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ABOUT THE EULER-POINCARE
CHARACTERISTIC OF SEMI-ALGEBRAIC
SETS DEFINED WITH TWO INEQUALITIES

Nicolas DUTERTRE

Abstract

We express the Euler-Poincaré characteristic of a semi-algebraic
set, which is the intersection of a non-singular complete intersec-
tion with two polynomial inequalities, in terms of the signatures
of appropriate bilinear symmetric forms.

1 Introduction

Let ' = (Fy,...,F) : R® — R¥ n > k, be a polynomial mapping
such that Wr = F~1(0) is a smooth non-empty manifold of dimension
n —k. Let g : R® — R be a polynomial. For g = w = 23 + -+ + 22,
Szafraniec in [Sz2] defined a polynomial algebra Ag in terms of F' and
w and two bilimear symmetric forms ® and ® such that if Ag is finite
dimensional and ®M is non-degenerate then

x(WR) = (—1)"signature ® if n — k is odd,
x(WR) = signature ®M if n — k is even.

In [Dutl] we adapted his method to the case giwg proper. We defined a
polynomial algebra Ag in terms of F' and g and four bilinear symmetric
forms ®, M ®, and @f]\/f such that if AR is finite dimensional and ‘IDQ/[

is non-degenerate then

e if n — k is odd
x(Wrn{g> 0}) - x(WR N{g < 0}> = (—1)"signature ®,

(W > 0})+x (Wrnf < 0}) —2x (Wrn{g = 0}) = (-1)*

signature @,
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e if n —k is even

X(WR N{g > 0}) - x(WR N{g < 0}) = signature (IDy,

X(WR N{g = 0}) + x(WR N{g < 0}) = signature ®M.

The aim of this paper is to generalize these formulas in two ways.
The first is to study the case where gy, is not proper. For this we will
define two polynomial algebras Ar and Bgr, four bilinear symmetric
forms ®, ®M, o, @é\/[ on Agr and two bilinear symmetric forms ¥ and
V¥, on Bgr such that if, Ag and Br are finite dimensional and @, is
non-degenerate, then (see Theorem 4.4) :

e if n—kisodd
X(WR n{g > 0}) +X<WR N{g < 0}) -
(—1)k (signature ® — signature ¥),
X(WR N{g > 0}) - x(WR N{g < ()}) =
(—1)* (signature @, — signature ¥,,),
o if n —k is even
X(WR N{g = 0}) +X<WR N{g < o}) =
signature ®M + (—1)*!signature ¥,
X(WR N{g > O}) — X(WR N{g < 0}) =
signature ‘I)y + (—1)*signature ¥,,.

The second generalization will concern the following semi-algebraic
sets :

where x,7 € {<,>} and ¢,f : R" — R are polynomials. We will
define three polynomials algebras Ar, Br and Cr and several bilinear
symmetric forms on them. Under some conditions on the algebras and
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on the bilinear symmetric forms we will be able to express the following
Euler characteristics

(W0 {g+0, £70}),

in terms of signatures of suitable bilinear symmetric forms (see Theorem
5.1 and Theorem 6.1). As a consequence we will obtain formulas for the
Euler characteristic of the semi-algebraic sets

Wr N {g*0}n{f =0},

where Wr N {f = 0} admits some isolated singularities (see Corollary
6.2).

Remark 1.1. In [Dutl] we give formulas for x(WrN{g=0, f?0}) under
a finite dimensional condition. But it is clear that this condition is not
generic and holds only when dim Wgr = 1.

Finally we will study the case dim Wr = 2 and we will show that in
this case, we need only one polynomial algebra and thus we can obtain
easier formulas.

Our main tools are Morse theory for manifolds with boundary, which
is the subject of Section 2, and the theory of Frobenius algebras, which
is the subject of Section 3. Section 4 is devoted to the study of the semi-
algebraic sets Wr N {g*0} with g7, non-proper. Section 5 and Section
6 are devoted to the sets Wr N {g % 0, f70}. In Section 7, we study
the case dim Wr = 2. Our work relies on the machinery developed by
Szafraniec in [Sz1] and [Sz2]| and we will often refer to it.

The examples are computed with a program written by Andrzej
Lecki. The author is grateful to him and Zbigniew Szafraniec for giving
this programm and for explaining how to use it. He also thanks Karim
Bekka for his comments on this paper.

2 Morse theory for manifolds with boundary

We recall the results of Morse theory for manifolds with boundary. Our
reference is [HL] where the results are given for a C*° manifold M with
boundary OM. For simplicity we will present the results for manifolds
with boundary of type MN{gx0}, * € {>, <}, where M is a C° manifold

47 REVISTA MATEMATICA COMPLUTENSE
(2001) vol. XIV, num. 1, 45-82



NICOLAS DUTERTRE ABOUT THE EULER-POINCARE CHARACTERISTIC OF ...

and g : M — R a C™ function such that M Ng~1{0} is smooth. In fact
this is the case we need in the following sections.

Let M be a C*° manifold of dimension n. Let g : M — R be a
C* function such that Vg(x) # 0 for all z € g~1(0). This implies that
Mng~1(0) is a smooth manifold of dimension n—1 and that MN{g > 0}
and M N{g < 0} are smooth manifolds with boundary. Let f : M — R
be a smooth function. A critical point of fiyn(g>0y (resp. flangg<o})
is a critical point of fiyrngg>0} (resp. fian{g<oy) or a critical point of
finng=1(0)-

Definition 2.1. Let ¢ € M Ng='(0). We say that q is a correct critical
point of finngg>0y (Tesp- fivnig<oy) if q is a critical point of fiarng-—1(0)
and q s not a critical point of fias-

We say that q is a correct non-degenerate critical point of finrnig>0}
(resp.  fimn{g<oy) if q is a correct critical point of fiarnig>01 (Tesp.
fivngg<oy) and q is a non-degenerate critical point of fining—1(0)-

If q is a correct critical point of fiynig>01 (resp. flarngg<oy) then
Vf(q) #0, Vf(q) and Vg(q) are colinear and there is 7(¢) € R* with
Vi(g) =7(q) - Vg(q).

Definition 2.2. If q is a correct critical point of fiyngg>0y then
e Vf(q) points inwards if and only if T(q) > 0,
e Vf(q) points outwards if and only if T(q) < 0.

If q 1s a correct critical point of fiyngg<oy then
e Vf(q) points inwards if and only if T(q) <0,

o Vf(q) points outwards if and only if T(q) > 0.

Definition 2.3. A C* function f: M N{g >0} — R (resp. M N{g <
0} — R) is a correct function if all critical points of fiMng—1(0) are
correct. A C* function f: M N{g >0} = R (resp. MN{g <0} —
R) is a Morse correct function if fiyn(g>o0y (Tesp- fimngg<oy) admits
only non-degenerate critical points and if f admits only non-degenerate
correct critical points.

Proposition 2.4. For any C° manifold M and for any function
g: M — R such that Vg(z) # 0 for all z € g=1(0), the set of C®
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Junctions f : M — R such thal fiayngg>0y and finngg<oy are Morse
correct functions is dense in C>°(M,R).

We will denote X(M N{g=*0}nN {f?O}) by xx7 and we will use the
following result.

