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SOME RESULTS ON SEMILINEAR
SYSTEMS ON THE UNBOUNDED SPACE &°

J.M. MERCIER*

Abstract

We study in this paper the following systems, using standard
tools devoted to the analysis of semilinear elliptic problems on
R :

2, _ 2
R(e1,€2) { _2’1’)‘ _:éz g rE=ELwER, fori=12,
where u,v holds for real valued functions. These systems do not
admit any non trivial finite energy solution. However, we exhibit
infinitely many non trivial radial solutions in the €162 = +1 cases.
A first type of solution consists in a ground state of R(—1,—1),
exhibited by variational arguments, whose structure is a finite en-
ergy perturbation of a non trivial constant solution of R(—1,—-1).
A second type consists in a radial, oscillating, asymptotically null
at infinity solution in the €165 = +1 cases that we exhibit us-
ing eigenvalue comparison and ordinary differential equation type
arguments.

1 Introduction, statement of the results.

In this paper, we look for particular standing wave solutions
(U, V) (t,z) = (e“''u(z), e“?'v (z)) , or particular travelling wave solu-
tions (U, V) (t,z) = (u(x —ct),v(z —ct)), ¢ = (c1,¢2,¢3) € R3,|c| < 1,
of the following systems of wave equations

(@ -A)U=aU|VP
P(El’”)‘{ (2 -A)V =eU |V °
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The system P (+1,—1) comes from field theory, (see (3], [5], [6] and
references therein for a physical background), and we study the cases
€162 = +1 for a better understanding of this last case. It is straightfor-
ward to compute that a standing wave solution of P (1, ¢2) satisfies the
system

—Au — w?u = gquv? .
R(€1,€2) { Av w%v _ EQ’U’U,2 , € = :i:l,wi € R, fOT‘ 1= 1,2,
—Av — wiv =

A travelling wave solution satisfies also R (e1,€2), but for w; = ws =0
and the change of variables

Vg) = u (LV/2
(oo zuting - &

In the last expression, the symmetric positive definite matrix L is given
by L = (L,;j), with 1 <4,5 < 3 and Lij = 6,;]' — CiCj.

The systems R (e1,e2) are semilinear elliptic systems on the un-
bounded space R3. It seems natural at a first sight to look for variational
methods to exhibit non trivial solutions of R (g1, ¢€2), because they have
a variational structure (see for instance [9] for a general introduction
to variational methods) : each of the system R (e, €e2) is obtained for-
mally as the Euler-Lagrange equation of the following functional, or
Lagrangian :

J(61,€2) (’U,, U) = - 81/

R3

— 52/ [(V’v)2 —w%v2] da:+/ u?v?dz
R3 R3

Note that, if considered on a bounded domain © with Dirichlet con-
ditions, the variational structure of Ji., .,) (u,v) is of linking type. Thus,
one can use the classical results of (8] or [11] to prove the existence of
non trivial solutions whatever the signs of (¢1, €2) are for large enough Q.
The same argumentation holds for non trivial periodical solutions in the
monodimensional case. Thus in R?, there are infinitely many solutions
that are periodic in one direction and constant in the two other orthog-
onal directions. For unbounded domains, particular solution of solitary
wave type for semilinear Schrodinger, wave or heat equations leads often

[(V'u)2 - w%uz] dr —
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to consider variational problems. They have been widely studied for this
purpose (see for instance [12], [4]). To study these functionals with a
standard variational method, a natural functional setting is the energy
space, i.e. the homogeneous Sobolev space made of square integrable
first derivative functions

w! = {peC (R3)}HV‘P||L2(,F3),

where CS° is the usual one of test functions. The semilinear part of the
functionals Ji,, .,) are subcritical, respectively to the Sobolev critical
exponent 2* = 6 in R3. However, even in the cases €162 = +1, they
are strongly indefinite in the energy space. This is due to the "negative
mass”, i.e. the negative sign that appears on the L? norm in the ex-
pression of these. The linking structure still holds on the energy space,
but a direct variational approach fails. Actually, the second section of
this paper is devoted to the proof of the following non existence result
of finite energy solution :

Proposition 1.1. It does not ezist any non trivial finite energy solutions
of R(e1,€2) in the €162 = +1 cases.

It does not exist any non trivial radial finite energy solutions of R (€1, ¢€2)
in the €169 = —1 cases.

We make a spherical symmetric assumption in the e1e0 = —1 cases
that we think to be only of technical nature.

This last result expresses the difficulty to find a good functional
setting to study our systems via a variational method, that would be a
good tool for the study of R (e1,€2) in the €16, = —1 cases. Actually it
turns out in the third and fourth sections of this paper that the finite
energy assumption is a too strong asymptotic behavior requirement.

A first idea to exhibit a non trivial solution is to perturb the systems
P (g1,€2) around a particular solution that is not of finite energy and
to look for a better posed variational problem. This idea gives results
perturbing P (—1,—1) around its constant states. Doing so, one looks
for a solution of the associated system of wave equations whose partic-
ular shape is (U (¢,2),V (t,z)) = (a +u(z),e*'v(z)). We are led to
consider the existence problem of a solution for

—Au = — (u + a) v?
—Av — w?v = —v (u+a)?

