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Abstract

We show that there is a large class of nonspecial effective divi-
sors of relatively small degree on real algebraic curves having many
real components i.e. on M -curves. We apply to

1. complete linear systems on M -curves containing divisors with
entirely real support, and

2. morphisms of M -curves into P1.

1 Introduction

One of the subjects in real algebraic geometry that enjoys considerable
attention is the study of the topology of real algebraic plane curves.
This study is part of Hilbert’s 16th problem and, ever since, quite some
progress has been made (see [1] and its references on the subject). Par-
ticular interest has been devoted to the case of plane curves having many
real components.

Concerning the study of real algebraic plane curves, it is natural to
study separately the real algebraic curve and its embedding into the
projective plane. Since such an embedding is completely determined
by its linear system, the first part of Hilbert’s 16th problem may be
interpreted as the problem of studying the topology of linear systems on
real algebraic curves.

In this paper, we study linear systems on real algebraic curves that
have many real components i.e. on M -curves. We find a large class of
nonspecial effective divisors of relatively small degree on such curves.
We apply to
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1. complete linear systems on M -curves containing divisors with en-
tirely real support, and

2. morphisms of M -curves into P1.

In particular, we answer for M -curves a question of C. Scheiderer.

Convention and notation. A real algebraic curve is a geometrically
integral nonsingular proper scheme over R of dimension 1. The projec-
tive line P1

R over R is simply denoted by P1.

2 Nonspecial effective divisors on M-curves

Let C be a real algebraic curve. A real component of C is a connected
component of the set C(R) of real points of C. Let f be a nonconstant
rational function on C. Let P be a closed point of C at which f has a
pole. We say that the pole P of f is real if its residue field k(P ) is equal
to R.

The following statement is the key lemma of the paper. Its proof is
so elementary that one may suspect that the statement is well known.
Nevertheless, I was not able to find a reference in the literature.

Lemma 2.1. Let C be a real algebraic curve. Let f be a nonconstant
rational function on C having only real poles. Suppose that every real
component of C contains at most one pole of f , counted with multiplicity.
Then, every real component of C contains exactly one pole of f .

Proof. Let d be the degree of f considered as a morphism from C
into P1, i.e. d = deg(f?∞). Since all the poles of f are real and since
each real component of C contains at most one pole of f , there are
exactly d real components X1, . . . , Xd of C at which f has a pole. The
restriction of f to a real component Xi is a continuous map from Xi

into P1(R) of degree 1 (mod 2) (see [6] for definition and properties
of the topological degree). In particular, f maps Xi onto P1(R) for
i = 1, . . . , d. Since d = deg(f),

f−1(x) ⊆
d⋃

i=1

Xi
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for all x ∈ P1(R). Hence,

C(R) ⊆ f−1(P1(R)) ⊆
d⋃

i=1

Xi.

Therefore, for each real component X of C there is i ∈ {1, . . . , d} such
that X = Xi. In particular, every real component of C contains exactly
one pole of f .

The following consequence is merely a reformulation of Lemma 2.1:

Corollary 2.2. Let C be a real algebraic curve. Let s be the number of
real components of C. Let k < s be a natural integer and let P1, . . . , Pk

be real points of C such that no two of them belong to the same real
component of C. Let D be the divisor

∑k
i=1 Pi. Then, h0(D) = 1.

Lemma 2.1, or rather its above corollary, provides yet another proof
of Harnack’s Inequality for real algebraic curves [4]:

Corollary 2.3. (Harnack’s Inequality). Let C be a real algebraic
curve. Let g be the genus of C and let s be the number of real components
of C. Then, s ≤ g + 1.

Proof. Suppose that s > g + 1. Then there is an effective divisor D
on C of degree k = g + 1 as in Corollary 2.2. By Riemann’s Inequality,
h0(D) ≥ deg(D)−g+1 = 2 which contradicts the conclusion of Corollary
2.2.

A real algebraic curve C of genus g is said to have many real com-
ponents if the number of real components of C is equal to g + 1; for
short, C is called an M -curve. One easily convinces oneself of the ex-
istence of such curves in any genus. In fact, there are many M -curves
of given genus: the moduli space of M -curves of genus g is a connected
semianalytic variety of dimension 3g − 3, if g > 1 [8, 5].