Theorem 2.5. Let M be a C*° manifold of dimension n and let g :
M — R be a C* function such that Vg(z) # 0 for all z € g~*(0). Let
J M — R be aC™ function such that f|yr is proper, and that fiynig>0}
and fipn{g<oy are Morse correct. Let {p;} be the set of critical points
of fir and {\;} be the set of their respective indices. Let {q;} be the
set of critical points of finng—1(0) and {1j} be the set of their respective
indices. Then we have

Xox—xz== >, DM+ D (=1,

i/f(p;)>0 3/ f(q5)>0
9(p;)>0 7(q4)>0
e e G L N G D G D L NN G
i/ f(p;)<0 i/ f(a;)<0
9(p;)>0 7(q4)<0
and
X<z —X<== > DM+ D (=1,
i/ f(p3)>0 i/f(qj)>0
9(p;)<0 7(q4)<0
X —X<== (D)"Y (=DM + (=) YT (—1e
i/ f(p;)<0 i/ f(a;)<0
9(p;)<0 7(q4)>0

3 The global residue or Kronecker symbol

In this section, we recall the construction of the global residue (or Kro-
necker symbol) on zero-dimensional polynomial algebras and we give its
main properties. Actually we present Szafraniec’s generalization [Sz2]
of the global residue ([BCRS],[Ca],[Ku],[SS]).
Let ' = (f1,...,fn) : R* = RN, where N > n, be a polynomial
R(z]

mapping. We denote R|z1,...,x,] by R[z]. Let Agp = & and let

us assume that dimgr Ar < +00, AR is in that case a zero-dimensional
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polynomial algebra (if N = n it is a complete intersection). Let V¢
(resp. VRr) be the set of common zeros in C™ (resp. R") of f1,..., fn;
Ve is a finite set of points and we can write

VC = {plv s apm} U {pm+1apm+1a s >p8a]Ts}7

where
VR - VC mRn - {pla' .. 7pm}7

and Vi \ VR consists of pairs of conjuguate points.

We denote AR, (resp. Acp,) the local algebra Or . /(F') (resp.
Ocp,;/(F)) where OR p, (resp. Oc p,) is the ring of real (resp. complex)
analytic germs at p;.

Let II; : AR — ARy, ¢ = 1,...,m, be the projection such that
IL;(f) is the residue class of f in ARry,. In the same way, we define
I : AR — Acp,;, j =m+1,...,s. The natural projection

H : AR - ARvPl X X AR:pm X AC:p'm+1 X X AC:ps

fo= () () Mga (), -5 s ()

is an isomorphism of R-algebras.
For 1 <i,j < n, we define

f’i(ylv"‘ Y Yji—1,Lj, - 7xn) _fl(y17 yYjr Tj+1s- - ,.’En)
Tj = Y

E?j ($’ y) =

It is easy to see that T; ;(x,y) defines a polynomial in Rz, y|. We define
a natural projection Rz, y] — Ar ® Ar by

aq « 1 B, ay « 1 s
Ty XYy Y T T QY Y

Let T be the image of det [T; j(z,y)] in Ar ® Ar. Let d = dimrAr
and let eq, ... ,eq be a basis in Ag. Then dimrAr ® Ar = d? and the
e;®ej, 1 <1,5 <d, form a basis in Ag ® Ar. Thus there exist t;; € R

such that
d d
T = Z tije; ® ej = Zei@éi’
i,j=1 i=1

where éi = Z?zl tijej.
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Theorem 3.1. Assume that for eachp € Vi, (f1,... , fn) = (f1,--- s fn)
in Acp. Then é1,...¢éq form a basis in AR.

Proof. See [Sz2] p353-354. |
Hence we can find aq,... ,a4 in R such that 1 = a1é1 +-- -+ a4é4 in
Ar. We define a linear functional ¢ : Ag — R in the following way
d(g) = arby + - - -+ agbg if g =bieg + -+ + bgeq in AR.
For all 1 <i <s, let n; : Ak p, — A denote the restriction of 1! to
{0} x -+ x Ak p, X --- x {0},

where K = R or C and let ¢; = ¢ o n; be the natural restriction of ¢ to
AK,pi' Let

a(fi,. ..
— (f17 ) fn) (.%')’

o(z1,...,2n)

write h; = I1;(h) where h is the image in Ar of h. Then we have

Theorem 3.2. Assume that for eachp € Vo, (f1,-.., fn) = (f1,-- s fn)
in Acp. Then for each i € {1,... ,n}, ¢;(h;) = dimg Ak p,. In partic-
ular, for each i € {1,... s}, ¢;i(h;) > 0.

Proof. See [Sz2] p 353-354.

h(z)

Remark 3.3. When N = n it is clear that the assumption holds. In
that case, ¢ is the usual global residue ([BCRS], [Ca], [Ku], [SS]).

Let uw € R[zy,...,x,] and let us define the following bilinear sym-
metric form &, :

®, : AR X Ar — R defined by ®,(91,92) = ¢(ug192).

We have

Theorem 3.4. @, is non-degenerate if and only if for each p € V¢,
u(p) # 0.
Proof. See [Sz2] p353 and [Sz3] p304.
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For all 1 <j < m, let @/, be the bilinear symmetric form defined on
AR.p, by ®(g1,92) = ¢;(ug1g2). Then

Proposition 3.5.

m
signature ¢, = Z signature <I>ﬂ.
j=1
Proof. It is clear.

Now we investigate the case ®, degenerate. Let d = dimgpAgr. For
e > d, let ®,c be the bilinear symmetric form defined on Ar by

Due(g1,92) = P(ugr92),

and let @ie be the natural restriction of ®,¢c to AR p;. We have
Proposition 3.6. If &, is degenerate then there exists p € Vo such
that u(p) = 0 and

signature @, = Zsignature @ie where 1 < j <m and u(p;) # 0.

Proof. See [Dutl] Proposition 4.1 or [Dut2] Proposition 2.7.

4 Study of the semi-algebraic sets Wr N {g > 0}
and Wr N{g <0}

Let F : (Fy,...,F,) : R® — R* n > k, be a polynomial mapping
such that Wg = {z € C"/F(x) = 0} is a smooth complex manifold of
dimension n — k, which implies that Wr = {z € R"/F(z) = 0} is a
smooth real manifold of dimension n — k, provided it is not empty. Let

o(F, ..., Fy)
M=———"".
8(331, e ,:L‘k)
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Let w = 22 +... 4+ 22, let I be the ideal generated by Fi, ... , Fy and all
(k+1) x (k+ 1) minors

ow, Fi,...,Fy)

8(:ci1,... ,xik+1).

Let Ag = % and Vo = {p € C"/ for all u € I, u(p) = 0}. Assume
that dimgr AR < +00, hence V¢ is finite and

VC - {pla v apm} U {pm+17pm+l7' .- 7pSaZTS}'

The set of critical points of wyyy,, is Vo and VR = VeNR"™ = {p1,... ,pm}
is the set of critical points of wyyy. After an appropriate change of
coordinates, one may assume that for each p € Vo, M(p) # 0.

Now let g : R® — R be a polynomial such that ¢g=1(0) N WR is a
smooth manifold of dimension n — k — 1. Let (z1,... ,Zp; A1, .., Aks )
be a coordinate system in R"T**1 and let

H - Rn+k+1 N Rn+k+1
(xlw"vxn;)‘la"’?)\k‘wu’) = (vw+Zf:1)‘ZVFZ+Mvg,F177Fkag)

Let Bgr = Rz, A\, u]/(H) and assume that dimg Br < +00. Let
Yr = {(Q7 A, :U') € Rn+k+l/H(q? A /’L) - 0}
Then YR is a finite set of points and we write

YR = {(qla)‘laﬂl)a .. 7(Ql7)\l7/~jll)}'

The points qi, ... ,q are exactly the critical points of wyrng-1(0) (see

[Sz1]).

4.1 Two local studies

We investigate the situation at a critical point of wyyy, and at a critical
point of wjyrng—1(0)- We begin with wjyy.