P
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If we look for finite energy solutions of this problem, we consider equiv-
alently a critical point of the following Lagrangian

JE1 -1 (w,0) = / (Vu)? dz + / (Vv)?dz + / ((u +a)?v? - w2v2) dr.
’ RS R3 R3

The quadratic part of this functional is now positive definite if 0 < w? <

a?, and we show in the third part of this paper that this functional has
a mountain pass geometry. This allows us to prove the existence of a
non trivial radial solution :

Theorem 1.1. For every 0 < w? < a2 there exists a non trivial radial
solution (uy,v1) of Ry (—1,—1) verifying

Jre [w2v2 — (u+a)? 1)2] dz 1
sup =

2 = 7"
(u0)EWL,  (u,v)#0 (fRS (Vu)2 dz) fR3 (Vv)zdz (fR3 (Vu1)2 dm)

This last equality can be viewed as a Sobolev type inequality. We
show also that (u;,v;) realizes the minimum of J("_l,_l) (u,v) among all
the non trivial finite energy solutions of R, (—1,—1), defining a ground
state type solution. So we expect that the corresponding solutions of
P (—1,—1) associated to these ground states be stable.

So far we have exhibited some solutions that are asymptotically con-
stant at infinity, with a non null constant (0,a). But we expect, due to
the linking structure of our problems, to find non trivial solutions that
are asymptotically null at infinity. We get two results in this direction,
studying the equivalent systems of ordinary differential equations satis-
fied by any smooth radial solution of R(e,e3). These results may be
known since we use very classical tools to prove them, but as we don'’t
know a reference, we give a quick proof of them in the fourth part of
this paper. Considering first R (+1,+1), we prove easily (we denote
r(z) = (2} + 2% + 12) /2 the radial coordinate) :

Theorem 1.2. For every (a,b) € R? there ezists a radial solution (u,v)
of R(+1,+1)
verifying {u (0) = a,v (0) = b} and (wiu? + wiv?) (z) < ;5(("—5

These solutions expressed in polar coordinates are oscillating ones in
the wjws # 0 and ab # 0 cases. To be more precise, let us (when properly
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defined) denote {(; (u)};cn the increasing sequence defined by the zeros
of a smooth function u, then these solutions satisfy |(i+1 (u) — i (u)| =
o 161 (v) — G (v)| = 7y, as © — oo. Considering now R(-1,-1),
we get a partial result, studying a particular case that we denote

R(-1): —Au —w?u = —ud.

For this equation, we prove

Theorem 1.3. For every w? > a® > 0, there ezists a radial solution u of
R (-1) verifying {u(0) = a} , lim SUP;(z)—00 r? () (w%u2 + w%v2) (z) >
0 and lim,(;)00 u (z) = 0.

This is a sharp existence result in the sense that the solution of the
ordinary differential equation associated to R(—1) is u = w for initial

conditions {u (02 = w?,8,u (0) = 0} , and that this equation blows up
solution within finite time when it is associated to initial conditions
satisfying {u(O)2 > w?,6,u(0) = O}. Here also we have the property

|G (u) = Gi (u)| = &, 8 — oo

Remark 1.1. Let us consider the semilinear Klein Gordon equation

OB2U — AU +m2U = — |U|? U} in the three dimensional case. It is a
well known fact that there exists a stable solitary wave type solution of
this equation whose shape is U (¢, ) = e®“!u (z) in the cases 0 < w? <
m? (see [12], [4]). It is interesting to note that for higher frequencies,
i.e. in the case 0 < m? < w?, there exists still solitary wave that are
asymptotically null at infinity (theorem 1.3), but that are no longer of

finite energy (proposition 1.1). An interesting question is whether these
solutions are stable or not.

Notations. The usual Sobolev space over R? is denoted H!. The space
W} (resp. H]}) denotes the closed subset of W! (resp. H') of radial
functions. For a function u, suppu holds for its support. We quote
the multivalued function sgn (y) = {—1,y < 0;+1;y > 0} . The annulus
{z;a <r(z) <b}, 0 < a, is B(a,b). The measure of the unit ball is
a3 = meas {B (0,1)}. We recall the usual Sobolev embedding in R :

WH(RY) — L (R%), H'(R’)—>L*(R%),2<p<6. (2)
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2 Non existence result in finite energy spaces

As a first step to prove proposition (1.1), we first get some a priori
informations that verify a finite energy solution of R (g1, &) :

Proposition 2.1. Every finite energy (u,v) solution of R (g1, ¢€5) is C®
and verifies
i) (energy type relations)

2
/ (Vu)z—wi?/ u? :51/ u2v2;/ (Vo) —wg/ u? =52/ u?v?
R3 R3 R3 R3 R3 R3

i) (Pohozaev type relations)

/ €1 (Vu)2 + €9 (Vv)2 =3 (/ u?v? + elwf/ u? + 62&)%/ v2)
R3 R3 R3 R3

This proposition uses a classical argumentation. We present a quick
proof to the reader because much care has to be taken to handle integra-
tions by parts that are in the heart of the proof. As an example, these
integrations fails proving the first energy relation related to the quite
similar system R, (—1,—1) (see next section).

