.32.7.11-13-17-19-41-47-61 - 127

—254590018539857 -1-7-11-13-17-53-419-719 - 937
—30307917919972 —~1-2%.7-11-31-37-53-251 - 6449
—128566324306497 —1-3-7-11-23-59-107 - 449 - 8537

Next we give some arithmetical details about the first curve. More-
over in this example we are able to prove that the estimate for the rank
is actually an equality, i.e., we prove

Theorem 3. The elliptic curve
y? = z% — 14752493461692 z (6)

has rank equal to 8.

Proof. B factorizes as B = —1-22.32.7.23-.71-113.281 - 1129, so
that it has exactly 512 square-free divisors (including the negatives) and
la(T)| < 512 = 2°.

In the case of b = —4 B, there are also 512 square-free divisors, but
since b > 0, the homogeneous spaces for d|b and d < 0 have no positive
real solution, and hence only 256 positive square-free divisors of b have
to be considered. This gives the upper bound |&(T')| < 256 = 28. Thus
we get

and hence r < 15.
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By the search procedure explained above we found eight pairs (d, V),
with d divisor of B, which are solution of the diophantine equation

d+—§—=N2. (7)

The set (d, N) of these pairs, appears in table 2. The factorization of
the values of d is also included.

Table 2: Divisors of B solution of (7).

| d Factorization of d | N |

3875109 3.7-23-71-113 261
5358234 2.3-7-113-1129 | 1614
6662229 3.7-281-1129 | 2109
7750218 | 2-3-7-23-71-113 | 2418
9636333 3.7-23.71-281 | 2847
19272666 | 2-3-7-23.71-281 [ 4302
33185826 2.3%2.23.71-1129 | 5722
645284466 | 2-3%.113-281 - 1129 | 25402

Let D be the set of divisors d of B appearing in the first column
of table 2 and S the subgroup of Q*? generated by D U {1, B}. An
independent set of generators for S is

Gs={-1-7,2,3-7-281,23-71, 113 - 281, 1129 }.

This implies that 26 = |S| < |(T)|.
For the associated curve we found five solutions (d, N) of the equation
b

d+ - = N?  with d divisor of b. (8)

The values of N and the factorization of these divisors are listed in
table 3.

As before, let D be the set of divisors d of b appearing in the first
column of table 3 and S the subgroup of Q*? generated by D U {1, b}.
Then S has 2¢ elements and a system of generators is

Gs={7-71-281,23-281, 113 - 281, 1129 },
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Table 3: Divisors of b solution of (8).

| d | Factorization of d | N |
46948336 29.23-113-1129 | 76207
63405769 7-71-113-1129 | 38104
143396548 22.113-281-1129 | 11992

1451874172 | 22.7-23.71-113-281 | 8021
5807496688 | 2% -7-23-71-113-281 | 6943

implying ) .
2t =18 < |a(D)|.

This, together with Theorem 1, give a lower estimate for the rank of the
curve:

= (T 6 .04
y o leOLISOL, 22

In order to get that the rank is exactly 8, we have to prove that the
order of the subgroups generated by the images of o and & are exactly
26 and 2% respectively.

For the curve (6) we are able to prove, arguing with congruences
of adequate moduli, that there are several homogeneous spaces without
solution. In this way we get divisors of B (respectively b) which are not
in a(I") (respectively not in &(T')).

For any divisor d of B such that d € ('), if d’ is another divisor of
B with d' ¢ a(T"), then d - d’' ¢ a(T'). Using this fact, we split the 512
divisors of B (counted mod Q*2) into two classes: the 64 already found,
which are in «(T"), and 448 which are not in that image. This implies
that |a(T)| is exactly equal to 26.

For the associated curve we can discard all the negative divisors of
b, because the corresponding homogeneous space do not have positive
real solutions. We are left with 256 divisors of b (modulo Q*?), of which
16, those generated by D U {1,b}, are in the image of a.

Observe that in proving that a divisor d of B is not in a(T'), one has
to take care of the homogeneous spaces for d and for all the divisors of
B equivalent to d modulo Q*2. For example, when considering d = 23,
as divisor of B, one has to study the homogeneous spaces corresponding
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to 23, 23 -4, 23 -9 and 23 - 36. For d = 23, as divisor of b, we have to
study the equations for 23, 23 - 4, 23 - 9, 23 - 36, 23 - 16 and 23 - 144.

Let us call Dp the set of square-free divisors of B. As mentioned
above, Dp has 512 elements.

We observe that the equations for the homogeneous spaces for all
the divisors of B such that d = 3mod4, together with the primality
conditions, have no solution modulo 4. This gives a set N} of 128 divisors
of B outside a(I'). When we multiply N; times the set S of 64 divisors
found in a(I'), we get a new set, N, of divisors not in that image. This
set No has 256 elements.