For all p € Vx (K =R or C), Ok, is the ring of analytic function
germs defined near p. We set

a(w7F1>"' 7F]€)
o(x1,. ..,k x5)

mj(x) = for each j > k+ 1,
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8(F1, NN ,Fk;mk+1,. .. ,mn)

W) = a1, xn)

Let (Fi,...,Fy) be the ideal generated by Fi,... , Fj in Ok, let Ik,
be the one generated by Fi,..., Fy and all (k+ 1) x (k+ 1) minors

B(w,Fl,... ,Fk)

8(337;1,... ,xik+1)’
and Jk, the one generated by Fi,...,Fi, mg41,...,my. Clearly
(Fl,... ,Fk) C JKJ, - IK,p- Let AKJ, = OKJJ/IK’p. Since

dimr Ar < 400, we have that for each p € Vi, dimkx Ak, < +o00 and
then

Lemma 4.1. for each p € Vi, Ik p = Jk p-

Proof. See [Sz2,p349-350] or [Dut3] appendix.
|

Now we study the local situation at a point p; € Vr. We have
M(p;) # 0 and dimrAR;;, < +oo. Let ¢ : Arjp, — R be a linear
functional such that ¢(h) > 0. Let u € Or,p, be a real analytic germ.

Let @, (resp. M ) be the bilinear symmetric form on AR, given by

& (g1, 92) = d(ugiga) (resp. ®u'/(g1,92) = d(Mugig2)). Let & : Wg —
R be a Morse function which uniformly approximates wyyy in the C?-
topology. Let {pji} be the set of Morse critical points of & lying near
p; and let {\;;} be the set of their respective indices. The following
proposition is an easy generalization of Proposition 3.5, p352 [Sz2].

Proposition 4.2.
1. @/, is non-degenerate if and only if u(pj) # 0,
2. > . (—=1)%i = (—1)*sign u(p;) - signature &), if n— k is odd,
3. > .(—1)%i = sign u(p;) - signature O ifn — k is even.
|

Now we study the situation at a critical point g; of wywyng-1(0)-
Let 1 : Brg, — R be a linear functional such that +(Jac H) > 0
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where Brg; = OR (¢;2;u;)/(H) and let v € OR (g, ,4,) be a real an-

alytic germ. Let U, be the bilinear symmetric form on Br,g; given by
W (g1, 92) = ¥(vgiga). Let & : Wr N g~1(0) — R be a Morse function
which uniformly approximates wjyy,ng-1(0) in the C?-topology. Let {q;;}
be the set of Morse critical points of @ lying near ¢; and let {y;;} be the
set of their respective indices. Then we have

Proposition 4.3.
1. ¥, is non-degenerate if and only if v(gj, Aj, ptj) # 0.

2. In that case >_,(—1)*i = (—=1)**1sign v(gj, \j, p;) - signature W,

Proof. The first part is proved in [Sz2] Lemma 2.2. For the second
point, we use [Szl] Lemma 1.4 and the Eisenbud-Levine formula (see

[AGV], [Ei], [EL]).

4.2 Global study

Recall that Ag = RJ[z]/I is finite dimensional, Vo = {p € C"/ for all u €
I u(p) = 0} is the set of critical points of wyy, and VR = {p1,... ,pm}-
Since one can assume that for all p € Vo, M (p) # 0 then, from Section 3
and the above Lemma 4.1, we can consider the global residue ¢ on AR.
With this global residue, we construct the following bilinear symmetric
forms on AR :

® : Ar x Ar — R defined by ®(g1,92) = ¢(9192),
¢, : Ar x Ar — R defined by D,(91,92) = d(99192),
®M . Ar x AR — R defined by & (91,92) = ¢(Mg1g2),
®M . Arx Ar — R defined by @) (g1, 92) = 6(Mgg1g2).

S

S%

Since Br = RJz]/(H) is finite dimensional, we can consider the
global residue ¥ on Br and we can construct the following bilinear
symmetric forms on BR :

¥ : Br x Bg — R defined by U (g1, 92) = ¥(9192),
U, : BrxBr—R definedby ¥,(91,92) = ¥(ng192)-

55 REVISTA MATEMATICA COMPLUTENSE
(2001) vol. XIV, num. 1, 45-82



NICOLAS DUTERTRE ABOUT THE EULER-POINCARE CHARACTERISTIC OF ...
Recall that Yr = {(qi,A1,11),---, (@, A\, )}. We  will  denote
Wr N {g=*0} by Wr(g*0) where x € {<,=,>}.
Theorem 4.4. Assume the following conditions

e W is a smooth complex manifold of dimension n — k and Wg is
non-empty,

o WcnN gal(()) is a smooth complex manifold of dimension n—k —1
and Wr N g~ 1(0) is non-empty,

e for each p € Vo, M(p) # 0,

e &/ is non-degenerate,
then

1. Wr is a smooth real manifold of dimension n — k,
Wr N g~ 1(0) is a smooth real manifold of dimension n —k — 1,
o, M <I>£/[ and ¥ are non-degenerate,

v, is non-degenerate,

LA S o

All critical points of Wjwg(g>0) and of Wiy (g<o) lying in Wr N
g~ 1(0) are correct,

6. if n—k is odd
X(WR(g > 0)) + X<WR(9 < 0)) =
(—1)* (signature ® — signature ¥),
X(WR(Q > 0)) - X(WR(g < 0)) =
(—1)* (signature ®, — signature ¥,,),
7. if n—k is even
(W9 = 0)) +x(Wr(g <0) =
signature ®M + (—1)¥*Lsignature 0,
(WR9>0> X Wr( g<0)

signature ®)' + (—1)*signature ¥,.
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Proof. 1. and 2. are clear.

3. is an application of Theorem 3.4.

Since ®, is non-degenerate, for all p € Vo, g(p) # 0. This means that
there is no critical point of w)yy, in the zero locus of g. Thus for every
point (g, A, ) € C™"*+1 such that H(q, A, ) = 0,  # 0 which implies
that W), is non-degenerate and that the critical points of W)y nfg>0y and
WiwgrN{g<o} lying in g~ 1(0) are correct. This proves 4. and 5..

To show 6., we choose a function @ : Wg — R which approximates w|y
such that Wy n(g>01 and Wyyrng<oy are Morse correct functions. For
all j € {1,...,m}, let {pj1,...,pjo;)} be the set of critical points of
@wy lying near p; and let {Aj1, ..., Aj,(;)} be the set of their respective
indices. For all s € {1,... I}, let {gs1,...,qsr(s)} be the set of critical
points of Gy ng—1(0) lying near gs and let {ps1, ... , psr(s)} be the set of
their respective indices. Applying Theorem 2.5, we have

(WRg>O> Z Z ”*ZZ 1)Ps,

J/g(pj)>0i=1 s/ps<0 i=1
(WRg<O) Z Z 32+ZZ 1)Psi.
3/9(p;)<0i=1 s/pus>01=1

Combining these two equalities gives

7(s)

(nto20) (W 20) - S50+ 3
J =1

s

a(5)

Y(Wr(g20) = x(Wrig<0) = Zslgng pi) Y (-

=1
7(s)

Z sign fis Z(—l)p”.
s i=1

Using Proposition 4.2 and Proposition 4.3 and assuming n — k odd, we
get

X(WR(g > 0)) + X(WR(g < 0)) -

—1)k Z signature ®J 4 (—1)F+! Z signature W®,
i S
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X(WR(Q Ea 0)) - x(WR(g < 0)) =

(—1)F Z signature <I>§ +(~1)F Z signature 7.
J s
Hence, by Proposition 3.5

X(WR(g > 0)) + X(WR(g < 0)) = (—1)* <signature ® — signature \I/),

X(WR(g > O)) —X(WR(g < 0)) = (—l)k(signature ®,+signature \I/u)'

We prove the case n — k even in a similar way.

Corollary 4.5. Under the same assumptions, we have

o Ifn—kis odd
1
X(WR(Q > 0)) = 5(—1)k(signature O + signature @,

—signature ¥ 4 signature \Ilu),

1
X(WR(Q < 0)) = 5(—1)k(signature ® — signature @,

—signature ¥ — signature \1/”),

o Ifn—k is even

1
X(WR(Q > 0)) =3 <signature dM 4+ signature @y)
+=(—=1)¥ (signature ¥ — signature \Ifu),

1
X(WR(Q < 0)) =3 <signature dM _ gignature @é”)

%(—1)’“

N

signature ¥ + signature \Ifu).