Proof.

proof of i) The idea is to use the multiplier (u,v) and to integrate by
parts. The only technical point is to justify these integrations for an a
priori finite energy solution (u,v) € W! of R (e1,¢€3) . For this purpose,
we introduce the following truncature function of the unit ball,

xB(o,) (z) =1, if z € B(0,1);
xBo,1) (z) =0, if z € R3\B(0,2);
0 < xB(o,) (z) <1,

and xpo,1) € C§°. We introduce also for short xx (z) = xp(,1) (£),
Uk = XkU, Uk = Xx¥. We have the property 0 < uzu < u?, 0 < vpv < v2
because of the choice of the truncated function.

Using the Poincare inequality, (ux,vi) belongs to H!. As we deal
here with a subcritical problem, the C™ property of the solution is easy
to prove via a classical bootstrap argument. As a consequence, we have
also that every finite energy solution is uniformly bounded and
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lim (Ju(z)| + v (z)]) = 0. 3)

r(z)—o0

We multiply the system R (e1,e2) with (ug,vt), and integrate over R3
in order to get

{ Jrs VuVug = €7 s uugv? + w? S uu @

Jos VoV, = &9 Jps uPvvg + w3 Jra vuk

We estimate with the Holder inequality

/3 wugv’ < C fluugl| a2 10?]] 15 < C lluugll oz 2| s <
R
1 2/3 2
< Cllunell 3 w22 o))

So we have [os uugv? < C ([ uuk)2/3, using (2) and (3). In the same
way [os vupu?® < (fos vvk)2/3.

We recall that (ug,vx) — (u,v) in W1, as k — oo, according to ([2],
p-230). Thus the left hand side of (4) is uniformly bounded. Using the
previous estimates, we get

00 > w? fR3 uuy — C (fR3 uuk)2/3
00 > wh [pavvp — C (Jes 'uvk)z/3

Thus (W] fos utir) 5, and (wf fos vor) k>0 are positive, increasing, uni-
formly bounded sequences. Using the Beppo-Levi theorem we have

€1 fgs uurv? = [og (Vu)? — w? Jrav? =1 [oau?? < 00
€2 [gs vogu? — Jas (Vv)? - w? Jeav® =2 Jpau?v? <00

that ends the proof of part i).

proof of i) We note here d,,u = wu;, Gu = (O, U, Oy u, Oy u)
n = (n1,n2,n3) the normal outward of the sphere of radius r, denoted
0B;, and dS the measure over B,. We use the Einstein’s summation
convention and follow the proof given in ([4]).

We multiply R (e, 2) with the usual multiplier for Pohozaev identity
that is (e1u;z;, €2v;z;), and integrate over a ball B (0,7). We consider
first the left hand integral
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Ir = —€1 / ('Uj,j) mT; — 62/ (Uj,j) U;T;
B(0,r) B(0,r)

We have (and its equivalent for u)

/ (vj,5) vizi = : (/ (Vv)? +/ r(arv)2ds.>
B(0,r) 2 \ /B, 8B,

On the right hand, we calculate

I, = / (1)2 + alw%) UUT; + (u2 + 62(4)%) VU T; =
B(0,r)

1
= 3 0; (u2v2 + erwiu? + Ezwgvz) T; =
B(0,r)
3
= —= / u2v? + elw%uz -+ ezw%v2 +
2 JB(o,r)

1
+ —/ [u2v2 + Elw;"u2 + 52w§v2] rdS
2 JoB,

Thus we compute

/ €1 (Va)? + e (V)2 = (5)
B(0,r)

=-3 (/ uv? + 61wf/ u? + ng%/ v2) + C (r)
B(0,r) B(0,r) B(0,r)

1
C(r)= 3 /{;B r (uzv2 + elw%u2 + nggvz + & (c')ru)2 + &9 (3,'0)2) ds.

We use here the finite energy hypothesis, noting that, according to the
part i) of Proposition, the function f = u?v? + g1w?u? + eqwlv? +
e1 (8,u)% + €2 (8,v)? belongs to L! (R3) . Thus we deduce

[ el [ [ 10
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implying the existence of a subsequence (rn),cy that tends to infinity
and for which C (r,) — 0,n — oo. We estimate I, over such a subse-
quence in order to end the proof of Proposition.

Proof of Proposition 1.1. We consider two cases
€1 = € : we denote for short the functionals z = [gs (Vu)? +
2 2 2 2 2, _ 2,2 ; 4
Jrs (Vv)°, y = wi [ga v® + w§ [gav?, 2 = [gs u’v®. Using Proposition
2.1, we get the following system

z=22+y
, 6
{.’L’=3(612+y) ()
implying that x = —3y < 0. Thus (u, v) is the trivial solution.
€1 = —e&g : the proof relies on an indirect argument. We consider

(e1,€2) = (+1,—1), the other case (e1,e2) = (=1, +1) being symmetric.
There is an alternative :

First case. wy = 0. Proposition 2.1 i) implies fR3 u?v? = — fR3 (Vv)2 =
0. If w; = 0, we deduce [g; (Vu)? = 0, thus (u,v) is the trivial solution.
If wy # Othen u € L2, according to Proposition 2.1 i). Furthermore
u satisfies ~Au — wiu = 0, thus u = 0 because the only finite energy

solution of this problem is the trivial one.