In table 4 we include a set L of divisors of B in the first column,
together with the equivalent set of divisors and the moduli used to prove

that the corresponding homogeneous space is empty in the second and
third.

Table 4:
d€ L[ Equivalent divisors | Modulus |

3 3-4 7

7 7-4,7-9,7-36 7

21 21-4 23

23 23-4,23-9,21-36 4
42 23

69 69 -4 7
161 | 161-4, 161 -9, 161 - 36 23
483 483 -4 23

For example, for d = 3 we have to consider two diophantine equa-
tions, one for each of the equivalent forms of 3 mod Q*? inside the set of
divisors of B (3 and 3 - 4). The equations are:

B
3-U4+—3—-V4=N2 and 3-4-U4+3£4-V4:N2.

If we take these equations modulo 7, because of the primality conditions,
it is enough to use the following values:

U=1{1,2,3,4,5,6} and V={1,2,3,4,56,7}.
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In all the 42 cases we get a residue in one of the classes 3, 5 or 6 modulo
7, which are exactly the non-quadratic residues. So neither equation is
solvable and hence 3 ¢ a(I).

When we multiply the elements in the set of divisors not in the
image of o defined by N, = N; UL times S, a new set of divisors outside
the image of « is obtained. This set has 448 elements, which together
with the 64 elements in S gives the total set Dg. This implies that
la(T)| = 28.

The argument for b and &(T') is similar. We observe that in this case
the set of positive divisors has 256 elements, the set S has 2% elements
and for any d = 2 mod 3, the homogeneous space has no solution modulo
3. So we have a set, Nj, of 64 elements outside &(I'). The set N,
multiplied by S produces a new set, N, of 128 elements not in &(T).
In table 5 we list a set L of divisors of b for which the corresponding
homogeneous space is empty, together with the moduli used to prove
the non solvability

Table 5:
| de L ! Equivalent divisors Modulus
3 3:4,3-16 7
6 6-4 7
717-4,7-9,7-16,7-36,7-144 23
21 21-4,21-16 23
42 42 -4 23
46 46 -4, 46 - 9, 46 - 36 23
69 69 -4, 69 - 16 23
138 138 -4, 138 - 16 23
142 142 - 4,142 -9, 142 - 36 4
213 213 -4, 213-16 7
426 426 - 4 7

Next we observe that No U L times S is a set of 240 elements, which
proves that the image of & has exactly 2% elements. This concludes the
proof that the rank of I is exactly equal to 8. ]

Finally, in table 6 we list the values of B, reduced modulo Q*4, found
in our search, for which the curve ( 1) has rank at least seven.
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Table 6: Curves with r > 7.

f B | Factorization of B |
—2172367197 —-1-32.7-11-13-59-61-67
—15380890602 -1-2-3-7-11-19-23-29-37-71
—51891702972 —1-2%.3-17-29-41-349-613
—158697338877 —1-32.7-11-17-23-71-73-113
—202052651805 —1-32.5-19-53-101-131-337
—220952437692 —1-22.3.7-19-137-233-4337
—244629607677 —1-3-77.13-23-29-31-41-151
—247121673777 —1-32-11-19-23-41-127-1097
—343928823777 —1-3%.7-11-17-29-41-43-571
—345987474525 —1-3%.5%.7-11-23-31-37-757
—507158904252 —1-22.3.7-11-13-19-41-83-653
—606799510317 —1-32.7-11-13-43-59-139-191
—667630174332 —~1-2%2.3.11-17-19-23-43-71-223
—1238514463725 —1-3-52-7-112.19-31-79-419
—1667390880687 —1-3-7-17-19-43-109-179 - 293
—3338186079921 —1-3-72-11-41-47-71-79-191
—4871074840632 —-1-23.32.7-11-13-31-61-103 - 347
—6317726835420 —1.22.3%.5.7-11-13-89- 163 - 2417
—9423877722525 —1-32.5%.7.101-107 - 461 - 1201
—11784209924921 —1-7-172-37-47-61-89-617
—14280772851345 —-1-3-5-77-11-137-19-53-97- 107
—15888014186316 —1-22.3.19.23-47-53-61-127-157
—30307917919972 —1-22.7-11-31-37-53-251 - 6449
—43409660388237 —-1-3%.11-13-23-31-79-317-1889
—45904825606332 —1-2%.3.7-11-17-23-29-43-73-1277
—56630455507332 —1-2%2.32.7-73-103-167 - 191 - 937
—67837692616317 —1-37.13-19-29-43-127-233 - 827
—159848787638232 —1-23.32.7.11-37-47-89-241-773
—212035673488892 —1-22.11-23-41-59-79-89.97-127
—287749273343532 —1-22.3.72.11-13-19-47-79-179 - 271
—2396200602455352 | —1-2%-32.7-11-31-61-101-103-127-173
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