Proof. It is clear.
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4.3 Examples

Example 1. The first example is trivial but it enables us to check our
formulas. Let Wr = R? and let g(x1,9) = 21 — 1. We are in the
situation n = 2 and k = 0. The corresponding algebras are

Rix1, z2] and By — Riz1,x2, 1]

A =
R (2:131, 23:2) (2%1 + M, 2:L’2, 1 — 1)

The computer gives

e dimgpARr = 1, signature ® = 1, rank ®, = 1 and signature ®, =

—1,
e dimrBr = 1, signature ¥ = —1, signature ¥, = —1 and rank
v, =1,

so, applying Theorem 4.4, we find
x(z1 > 1)+ x(z1 < 1) =2,

x(x1>1)—x(z1 <1)=0.

Example 2. Let Wr = R? and let g = 25+ 2223 —12+1. Computations
give

e dimgARr = 1, signature ® = 1, signature ®, = 1 and rank &, = 1,

e dimrBr = 7, signature ¥ = —1, signature ¥, = —1 and rank
v, =T

so, applying Theorem 4.4, we find
x(g20)+x(g<0)=2,

x(g>0)—x(g<0)=0.

Example 3. Let Wr = R? and let ¢ = x‘rf + zox3 + x% — 1. The
computer gives

o dimgAr = 1, signature ® = 1, signature ®, = —1 and rank
o, =1,
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e dimrBr = 11, signature ¥ = —1, signature ¥, = 1 and rank
v, =11.

so, applying Theorem 4.4, we find
x(920)+x(g<0)=2,
xX(g=0)—x(g<0)=-2

5 Study of the semi-algebraic sets defined with
two inequalities

In this section we are interested in computing the Euler characteristic of
semi-algebraic sets defined with two inequalities. For convenience we will
denote Wr N{g+0}N{f70} by Wr(g=0, f70) and x(Wgr(g*0, f70)) by
X2 where x,7 € {<,=,>}. We will proceed as in the previous section,
replacing w by a polynomial f such that fy, is proper.

Let F = (F,...,F;) : R® — R* n > k, be a polynomial mapping
such that W = {z € C"/F(z) = 0} is a smooth complex manifold of
dimension n — k, which implies that Wg = {z € R"/F(z) = 0} is a
smooth real manifold of dimension n — k, provided it is not empty. Let

AR, ... Fy)
A, )

Let g : R” — R be a polynomial such that Wg N ¢~!(0) is a smooth
manifold of dimension n — k — 1. Let f : R®™ — R be a polynomial,

let I be the ideal generated by Fi,...,Fy and all (k+ 1) x (k+ 1)
minors M Let Ag = R[z|/I and Vg ={p € C"/ for all u €
i Tig g

I u(p) = 0}. Assume that dimg Ar < +00, hence V¢ is finite and

M =

Ve =1{p1,-- ,Pm} U{Pm+1,Pm+1,- -+ »Ds;Ds}-

The set of critical points of fjy, is Vo and Vg = VeNR" = {p1,--- ,pm}
is the set of critical points of fiyy. After an appropriate change of
coordinates, one may assume that for each p € Vo, M(p) # 0.
Let (21,...,Zn; A1, ... , Ag; i) be a coordinate system in R"*+1 and
let
H : RntkE+1 N RTR+L
@15 @pi A A i) = (VS NVE + Vg Fi,... Fr.g).
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Let Br = % and assume that dimgBr < +oo. Let Yr =

{(¢; \; ) € R"+1/H (g, A\ 1) = 0}. Then YR is a finite set, say

YR = {(q17)‘1a,u1)a cee a(Qla)‘b/-Ll)}-

The points qi, . .. , ¢ are exactly the critical points of fiyng-1(0)- Now
it is clear that Lemma 4.1, Proposition 4.2 and Proposition 4.3 are still
true if we replace w by f.

Let ¢ be the global residue on Ar and consider the following bilinear
symmetric forms on AR :

® : Ar x AR — R defined by D(g1,92) = ¢(9192),
¢, : Ar x Ap — R defined by  ®(g1,92) = ¢(99192),
®; : Ar x AR — R defined by  ®(g1,92) = ¢(f9192),
Pry : AR x AR — R defined by  ®(g1,92) = #(9f9192)-

In the same way, we can define ® @3/[, @?4 and @%.
Let ¥ be the global residue on Br and consider the following sym-
metric forms on BR :

¥ : Br x Br — R defined by U(g1,92) = ¥(9192),
U, : BrxBr—R definedby ¥(g1,92) =9¥(f9192),
U, : BrxBr—R defined by ¥(g1,92) =¥ (1g192),
Vs, @ BrXBr— R defined by V(g1,g2) = ¥(frgig2)-

Theorem 5.1. Assume that

o Wc is a smooth complexr manifold of dimension n — k and WR is
not empty,

Wen gal (0) is a smooth complex manifold of dimension n—k—1
and Wr N g~ 1(0) is not empty,

for each p € Vo, M(p) # 0,
o &,; is non-degenerate,

e U is non-degenerate,

® flwg is proper,
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then
1. Wr is a smooth real manifold of dimension n — k,
2. Wr N g~ 1(0) is a smooth real manifold of dimension n —k — 1,
3. &4, Oy, oM @y, @}4 and (IJ% are non-degenerate,

4. WrNf~1(0) is either a smooth real manifold of dimension n—k—1
or empty,

5. all critical points of flwg(g>0) and of fliwg(g<o) lying in Wr N
g~ 1(0) are correct,

6. ¥, and ¥, are non-degenerate,

7. WRNf1(0)Ng=1(0) is either a smooth real manifold of dimension
n—k—2 or empty,

8. ifn—k is odd

11 1 1 X>> X>=1X<,=
1 -1 1 -1 Xz | L9y 0 _
r 1 -1 -1 X<,> X>="X<,=
1 -1 -1 1 X<,< 0
signature ®; — signature W
(—1)k » signature ® — signature ¥y ’

signature @, + signature Wy,
signature ®, + signature ¥,

if n—k is even

r 1 1 1 X>,> X>=+X<,=
1 -1 1 -1 X27< _9x O
1 -1 -1 X<.> X>=~ X<.=
1 -1 -1 1 X<,< 0

signature ®M + (—1)**!signature W
signature @j‘/ + (—=1)¥*signature ¥
(—1)ksignature ¥,

signature

signature ®

oM
o
fg
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Proof. 1., 2. and 3. are clear.

Because ®4¢ is non-degenerate then for all p € Ve, f(p) # 0 and
Wgr N f71(0) is smooth or empty which shows 4. Because ®,¢ is non-
degenerate then for all p € Vo, g(p) # 0 and this proves 5. and this also
implies as in Theorem 4.4 that ¥, is non-degenerate. Furthermore if W
is non-degenerate then W, is also non-degenerate and 6. is proved.
If W, is non-degenerate then for all (¢, A, u) € C™tF+1 such that
H(gq,\, 1) = 0, f(q) # 0 which implies that Wg N f5'(0) N g5'(0) is
smooth i.e 7. is shown.