Second case. w; # 0. In this case, we suppose that (u,v) € W}
We deduce v € L? from Proposition 2.1 i). Furthermore, v satisfies the
equation —Av+u?v = w2v. We recall the following result of Kato, ([10]),

The operator (—A + ¢ (z)) does not admit any positive eigenvalue
on L? (R3) under the hypothesis

g (z) is a continuous function outside of a compact set,
lim, (g) 00 T (z) g (z) = 0.

To use this result, we precise the asymptotic behavior of a finite
energy radial function in the following lemma :

Lemma 2.1. Let u € W]}. Then u is equal outside of the origin
to a continuous function wug(r(z)) whose asymptotic behavior is
lim, 0 71/2ug (r) = 0, and lim, o r'/2u, (r) = 0.
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Proof. Let u € W}! and u, (r (z)) = u(z). Notice that we have, using
spherical coordinates

|Vu; L2 (RE)||* = a3 ||rdrus; L? (RY)]]® < 0. (7)

T

Notice too that (2) implies
Ir?uls LY (R || = [lus L8 (RY)||° < €|V 22 (R)[|® < 0. (8)

Using the Sobolev injections, u, is a continuous function over ]0, +o0].
So we can compute the following integration by parts :

00 > ”rarus;L2 ([l,a])H = ”8 (rus); L? (1, q] || - [ru ]1 , fora>0.

Let a — oo. As ”8, (rus); L2 ([1, a])” is an increasing functions of a, we
deduce limg_; o aus (@) = lx < 0o. Using (8) it turns out that I, = 0.
In the same vein we have lim,_,¢ au? (a) =1y < 00, s0 Iy = 0 as well.

We deduce from this lemma lim, ;) 7 (z) u® (z) = 0. This means
according to Kato’s result that v = 0, and we deduce u = 0, ending the
proof of Proposition 2.1.

3 Existence result using perturbative variational
method

In this part we consider the system

~Au = - (u+ a)v?
—Av — W = —v (u + a)?

Ra(-1,-1){
We define the functionals
I (u,0) =/R3 (u + a)? v2dz — w? /Rs v2dz; J (u) = /R3 (V) da.
We have for instance J(“_l,_l) (u,v) = J(u) + J (v) + I (u,v) . We first

state some a priori relations that are satisfied by any finite energy solu-
tion (u,v) of R (—1,—1). This is a problem with a subcritical Sobolev

216 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 1, 207-229



J.M. MERCIER SOME RESULTS ON SEMILINEAR SYSTEMS ON THE ...

exponent, so (u,v) are C*®°. Multiplying the second equation with v and
integrating by parts we get an energy type relation following the proof
of proposition 2.1 i)

J(v) = =I(u,v).

Also, using the multiplier ((u; + a) z;,viz;) over R, (—1,—1) we get a
Pohozaev type relation, following Proposition 2.1 ii)

J(u) + J (v) = =3I (u,v).

We deduce from these two relations that every finite energy solutions of
R, (—1, —1) satisfies

Sy wv)=J(w);  J(v)=2J(u). (9)

Remark 3.1. It is not possible to state an energy type relation using
the first equation of R, (—1,—1). This is related to the fact that we
deal with a ”zero mass” case for u. Thus it is hopeless to look for a non
trivial solution u of R, (—1, —1) that belongs to H'! : using the multiplier
Xk (¢ + a) (the notations used here are defined in the proposition 2.1 i)
) on the first equation of R, (—1,—1) and integrating by parts we get

VuVug + / xk (u+a)?v? = a/ (Axk) u (10)
R3 R3 R3

We estimate
/R3 (Axk)u < ||U||L2(B(o,2k)) |Axkll g2 = Ck~'/2 ||U|[L2(B(o,2k)) :

If we suppose u € H!, then Jrs (Axk)u — 0,k — oo, and from (10) we
deduce u = 0.

To prove the existence of a non trivial solution for R, (—1,—1), we
study a constrained minimization problem and we use Lagrange multi-
pliers. We define the subset over the space W! x H!,

Sau={J(W)=% J()=p}.

This subset is the constraint of our minimization problem that we ex-
press in the following way
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K\ u)= inf I(u,v).
(u,v)ESy,

We denote S . the subset of S, made of radially symmetric func-
tions. The essential properties of this problem are quoted in the follow-

ing proposition (we give the proof of the intermediate results at the end
of this section).

Proposition 3.1. Let 0 < w? < a?. Then
i) —oo < K (A, u) <0.
i) K(\p) =K (1,1) A2
1)) K(\,u) = inf(u’v)eslr\’” I(u,v)
So, we can define a radial minimizing sequence that achieves K (A, 1),
that is a sequence (uﬁ,’uﬁ)nm that satisfies

(u’j,vﬁ) S (uK,vL‘) = K(\u), asn — oo. (11)
The main result concerning K (\, ) is :

Lemma 3.1. Let 0 < w? < a?. Then every radial symmetric minimizing
sequence achieving K (A, u) admits a strongly convergent subsequence in

1 1
W, x H,.