To prove 8., we choose a function f : Wr — R which approximates fjy

in the C?-topology such that JEIWR(gZO) and .ﬁWR(gSO) are Morse correct
functions. For all j € {1,... ,n}, let {pj1,... ,pjo(;)} be the set of crit-
ical points of f\WR lying near p; and let {\j1,...,\js(;)} be the set of
their respective indices. For all s € {1,... ,1}, let {gs1,... ,qsr(s)} be the
set of critical points of ‘]?lemg—l(O) lying near gs and let {ps1, - -+, fsr(s)}
be the set of their respective indices. Applying Theorem 2.5, we get

o(3) (s)
Xz —Xzm= D D (CDMIE YTy (1 (1)

3/9(pj)>0 i=1 s/ps<0 =1
f(p;)>0 flas)>0

a(J) 7(s)
Xz cxz== (FD)F Y Y (DN R Y Ty (e

3/9(p;)>0 =1 s/ps>0 =1
f(pj)<0 f(gs)<0

(2)
o)) (s)
X<z —Xg== ) Y (=DM YN (-1 (3)

i/9(p;)<0 i=1 s/ps>0 =1
f(pj)>0 f(as)>0
o(j) 7(s)
i D DI WIS Ve N C V) W W S Ve
i/9(pj)<0 i=1 s/ps<0 i=1
f(pj)<0 f(as)<0

(4)
We prove the case n — k odd. The combination (1) + (2)+ (3) + (4) gives

X>>FtX>< —2X>=tXx< >t X< — 2x<= =
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a(5)

7(s)
> sign f(py) D (DM DY (—1)He
J i=1 s =1
Proposition 4.2 and Proposition 4.3 imply

X>> t X2 <~ 22X = HX<> F XS T 22X = =
(—1)*signature O+ (—1)**'signature W.

In the same way, (1) — (2) 4+ (3) — (4) gives
7(s)

a(j)
Xo > Xz <X >~ X< = D D (=DM sign fgs) Y (—1) =
7 =1 s

i=1

(—1)*signature ® 4 (—1)*"signature W .
Then (1) + (2) — (3) — (4) gives

X>>+X>< —2X>= — X<,> ~X<< T 2X<= =
a(5) 7(s)

Zs1gn (f9) pg)z Zs&gn s f(qs )Z(_l)#si:

=1 i=1

(—1)*signature @, + (—1)"signature W,,.
Finally (1) — (2) — (3) + (4) gives

U(J)
X>>— X>< — X<>+X<<—ZSIgD9P]
7 i= 1

7(s)
Zsign Is Z(—l)“” = (—1)"signature ®, + (—1)"signature ¥,,.
- ;

We prove the case n — k even in the same way.

]
Now consider the following algebra
O = Rlz1,...,zy]
o 0(g, Py By f)
(F]_a oo 7Fk; f7 3($il,~~ ’wik+2))
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Assume that dimgr Cr < 400 then, using [Dutl] Theorem 2.6 and Corol-
lary 2.7, it is possible to express x> - — x<,= and x> — + X< = in terms
of signatures of appropriate bilinear symmetric forms defined on CR.

Remark 5.2. Under finite dimensional conditions and non-degeneracy
conditions, it is possible to express x. 7, *,? € {<, >}, in terms of sig-
natures of bilinear symmetric forms.

Proof. Use the previous theorem, [Dutl] Theorem 2.6 and Corollary
2.7 and the fact that

1 1 1
-1 1 -1
1 -1 -1
-1 -1 1

det =440

—_ = =

5.1 Examples

Example 1. Let Wg = R?, g =21 — 1 and f = 2?2 + 22 — 4. It is clear
that f is proper. Computations give

o dimgrAr = 1, signature ® = 1, signature ®; = —1, signature
®, = —1, rank ¢y, = 1 and signature ®5, = 1,

e dimrBr = 1, signature ¥ = —1, signature ¥, = 1, signature
V,r=—1,rank ¥; = 1 and signature ¥ = 1.

So, by Theorem 5.1,
x(9=>0,f>0)+x(g>0,f<0)—2x(g>0,f=0)+
x(g<0,f>0)+x(g<0,f<0)—2x(g<0,f=0)=0,

x(g>0,f>0)—x(g=>0,f<0)+
x(¢g<0,f>0)—x(g<0,f<0)=0,

x(g=0,f>0)+x(g>0,f<0)—2x(¢9=>0,f=0)—
x(g<0,f>0)—x(g<0,f<0)+2x(g<0,f=0)=0,

65 REVISTA MATEMATICA COMPLUTENSE
(2001) vol. XIV, num. 1, 45-82



NICOLAS DUTERTRE ABOUT THE EULER-POINCARE CHARACTERISTIC OF ...

x(g=>0,f>0)-x(g=>0,f<0)-
x(g<0,f>0)+x(g<0,f<0)=0.

Example 2. Let Wr = R?, let g = 2} + z9m3 + 23 — 1 and let f =
2% + 23 + 22 — 9. The computer gives

e dimgrAr = 1, signature ® = 1, signature ®; = —1, signature
®, = —1, rank ®y, = 1 and signature &5, =1,

e dimgBr = 11, signature ¥ = —1, signature ¥, = 1, signature
V,r=—1, rank ¥y = 11 and signature ¥, = 1.

So, by Theorem 5.1,

x(9g>0,f>0)+x(g>0,f<0)—2x(g>0,f=0)+
x(@<0,f>0)+x(g<0,f<0)—2x(g<0,f=0)=0,

X(920,f>0)+x(g=0,f<0)—=2x(g>0,f=0)-
x(g<0,f>0)—x(g<0,f<0)+2x(g<0,f=0)=0,

6 Study of the case ®; degenerate

Now we investigate the case when Wgr N f~1(0) has isolated singularities.
We keep the notations of the previous section, we put d = dimgr Agr. We
set

e(d) =d and o(d) = d + 1 if d is even,

e(d) =d+1 and o(d) = d if d is odd.
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We define the following bilinear symmetric forms :

Do)t AR X AR = R defined by @ e (91, 92) = ¢(f€(d 9192),

® e, : AR X AR — R defined by ® e, (91, 92) = ¢(f4Pgg1g2),

® o : AR X AR = R defined by @ o (g1, 92) = ¢(f* P g192),

® oy : AR X AR — R defined by ® ot (91, 92) = ¢(f* P gg192).
In the same way, we can define (IDfe(d), q)%(d)g, @%(d) and Fold)g

Theorem 6.1. Assume that
e dimgpARr < +00 and dimg Br < +00,

e Wc is a smooth complex manifold of dimension n — k and Wg is
non-empty,

e WcnN gél(O) is a smooth manifold of dimension n —k — 1 and
Wr N g~ 1(0) is not empty,

e for eachp € Vo, M(p) # 0,
e &, is degenerate,

e &, and V; are non-degenerate,

® fiwg s proper,

1. Wr is a smooth real manifold of dimension n — k,

2. WrNg~1(0) is a smooth real manifold of dimension n —k — 1,
3. @éw is non-degenerate,

4. CID?/[ and (ID% are degenerate,

5. all critical points of flwg(g>0) and of fliwg(g<o) lying in Wr N
g 1(0) are correct,

6. ¥, and ¥, are non-degenerate,

7. WrN f1(0) have isolated singularities or is smooth of dimension
n—k—1 oris empty,
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8. WrN f~1(0)Nng=1(0) is a smooth real manifold of dimension n —

k — 2 or is empty,

9. ifn—k is odd

11 1 1 X>,> X5 = + X< =
b x | == | —ax 0 =
Lol -1l X<z Xo= = X<
1 -1 -1 1 X<.< 0
signature @ yoa) — signature W
(_1)k % signature (I)fe(d) — signature Wy ’

if n—k is even

signature (I)fo(d)g + signature Wy,
signature @ (), + signature ¥,

1 1 1 1 X>,> X>=1 X<,=
1 -1 1 -1 X>.< 0
X > _2X —
1 1 -1 -1 X<,> X>=—X<,=
1 -1 -1 1 X<,< 0

[ signature (I)%m) + (=1)**signature ¥, 1

signature @%(d) + (—1)F+!

: M
signature (I)fe(d>g
M
foldlg

signature ® + (—1)"si

Proof. 1., 2., 3., 5., 6. and 8. are clear.
For 4. and 7. use Theorem 3.4.

For 9. we proceed as we did in Theorem 5.1 and we use Proposition 3.6.

signature ¥

+ (—1)*signature ¥,

gnature Wy,

For example, in order to prove, in the case n — k odd, that

X>>t+tX><tX<> P — 22X = — 2x<= =

(—1)ksignature P fo(a) — signature W,
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we first notice that, keeping the notations introduced in the proof of
Theorem 5.1,

X>>+X>< = 2x>=+X<> F X<< = 2X<= =

a(4) 7(s)

Yo sign f(p) Y (1N D (~1)

J/f(pj)#0 i=1 s =1

Using Proposition 4.2, we have

() a(j)
S sign f) Y (DM = DT sign fpy)" DY (-1 =
3/ f(p;)#0 i=1 3/ f(pj)#0 i=1

(—1)F Z signature @‘;D(d).
3/ f(pj)#0

By Proposition 3.6, we obtain
a(j)
Z sign f(p;) Y (—1)%i = (—1)"signature P fo(a)-

3170 i=1

<

By Proposition 4.3, we still have
7(s)
ZZ(—l)““ = (—1)**!signature 0.

s =1

Now using the results of Section 4, we can express

X(WR(g > 0)) + X(WR(Q < 0))7

X(WR(Q > 0)) - X(WR(Q < 0))7

in terms of signatures of suitable bilinear symmetric forms. We will

write
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e if n — k is odd
X(WR(g > 0)) + X(WR(g < 0)) =
(—1)* (signature ®* — signature %),
X(WR(g > 0)) - X<WR(g < 0)) -
(—1)* (signature P — signature \Ill‘j) ,
e if n — k is even
X(WR(g > 0)) + x(WR(g < 0)) =
signature M« + (—1)"*!signature U,
X(WR(Q > 0)) - x(WR(g < 0)) =
signature q’é\/l’w + (—1)*signature wy,
where these bilinear symmetrics forms are defined on

Rilzy,... 2] or Rz, ...,z Ay Ay ]
(Flv"‘7Fk7M) (VW‘FZf:lAZVE—F/J[vg,Fl,,Fk,g)

(Tig e Tigyq)

Now we are able to give a formula for a semi-algebraic set which is the
intersection of a compact algebraic complete intersection with isolated
singularities and a polynomial inequality.

Corollary 6.2. Under the assumptions of Theorem 4.4 and Theorem

6.1, we can express x> — and X< — in terms of signatures. If n —k is
odd

(—=1)* (signature ®“ —signature W* —signature ® yo() + signature \I!) =
X27: + XS’:7

and

(—1)* (signature Py +signature Wy —signature ® so(a),—signature \Ilf#> =
X>="X<,=
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If n — k is even
signature M« + (—1)k+1signature U¥ — signature @j\c{(d)—
(—=1)**Lsignature Upr=x>-+x<-,
and
signature @y’w + (—1)ksignature \Ili‘j — signature @%@g—

(—1)*signature UV, =X>=—X<=

Proof. Suppose n — k is odd. By Mayer-Vietoris sequence, we have

X(WR(Q > 0)) =X>> T X>< T X> =

(Y

IA
A%

X(WR(9§0)> X<> + X

IA
IA

- XS7:'

) )

X(WR(g > 0)) + X(WR(Q < 0)) =X>>FtX><—

X>=1tX<>tX<<— X< =

Combining with the first equality in Theorem 6.1, we obtain

X(WR(Q > 0)) + X(WR(Q < 0)) — (—1)k(signature ® fo(a) — signature \If) =

X>=1X<,=-

Using Theorem 4.4, we get

X>="TX<==
(—1)* (signature * — signature U — signature ® yo(a) + signature \1!)

Now if we express x> — — X<,—, we obtain the second relation.
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6.1 Example

Let Wr = R?, let g = 23 + 2o + 1 and let f = (22 + 23 — 4) x ((21 —
2)2 + 23 — 9). Since |f(z)| — +oc as ||z|| — +o0, f is proper. Now
Lecki’s program gives
e dimgpARr = 5, rank ®; = 3 so @ is degenerate, rank &, = 5 so
®, is non-degenerate,
e signature @5 = —1, signature ® ¢ = 3, signature @5, = 1 and
signature ® s, = 1,
e dimgBr = 11, rank ¥; = 11, signature ¥; = 3, signature ¥ =
—1, signature ¥, = —1 and signature ¥,; = —1.

When we apply Theorem 6.1, we obtain

x(g=>0,f>0)+x(g>0,f<0)—2x(9>0,f=0)+
X(@<0,f>0)+x(g<0,f<0)—2x(g <0, f=0)=—4,

X(9>0,f>0)+x(g>0,f<0)—2x(g>0,f=0)-
x(g<0,f>0)—x(g<0,f<0)+2x(g<0,f=0)=0,

7 The case of surfaces

In this section, we study the case of semi-algebraic sets defined as an
intersection of a smooth algebraic surface with two polynomial inequa-
lities. Let F = (F,...,F,_2) : R® — R" 2 be a polynomial mapping
such that We = Fg'(0) is a smooth complex manifold of dimension 2.
Let Wr = F~1(0). Let

A(F1,... Fn)
M = .
6(1‘1, PN ,l’n,Q)
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Let g1,92 : R®™ — R be two polynomials and set g = g1 X go. Let
I C R[z] be the ideal generated by Fy, ..., F,_s and all (n—1) X (n—1)
minors

8(97F17"' 7Fn—2)
8(.7}1'1, e 7$in71>

Let Agr = %. Assume that dimg Agr < +00. We will prove at the end

of the section that this condition is generic. We put d = dimg Ar. Let
Ve ={p e C"/ forallu € I u(p) = 0}. It is a finite set and we can
write

VC = {plv v apm} U {pm+1apm+17- o 7p8a]TS}'

The set of critical points of gy, is
VR = Vo NR" = {pl,... ,pm}.

After an appropriate change of coordinates, one may assume that for

each p € Vo , M(p) # 0.
Let ¢ : AR — R be the global residue on Agr and we define the
following bilinear symmetric forms :

CI)S/GI(‘” : Ar X Ar — R defined by oM

oy (l1,12) = H(Mg“Dlly),

OM ., Ap x Ap =R defined by @M, (I1,12) = (Mg"Dily),

oM e P Ar X Ar — R defined by oM

919 g19¢(D

(I1,12) = p(Mg1g®D1115),

®M AR x AR — R defined by ®M _(11,1y) = p(Mgog®Diyls),

929 929

®M i Ar x Agp — R defined by @M (I1,12) = ¢(Mg1g°Diily),

919 919

fbé\;’go(d) : Agr X Agr — R defined by @ggom (I1,12) = qb(Mgggo(d)lllg).

We will denote X(WRﬂ{gl *0}0{92?0}) by X« 7 where %, 7 € {>, <, =}.
Theorem 7.1. Assume that

o W is a smooth complexr manifold of dimension 2 and Wr is not
empty,

e Wc N gfl(()) is a smooth complexr manifold of dimension 1 and
Wr N gl_l(()) is mot empty,
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e We N gy '(0) is a smooth complex manifold of dimension 1 and
Wr N gy (0) is not empty,

e Wc gyt (0) and We N gy (0) intersect transversally,
® gwg IS proper,
then

1. Wr is a smooth surface,

2.
1 1 1 1 X>,> X>=1X<,=
1 -1 1 -1 X>.< 0
X = — 2 -
1 1 -1 -1 X<,> X>=—X<,=
1 -1 -1 1 X<.< 0

signature <I>2/e[( O

80

A\VAR\Y

0

IAIA

) signature ®M
& gage(®
2X
. M
signature ®
g glge(d)

signature @3{( 2

Proof. 1. is clear.