Thus, considering (u}, v,’})n>0a minimizing sequence, we can extract
a subsequence converging to a function in W} x H} that we denote

by (ux,v,). So there exists two Lagrange multipliers (65, 6,) such that
(ux,vy) satisfies the following system :

{ Ox (—Auy) = (ur +a) v? (12)

0, (—Av,) = v, (uy + a)2 - w2vu
The energy relation for the second equation is 8,J (v,) = I (uy,v,) . The
Pohozaev relation for this system is 8 [rs (Vun)® + 6, Jrs (V)2 =
3I (ux,vy). So we deduce the signs of 6, and ) from Proposition 3.1,
i) :
0r=2K (1,1) \p < 0,0, = K (1,1) A2 < 0. (13)
Notice that (uy,v,) provides a solution of R, (—1, —1) using the rescaling
(u1,v1) = T4, ,10,]) (¥r, vy) defined by
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(u“, vb) = Tap) (u,v), with wi(z)=u (m b> , (14)

v (z) = \/gv (:1;\/5)

where (o, 8) are two strictly positive constants. The properties of this
rescaling are

1 vb 1

a b a b

J (u®) \/EJ(U),J(’U) " (v); (u,v) oTi (u,v

We compute that our solution satisfies S0 (u1,v1) = J(u) =
!Tl(ll—)—l' Note that every finite energy solution (u,v) of R, (—1,—1)
satisfies, according to (9) and Proposition 3.1, ii),

2J (u) = J (v) = =1 (u,v) < —K (1,1) J (w)* J (v) = J (w)+K (1,1) J (w)® < 0.
We deduce from this last relation J¢_; _, (u,v) = J (u) > —Ll =

[K(1,1)]
J(“_1 1) (u1,v1). So (u1,v1) is the solution described by Theorem 1.1.

Proof of proposition 3.1.
property i). First we express I (u,v) as

I(u,v)=/l-1 u?v® + (a® —wz)/Ravz-i-2a/R3uv2. (15)

We have, using Holder inequality and the Sobolev embedding (2),

3/2 1/2
/ W < ClullZe o] ; |20 / 2| < C llull o 01272 o]l /2 <
R3 R3
3/2 1/2
< Cllully o132 folli)3 - (16)

This proves that I (u,v) is well defined for (u,v) € W! x H'. Now,
let us consider (u,v) € S ,. The relations (15) and (16) show that the
following estimate holds :

T2 (@ =) [ o= Cn? ol (1)

Thus K (A, p) > —oo.
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Now, let us consider a function u € H} such that u = —a over
B(0,1). Let us denote D¢ the dilatation operator D¢ (u) (z) = u (cz).
This operator satisfies J (Du) = —‘{%‘l and we chose c in order to achieve
J (D) = X. We define a function v € H} that satisfies J (v) = u and
suppv C {x €R%u(z) = a} . We compute for this couple of functions
I (Du,v) = —w? [pav? < 0. Thus K (A, ) < 0.

property 1i).Let (X, u,c) three positive reals. We prove first two pre-
liminary properties.

Consider a minimizing sequence (un,v,) € S, such that K (A, pu) =
limy, 00 I (un,vy,) . The sequence (un, ct/ 2'0,,) satisfies :

{J(un) =X J (cvp) =cd (vg); 1 (un,c1/2vn) =cl (un,vn)}.

Thus we deduce
K (M cp) <cK(M\p). (18)

We consider a minimizing sequence (un,v,) € S, such that
I (un,vn) = K (4, 1) . The sequence (D%un,D%vn) satisfies

{J (D%un) = cu;J (D%vn) =cu;l (D%un,D%vn) = c3I(un,'vn)}.
We have -thus

K (cp,cp) < K (u,p) - (19)
We deduce from (18) and (19) the following :

K(1,1) = K(AA)<LKuAﬁLLKOM2)

AA) = A3 A3
Al 1
<2 K =
< SeK ) = 5K (),
KOy = K (,\,g,\) < %K(}\, A < A3§K(1,1) = A2uK (1,1).

We deduce K (A, p) = A2uK (1,1).
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property ii1). We prove in a first step

K(\up)= inf I (u,v) (20)
(u,)€5x,,N(C)*N{v>0}N{0< ~au<a?}
As C§° is dense in W! and H!, we have K (\,pu) =

lnf(u,v)eSA,“ﬂ[Cg"]z I (u,v) . Furthermore, let us denote (up,v,) € Sy, N

C§° a minimizing sequence satisfying K (A,p) = limpyoo I (Un,vp) .
We have (un,|vn|) € Siy, and I (un,|vn]) = I (un,vn). Thus we can
suppose v > 0. We suppose also in the next I(un,v,) <
0, according to property i). We denote the truncated function u? =
{0,au > 0;u, —au < a?; —a, —au > a?} . This function satisfies J (u2) <

J (un) and T (ul,v,) < I(un,vs). We denote 6, = jZ:) < 1, and

(u'n,'v;l) = Ti,,52) (up,vn), where the operator T is defined in (14).
A direct computation shows that (u'n,v;) € S, N(CEPN{v>0}n

{0 < —-au< a2}, and I (uln,v;) = HEE*,’UL) < I (up,v,). So the mini-
mum K (A, ) is also reached into the subset Sy, N {0 < —au < a?},
that ends the proof of (20).