Consider the set Wgr N {g1 > 0,92 > 0}. The function g = g1¢92 is a
carpeting function for this manifold with corners, this means that there
is a homotopy equivalence between

(Wr N {912 0,92 > 0}, W 1 ({g1 = 0,92 = 0} U {g1 = 0,92 > 0})),
and
(Wr(g= )N {g = 0,22 0} Wr(g = ) N {g1 = 0,92 > 0}),

for € > 0 sufficiently small. We thus have

X(WRﬁ{gl >0,90 >0}, WrN({g1 > 0,92 =0}U{g1 =0, 92 20})) =
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X(WR(g >e)N{g > 0,92 >0}, Wr(g=¢)N{g1 >0,92 > 0}) =

a(j)

>, 2.1 (1)

3/91(p;j)>0 =1
92(p;)>0

where {)j;} is the set of indices of the non-degenerate critical points
{pji} lying near p; of a Morse approximation § of gjyy;,. In the same
way, we have :

X(WRﬁ{gl <0,92 <0}, WrN{g1 <0,920=0}U{g1 = 0,02 SO})) =

X(WR(g >e)N{g1 <0,92 <0}, Wr(g=¢)N{g1 <0,92 < 0})

a(j)

> D1 (2)

3/91(p;)<0 i=1
92(p;)<0

X(WRﬂ{gl >0,92 <0}, WrN({g1>0,92=0}U{g1 =0, 02 SU})) =

X(WR(g < —e)N{g1>0,92 <0}, Wr(g=—-e)N{g1 > 0,92 < 0})

a(j4)

>, 2.1 3)

3/91(pj)>0 =1
92(p;)<0

X(WRﬂ{gl <0,92 >0}, WrN({g1 0,920 =0}U{g1 =0, 02 20})) =

X(WR(Q < —e)N{g1 <0,92 >0}, Wr(9g=—¢)N{g1 <0,92 > 0})

a(j)

> D1 (4)

3/91(p;)<0 i=1
92(p;)>0

Now the combinations (1) + (2) + (3) + (4), (1) — (2) + (3) — (4), (1) —
(2) = (3) + (4) and (1) + (2) — (3) — (4) give the desired formulas. m®

Using [Dutl] Theorem 2.6, one can express

X>=%X<,=,
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and
X=> £ X=<,

in terms of signatures of appropriate bilinear symmetric forms. Further-
more, using the generalized Hermite form, one can express

X===Xx(Wr(g1 = 0,92 = 0)) = tWr N gy '(0) N g5 (0),
as a signature on the algebra % (see [GRRT], [PSR], [Ro]).
Remark 7.2. Under conditions of theorem 7.1 and some other condi-

tions of finitude and non-degeneracy, one can express the Euler charac-
teristics x4 7 in terms of signatures of suitable bilinear symmetric forms.

Proof. Use the previous remarks, the previous theorem and the fact

that
1 1 1

-1 1 -1
1 -1 -1
-1 -1 1

det =440

N G W W G WY

7.1 Genericity of the finitude condition

In this section, we prove the “genericity” of the condition dimgR[x]/I <
400 where I is the ideal generated by Fi,... , F,,—2 and all minors

8(91927 Fl: s 7F1’L—2)
8($il, . 7$in71) '

We will need the following version of Sard’s lemma (see [BCR], [BR]).

Lemma 7.3. Let M C RY be a real constructible set and let Mc be
its complezification. Assume that Mg is a smooth complexr manifold of
dimension k. Let II : R™ — R be a polynomial mapping and let g
be its complexification. Then for almost all @ € RF, Hal(a) N Mc is a
finite set of points.

Proof. Let Y¢ be the critical set of HC|MC- Then II¢(3¢) is a cons-
tructible set of C* of complex dimension at most k—1 and R*NTlc(Z¢)
is a real constructible set of dimension at most k& — 1, so for a € R* \
c(Ec), a is a regular value of Il : Mg — CF. [
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In order to prove the genericity of the condition, we first recall that,
by Lemma 4.1, a polynomial gy, admits a critical point at p € Wc \
{Mc = 0} if and only if the minors

g, I, .-, Fy) g, I, ..., F)
and
8('Tla'°' 7xn727-rn71) 8(1’1,... 7"17”72,1’”)
vanish at p.
Let  ¢1,90 : R — R be two polynomials. Let
(21, .., Tpitn 1, tn; Un_1,un) = (2;t;u) be a coordinate system in R"+4
and let

Gl (CL’, t> U) =01 + tn,1$n,1 + tnxna
GQ(x’ i, u) =02 T Un—1Tn—1 + UnTn.
Let us consider the following polynomial map :
H=(H,Hy) : R — R"
F OUG1G2) Fy,...  Fn—2)
o O(x1, s Bn—2,Tn—1)

(6((G1G2)7F17"~ 7Fn—2))

O(x1,.. ,Tn—2,Tn)

(z3t;u)

3(G,F) 3(G,F) ). We

» Oz xpn—1)? O(a!,xn—1)

which we shall write, for convenience, H = (F

have
Hl ([B, t, U,) = g((g/l’gii)) + tn—lMG2 + tn—qu'n—l 8((9:15’62;€)T)+
t xT 8(G27F)
nIn gzl z,_1)
8<glG27F) a(G27F) a(G27F)
H. t = — it 1Tl +t, MG thTp———=.
2(,t,u) (', ) o Yo, ) * 2t oz, xyp)

The jacobian matrix Jac (H) has the following form

M 0 0 0 0
9(Go, 9(Ga,
Jac (H) = [ * MGz+ xna—étw xn% B
* xn—laﬁxf;ni MGy +ay agxf;ng o

Hence Y = H~1(0) \ {MG2(MGs + ‘Tn—lia?ag%i)l) + gg,?xi;) =0} is
a smooth manifold of dimension 4. Let
nm: Rt — R*
(zitu) —  (Hu).
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Using the above lemma, we can choose (a1, n, Bn_1,5n) € R* close
to (0,0,0,0) such that TG ((n—1, 0, Bu1,5,)) N Yo is finite. Call
g1 =91+ an_1Zn—1 + anty and g2 = g2 + Bp_1Zp—1 + Bnan. We have
shown that outside the algebraic set A = {Mga(Mgo + xn—1 83(92,1’) +

(xlzmnfl)

Tn g((gii))) = 0}, the system F' =0, H; = 0, H2 = 0 has a finite number
of solutions. Since outside A, M¢ # 0, this means that, by the above
remark, g1 X go has a finite number of critical points on W¢ outside the
set {Mgo(Mgs + $n—1% +xn 88((5’2751))) = 0}. The jacobian matrix

Jac (H) may also be written

M 0 0 0 0
* k% 0(G1,F) MGl—l—;(}na(Gl’F)

Tn—1 oz, xn) o(x!,xn)

and so, T = H=1(0) \ {MGy(MG + an_15oCrf) 4 4, GLE)) _ gy

(2, zn—1) (#",2n)
is also a smooth manifold of dimension 4. Repeating the above argu-
ment, we can choose (1,0, Bn_1,0n) € R* such that g x go has
a finite number of critical points on W outside the set {M g (Mg) +

oG, F o(G1, F
Tn-1 6(1(’?;:n,)1) +an (9((5’1,12,1))) = 0}.

Now we shall prove that for a large choice of (ap—1,n, Bn—1,0n) €
R* the intersection {F = 0}N{ Mgy (M g1 +x,_1 aa(gl’F) ta, 2015 )=

~ 8 (2!, xn—1) oz, xn)
0} N{Mge(Mgs+ xp—1 agﬂ(,g’;f_)l) + 2z, g((fii))) = 0} is a finite set outside
{Mc = 0}. We first prove that {F =0} N{g1 = 0} N{g2 = 0} is a finite
set outside {M¢c = 0} for almost all (c,_1, an, Bu_1,n) € R?* close to
(0,0,0,0). Consider the following polynomial map

T : R —  R®
(az,t,u) = (F7G1,G2> .

Its jacobian matrix Jac (T') has the following form

M 0 0 0 0
Jac (T) = X Tp_1 Tn 0 0
* 0 0 zp1 xn

Hence
Z=T"YO)\{{M=0}U{z, 1 =02, =0}}
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is a analytic manifold of dimension 4 and, as we did previously, for
almost all (an_1, ¥, Br_1,8a) € R, {F =0} N {g1 =0} N {g = 0} is
a finite set outside {M = 0} U {x,,—; = 0,2z, = 0}. Let U : R” — R"
be defined by U = (F,zp—1,2,). The jacobian of U is exactly M so
if p € U~1(0) N {M # 0}, p is a simple zero of U so is isolated. This
implies that {F = 0} N {M # 0} N {zy—1 = z, = 0} is finite and so,
{F =g1=¢g2=0}N{M # 0} is also finite.

Now we check that {F = 0} N {g1 =0} N {Mgs + xp_ 1% +

T, a((;’? ’i) 0} s a finite set outside {M = 0} for almost all
(n—1,n, Bn—1,3n) € RY. Let

T . R R
(e tu) = (F.G1, MGa + w020 4 g, G2
and let Jac (T”) be its jacobian matrix. We have
M 0 0 0 0
Jac (T") = | * @p1 @y 0 0

* 0 0 2Mz,_1 2Mz,

We can conclude in an obvious way. Similarly we can prove that {F =
0} N {g~2 = 0} N {Mgl + xn_la(a(gi 4 wna((gh _ O} and {F

'\ Tp—1)
0} N {MG + &1 gy + Tn g *0}0{M92+xn 1)

T, g((ng)) = 0} are finite sets outside {Mc = 0}. Thus we have shown

that for almost all (a1, an; Bn—1,58n), G192|w, admits a finite set of
critical points outside {M¢c = 0}.

It remains to prove the “genericity” for the entire manifold Wg. We
still have two polynomials g1, g2 : R™ — R. For each pair of (n — 2)-
tuples o = (a1,... ,an—2) and 3 = (B1,..., Bn—2), let us consider the
two polynomials

91,(a’,0,0) = 91 + o121 + ... Qp_2Tp—29,

92,(5,0,0) = g2 + 121 + ... Bp—2Tn—2.

The previous study implies that for almost all (ay—1,an, Bn-1,0n) €
R* the function 91,(asan—1,am) X 92,(8',Bn_1,8,) @dmits a finite number of
critical points in W¢ \ {Mc = 0} where

91,(a’ \an—1,0m) = 91,(/,0,0) T ¥n—1Tn—1 + Qplp,
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92,(8' Br_1,6n) = 92,(8,0,0) T Brn—1Tn—1 + BnTn.
Now let Sj,—1, be the set of points (o, 3) € R™ x R™ such that g1 o X
92,8\ does not admit a finite number of critical points in W\ {M¢ =

0}. We have shown that each “horizontal slice” S,,_1, N {a/} x R? x
{0} x R? has measure zero. By Fubini’s theorem, Sp—1,, has measure
zero in R™ x R™. Now W¢ can be covered by all open sets

O(F1, ... Fy_y)
1seee5in—2 c \ {8([1)@'1, . 7x’in72)

Since these open sets are in a finite number, by the above study, for
almost all (o, 3) € R™ x R", g1 X 92.8)wq admits a finite number
of critical points in each U;,. .. ;, ,, which implies that for almost all
(o, B) e R" X R"™, g1, X 92,8\ has a finite number of critical points.
This is equivalent to the finitude of the algebra

Rlz]
(Fy,  Fa, 9(g1G2,F1,... 7Fn72))’

O( @iy e Tigy 1)

where g1 = g1, and g2 = g2 3.

References

[AVG] ARNOLD, V.I., VARCHENKO, A.N., GUSEIN-ZADE, S.M. : Sin-
gularities of differentiable maps, (vol.1) Birkhauser (1988).

[BCRS] BECKER, E., CARDINAL, J.P., ROY, M.F., SZAFRANIEC, S.:
Multivariate Bezoutians, Kronecker symbol and Eisenbud &
Levine formula, Algorithms in Algebraic Geometry and Applications
Progress in Mathematics 143, 79-104 Birkhauser (1996).

[BR] BENEDETTI, R., RISLER, J.J. : Real algebraic and semi-algebraic
sets, Hermann (1990).

[BCR] BOCHNAK, J., COSTE, M., ROY, M.F. : Géométrie algébrique
réelle, Ergebnisse der Mathematik 12, Springer-Verlag (1987).

[Cal CARDINAL, J.P. : Dualité et algorithmes itératifs pour le résolution
des systémes polynomiaux, Thése, Université de Rennes 1 (1993).

[Dutl] DUTERTRE, N. : An algebraic formula for the Euler characteristic
of some semi-algebraic sets, Journal of Pure and Applied Algebra
139, 41-60 (1999).

80 REVISTA MATEMATICA COMPLUTENSE
(2001) vol. XIV, num. 1, 45-82



NICOLAS DUTERTRE ABOUT THE EULER-POINCARE CHARACTERISTIC OF ...

[Dut2]

[Dut3]

[Sz1]

[Sz2]

[Sz3]

DUTERTRE, N. : Sur la fibre d’un polynéme de R™ a points cri-
tiques isolés, Manuscripta Mathematica 100 437-454 (1999).

DUTERTRE, N. : About the Milnor fiber of a real map-germ,
Prépublication de I’Institut de Recherche Mathématique de Rennes
99-04 (1999).

EISENBUD, D. : An algebraic approach to the topological degree of
a smooth map, Bull. Amer. Math. Soc. 84, 751-764 (1978).

EISENBUD, D., LEVINE, H.I. : An algebraic formula for the degree
of a C*° map-germ, Annals of Mathematics 106, 19-44 (1977).

GONZALEZ-VEGA, L., ROUILLIER, F., ROY, M.F., TRUJILLO,
G. : Symbolic Recipes for Polynomials System Solving in Some
Tapas of Computer Algebra, Springer-Verlag (ed. Cohen, Cuypers
and Sterk) (1999).

HAMM, H., LE DUNG TRANG : Un théoréeme de Zariski du type
de Lefschetz, Ann. Sci. Ecol. Norm. Sup. (8) 6, 317-355 (1973).

KUNZ, E. : Kahler Differentials, Advanced Lectures in Mathematics,
Braunschweig, Wuesbaden : Vieweg (1986).

MILNOR, J. : Morse theory, Ann. Math. Stud. 51, Princeton Uni-
versity Press (1963).

PEDERSEN, P., ROY M.F., SZPIRGLAS A. : Counting real zeroes
in the multivariate case, Computational algebraic geometry, Eyssette
et Galligo, eds. Prog. Math. 109, 203-224, Birkhauser, Boston 1993.

ROY, M.F. : Basic algorithms in real algebraic geometry and their
complexity: from Sturm’s theorem to the existential theory of reals,
Lectures in Real Geometry, Berlin : de Gruyter, De Gruyter Expo.
Math. 23 1-67 (1996).

SCHEJA, G., STORCH, U. : Uber Spurfinktionen bei vollstandingen
Durschnitten, Journal reine angew Math 278/279, 174-190 (1975).

SZAFRANIEC, Z. : The Euler characteristic of algebraic complete
intersections, Jour. reine angew Math. 397, 194-201 (1989).

SZAFRANIEC, Z. : A formula for the Euler characteristic of a real
algebraic manifold, manuscripta mathematica 85, 345-360 (1994).

SZAFRANIEC, Z. : Topological degree and quadratic forms, Journal
of Pure and Applied Algebra 141, 299-314 (1999).

81 REVISTA MATEMATICA COMPLUTENSE
(2001) vol. XIV, num. 1, 45-82



NICOLAS DUTERTRE ABOUT THE EULER-POINCARE CHARACTERISTIC OF ...

IMR, Université de Rennes 1
Campus de Beaulieu 35042 Rennes
(FRANCE)

FE-mail: dutertre@maths.univ-rennesl.fr

Recibido: 20 de Febrero de 2000
Revisado: 24 de Octubre de 2000

82 REVISTA MATEMATICA COMPLUTENSE
(2001) vol. XIV, num. 1, 45-82