We suppose in this part without loss of generality a > 0. In view of
(20) , we consider a couple of function (u,v) such that

(u,v) € (CL¥? N{v>0}N{-a<u<0}, (21)

We recall now some notions of spherical reordering and we report for in-
stance to [7], chapter I, for an introduction and a proof of the results used
here. We introduce first some notations. Let 2, =suppv, Q, =suppu,
and consider 2 an open bounded set such that Q, UQ, C Q. We de-
note Q* = [0, meas {N}]. For any measurable function w : Q — R, we
introduce gy, : @* = RU {+00} U {—00} the distribution function of w,
as

b (t) = meas {z € Q,w (z) < t}.

This is a increasing, right continuous function. We define w*, the monodi-
mensional increasing reordering of w, as

w*(s) = inf{teR,pu,(t)>s},seQ

w* (meas (N)) = supessw.
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Function w* is also increasing. The spherical increasing reordering of w
is defined as

w(z) =w" (Olg’l‘ (a:)s) ,x € Q = B (0, meas {2}).

(o3 = meas {B(0,1)} ). We define also the monodimensional and spher-
ical decreasing reordering of w as

w, () = = (~w)" () (2) = w. (s (2)°)
For (u,v) given by (21), we deduce for instance the following property :
u* (0) = infu, u* (meas {Q}) = 0, v, (0) = sup v, va (meas {Q}) = 0.
We have the following inequality :

J(@ < J(u),J(v) <J(v),I(T@ ) <I(uv) (22)

Where we have defined (@,v) (z) = 0, for z ¢ B (0, meas {Q}). The first
two inequality are direct applications of the Polya-Szego inequality. To
prove the last one, we apply the Hardy Littlewood inequality to get

/ —(u+a)?v3dz < / (u+ a)*(—v?)dz (23)
R3 R3

Consider the application ¢, (u) = {O,u < —a;(u+a) u> —a}. As
the increasing and decreasing reordering commute with an increasing
application, we deduce from (21)

(u+a)® = ¢ (u) = ¢ (@) = (TW+ a)?

In the same vein, we deduce

(—v%) = —(v*) = =0 (v) = —¢ho (v) = —°
We deduce from (23) [ga (u+a)’v?dz > [gs (@ + a)? v2dz. Further-
more the reordering conserves the LP norms, so fm v3dz = fR3 v3dz.
These two results imply (22).
Let us consider a minimizing sequence (un,vn,) € Sy, N (C)?* N

{v 2 0}N{—a < u < 0}, such that I (u,,v,) < 0. We denote oY = %,
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oy = W(v_% and we consider (un,vn> = Tsus (53)?) (ﬁ,v_n) , where

the operator T is defined in (14). A direct computation shows that
(u;l,‘v;) S N(CL¥? N{v>0}N{-a<u<0}, a,ndI( Uy, n) =
I—(%?-‘_'—;-’;;—"T) < I(un,vp), using (22), ending the proof of property iii).

Proof of lemma 3.1. We consider a radial minimizing subsequence
. no.n n ,n
achieving (uk’vu)nzo and we denote, up to a subsequence, (uA,vu) —

(ux,vu), as n = oo, weakly in (W,})2 We prove in a first step

I (ux,v4) < K (A 1) (24)

For that aim, we estimate each term of I (uA, ) given in (15). First,
note that, according to (17) and Proposition 3.1, ) (v L‘) >0 is a bounded
sequence in L2. Thus it is also bounded in H!. According to the Strauss
compactness result, ([12]), v} — v, strongly in L?,2 < p < 6. We have

also u? — u,, weakly in LS, accordmg to (2) . This implies

/RS (qu)2 (v&‘)"’ = <(u’}) ( ,\) >L3 L3) LA/ g /R3 u?\vz, as n — oo.

2a uy v"2=2a<u" v > — 2a urv2 as n — o0o.
[, B OD®) e = 20 [ 0102

These two limits, together with (11) and the Fatou’s lemma allow to de-

duce

(@® — w?) [Rs v2 < (0 — w?) limyoo Jrs (v})?. Blending all these re-

sults, we get

K\ pu) > / UAV, + 2a/ u vy + (a2 —w2)/ vy (25)
R3 R3 R3

that proves (24) .

We denote 6% = ﬂ;—)‘) <1, = J—(ZJQ < 1. First notice that if 6% =0
(resp. 6" = 0) then we deduce from (25) K (X, p) > (a? — w?) [gs (vu)
(resp. K (A,p) > 0), contradicting Proposition 3.1,i). Thus we can
consider (u:\,v;) = T( sug (54)?) (ux,vu). A direct computation shows

223 REVISTA MATEMATICA COMPLUTENSE
(2000) vol. XIII, num. 1, 207-229



J.M. MERCIER SOME RESULTS ON SEMILINEAR SYSTEMS ON THE ...

that (uln, v;) € 5] ,- We deduce, according to (24),

' I(un,vp) K (A p)

KO <I(us,v,)= <
( ﬂ’) - (u)‘ u) (5u)2 oY (au)z FX

Thus é* = 1 and §” = 1 and we have proved the strong convergence of
a subsequence in (er)2 We deduce from (24) K (A, p) = I (uy,vy).
A straightforward consequence of this equality in the proof of (24)
is (0% —w?) [Rs 'UZ = (a® — w?) limp 00 [R3 (vf\‘)2. So, up to a sub-
sequence, (vy) .. is also a strongly convergence in L2, proving the
strongly convergence of (V)50 0 HF

Remark 3.2. We point out that, if (u,v) is a finite energy solution of
Ro (—1,-1) in the case 0 < w? < @?, then v has an exponential decay at
infinity (this can be viewed as a consequence of the work of Kato [10]).

4 Existence results via comparison and O.D.E.
arguments

We prove in this section the theorems 1.2 and 1.3 considering the equiv-
alent systems

T . —ar (7'267"“) = 72 (El’u"u2 + w%u)
R (e1,€9) : { ~8, (r28,v) = r? (eqvu? + wiv) (26)

that are satisfied by any radial solution of R (e1,¢2) expressed in polar
coordinates. These systems are considered with initial conditions

(27)

Thus the associated solutions of R (1, £2) are smooth in a neighborhood
of the origin. For a function, let say u (r), a capital letter denotes the
function U (r) = ru(r).

Proof of Theorem 1.2. It is a straightforward computation to show
that the system
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_y"— U UV2 =0
__VII 2V VU2 =0

is equivalent to R™ (+1, 4+1) , (27) for initial conditions U’ (0) = a, V' (0) =

b, U (0) = V (0) = 0. We remark that this system admits a Lyapunov
functional defined by

2172
f=(U') +wiU? + (V) +wiv? 4 UV.

It is a positive function satisfying f'(r) = 2U2V2 < 0. This implies
that (u,v) = 1(U,V) is a global solution of R" (+1 +1) that satisfies

(wiu? + wiv )(r S—ér.

Proof of Theorem 1.3.
We show this result considering the equivalent equation of R(—1)
expressed in polar coordinate :

=0, (r*0ru) = r? (—u® + w?u),w € R. (28)

This is a particular case of R" (—1,—1). We consider this equation as-
sociated to initial conditions {u (0) = a,d,u (0) = 0}.

We begin this proof with some preliminary remarks and notations.
For a continuous function ¢, A, (2) denotes in this section the n-th
eigenvalues of the Laplacian with Dirichlet boundary conditions con-
sidered on a bounded regular set 2. We denote also ¢; o the pos-
itive first eigenvalue associated to A; () : —A¢; = A1, ¢ > 0
n Q,¢1 = 0 on 09, ||41,0ll ;0 = 1. We recall some well known facts
about the equation (see [1] for instance)

—Au+u® = w?uin Q,u =0 on O0. (29
2

It does not exists any non trivial solution u of (29) for w
A1(€2). The functions ey g,e > 0 satisfies —Acup, — w?un, + e3ud,
(A1 (Q) —w?)edr 0 +e3¢?,9. This means that e¢; o is a supersolution of
(29) ife? < w?—X; (). The functionsu = M > 0 satisfy —Autudw?u =
M3 — w?M. Thus M is a supersolution of (29) if |w| < M. We deduce

II VAN
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the existence of a unique maximal non trivial positive solution u of (29)
that satisfies

(@ = A (@) dra Su<ul, if WP >A(Q). (30)
We make also some preliminary remarks about the solutions of (28) .
Let u a solution of (28) with initial conditions {u (0) = a, 6 u (0) =0} .

We consider the function E (u) = (8,u)? + w?u? 7. Computlng
O (rPE (u) (r)) for p > 0 an integer and integrating, we find

PE (u) (r) :p/OT rP=1 ( 2u? - —24—) dr+(p—4) /OT rP~ 1 (8,u)? dr

(31)
This is an analogous of the Pohozaev relation if one takes p = 3. We
state also the radial versions of the energy relation : we multiply (28)
with u and integrate over [0,r] to get

““;‘7‘261" (u?) (r) = /OT r? (w?u? —u?) dr — /Or r? (8,u)? dr (32)

Also, let wus denote wv a positive solution of (28) on a segment
[o,a+ B],00 > 0,8 > 0. We consider on the intervall [a + §,a + 8 + ¢]
the functions v, ¢ (r) = yv (r — 9) gr:—‘s), with & — § > 0,7 > 0. Remark
that Tvy5(r) = Vy5(r) = 4V (r — ). We denote A, = 82 + 20, the
Laplacian expressed in polar coordinate and compute

V3
r(—Arvys+ 035 — w?v,s) = -V + ..__é ~ WV, 5= —V" (r - §)
V3 (r -
+ ’73—(7'2—)— — WV (r - 6)
3 V3(r—9) V3(r-24)
T (r—07

Thus sgn (—Arv%,s +vd5— w%wg) = sgn ('y 7) This means that
inla+da+d+p],

Vo, 5 18 @ subsolution if vy < inf _r (33)

rela+8,a+8+6) (1 — 9)

Ury, 5 1S @ Supersolution if vo > sup )
refa+d,atdrp) (T —6)

(34)
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Ezistence of a global solution to (28): we consider without loss of
generality @ > 0, the equation being invariant by the transformation
u — —u. Let us denote uq, for w? > A\ (B(0,a)) = (%)2, the unique
non trivial radial solution of (29) on the ball B (0, ). It is easy to check
using (30) , (see for example [1]) that sup,cp(g,q) Ua (%) = ua (0), that
a = f(a) = uq (0) is an increasing continuous function of o € (]—5[, 00)
and limg, = f (o) =0, limg o0 f (@) = |w| - Thus we can denote f~! (a)
the inverse of f, which is defined for 0 < a < |w|. So, for every 0 < a <
|w|, there exists an unique solution u, ¢-1(,) of (28) with initial condi-
tions {u} (0) = 0,u, (0) = a} over [0, f~! (a)] , which is nothing else but
Up-1(q) € H§ (B (0,f7" (a))) expressed in polar coordinates.

We denote in the sequel for short u = ug f-1(,). We know from the
above construction that u have one zero (i (u) = f~!(a). Let us sup-
pose that u possesses N zeros ((; (4));<;<y-, and consider the evolution
system (28) with data given at r = (n (u), i.e. with initial condi-
tions (0, 0;u ({n (u))). We claim that u satisfies (with the convention
Co (u) =0),

™

™ <Cn+1(u) — (v (u) <O (u) — (vt (u) (35)

Notice that if u is a nontrivial solution over [0,(n (u)], then |u| €
H} ([¢ (w),¢iv1 (1)), 1 < i < N is a non trivial positive solution. So we

have A; ([G (u), Cirr (u)])? = (m)2 < w?, that proves the left
hand side of (35).

We denote in the sequel Iy = [(n (u),2(n§ (u) — (v-1 (u)] and uj,
the unique non trivial positive solution of (28) that belongs to H} (In) .
According to (33), we consider u, s the subsolution of ur, € H} (Iy),
with § = (v (u) = (v-1 (u), and y = infyer, oy = Z2ll=rnl) g4
we have

(Brury)® (G (1) > (Brtty 5)% (Cwv (u)) (36)
Furthermore, ( 31, case p=0) proves that

E (uy,6) (Cn (1) = (8ruy,6)® (Cn (1) > (Bruy,6)® (20N (u) — (vt (1)) -
We have

(Bruy 5)% (2N () = (vt (1) = (Bru)? (G (),
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thus (8,.u7,5)2 (Cn (w)) > (8,u)? (Cw (u)) . This inequality together with
(36) implies

(Brury)? (Cv (w) > (Bru)? (Cv (u)). (37)

Now, let us consider g = inf (|u|,ur,). This function has a zero at
(v (u). We denote (ny1(9) < 2{n (u) — (n—1(u) its next zero, and
I, = [Cn (u),¢n+1(g)]. According to (37), g satisfies g (r) = |u|(r)
on a positive neighborhood of {y (u). Furthermore, g is a superso-
lution of (28) over I,. This means that there exists a positive solu-
tion H¢ (Iy) @ w' < g of (28). Now, let us suppose that (n41(g9) =
2(n (u) — {n—1 (u) . This implies that there exists two distinct positive
solutions ' and uy,, that belongs to H} (I,) , absurd. Thus we must have
Cn+1(9) < 2¢n (u) — (n-1(u). Now, as |u| is the unique positive solu-
tion of (28) that belongs to H{ (I,) , we deduce |u| = v’ < inf (|u|,ur,).
Thus |u| = inf (ju|,uy,) . We get (n+1(u) < 2¢n (u) — {ny—1 (u), ending
the proof of (35).

Using (35), we are able to construct by an induction argument a
global solution of (28) for every initial conditions {u} (0) = 0, us (0) = a}
satisfying w? > a2.

Asymptotic behavior :

As |u| is the unique positive solution that belongs to
H} ([¢ (w), ¢ (w)]),1 < 4, it satisfies the estimation wu? < w?.
Furthermore the function U (r) = ru(r) satisfies the equa-
tion {—U” - w?U + %3- :O} considered with initial condition
{U' (0) = a,U (0) = 0} . The functional f = (U’)? + w?U? — %4,, satis-

fies f' (r) = 2U—:§Q > 0. Furthermore we compute r2E (u) (r) = f (r) +
70y (uz) + u2. Evaluating this last expression at the sequence of points
{¢ (0ru)};>0 , we get limsup, o, 72 (w2u2 - “’74) (r) > f(0) > 0, that
proves the first limit. From ( 31 , case p=0) and the proof above,
E (u) (r) is a positive decreasing function. Thus lim, , E (u) (r) =
E (u) (00), and lim, o Gru (r) = 0. Thus lim, 5o u(r) = u(o0) is a
particular solution of (28) that satisfies u (00)? < w?. So u (c0) = 0, that
proves the second limit and ends the proof of the theorem.
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