Recall that a divisor D on an algebraic curve C is said to be non-
special if h0(D) = deg(D) − g + 1, where g is the genus of C. By
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Riemann-Roch, D is nonspecial if and only if h0(K − D) = 0, where
K is a canonical divisor on C. It follows that D is nonspecial if D′ is
nonspecial and D ≥ D′. Recall also that divisors of degree at least 2g−1
are nonspecial.

Using Corollary 2.2, one gets a large class of nonspecial effective
divisors of relatively small degree on M -curves:

Theorem 2.4. Let C be an M -curve of genus g. Let D be an effective
divisor on C such that sup(D)∩X 6= ∅ for at least g real components X
of C. Then, D is nonspecial.

Proof. Choose g points P1, . . . , Pg ∈ Supp(D)∩C(R) such that no two
of them belong to the same real component of C. Put D′ =

∑
Pi. By

Corollary 2.2, h0(D′) = 1 = deg(D′) − g + 1. Hence, D′ is nonspecial.
Since D ≥ D′, D is nonspecial as well.

It is well known that a generic effective divisor of degree at least g is
nonspecial. The point of Theorem 2.4 is that it states that all divisors
satisfying the explicit conditions of the statement are nonspecial.

In the following sections we discuss some applications of Theorem
2.4 .

3 Morphism into P1

In this section we use Theorem 2.4 in order to study morphisms of M -
curves into P1. We start of with the following consequence of Theorem
2.4:

Corollary 3.1. Let C be an M -curve and let g be its genus. Let D be an
effective divisor on C such that supp(D)∩X 6= ∅ for all real components
X of C. Then, the linear system |D| is base point-free.

Let C be a real algebraic curve and let Div(C) denote the group of
divisors on C. Let X be a real component of C and let resX : Div(C) →
Div(C) be the restriction-to-X morphism. This morphism is defined by
letting resX(P ) = P if P ∈ X and resX(P ) = 0 if P 6∈ X, for any closed
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point P of C. For any divisor D on C, we define the degree of D on X
to be the natural number degX(D) = deg(resX(D)).

Let C be an M -curve and let g be its genus. Let D be an effective
divisor on C of degree g + 1 such that degX(D) = 1 for all real compo-
nents of C. According to Theorem 2.4, h0(D) = 2, i.e., the linear system
|D| on C is 1-dimensional. By Corollary 3.1, |D| is base point-free. Let
then f : C → P1 be the morphism associated to D. The following result
states some remarkable properties of f .

Proposition 3.2.

1. The morphism f : C → P1 is of degree g + 1.

2. The restriction of f to any real component of C is a homeomor-
phism onto P1(R).

3. For any real point Q of P1, the fiber f−1(Q) is contained in C(R).

4. The morphism f is unramified over each real point of P1.

5. The restriction of f to any real component of C is an analytic
isomorphism onto P1(R).

Proof. Since |D| is base point-free, the degree of f is equal to the degree
of D, i.e., deg(f) = g + 1. This proves Statement 1.

In order to show Statement 2, we show first that the restriction
f |X : X → P1(R) of f to any real component X of C is surjective.
Indeed, since degX(D) = 1, the topological degree of f |X is equal to 1
(mod 2). Therefore, f |X is surjective.

We show simultaneously the injectivity of f |X and Statements 3 and
4: Let Q be a real point of P1. Since f |X is surjective for any real
component X of C, the restriction of f?Q to any real component of C
is a nonzero effective divisor. Then

g + 1 = deg(f?Q) ≥
∑
X

degX(f?Q) ≥ g + 1.

Hence the two inequalities are, in fact, equalities. The first of these
equalities shows that f?Q has support contained in C(R). In particular,
f−1(Q) is contained in C(R), whence Statement 3. The second of the two
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equalities shows that the degree of f?Q on each real component of C is
equal to 1. It follows that the restriction of f to any real component of C
is injective, whence Statement 2. It also follows that each point of the
support of f?Q appears with multiplicity 1 in f?Q, whence Statement 4.

Statement 5 follows from Statements 2 and 4.

We conclude this section with a characterization of M -curves in
terms of morphisms into P1.

Proposition 3.3. Let C be a real algebraic curve and let g be its genus.
Then C is an M -curve if and only if there is a morphism f : C → P1

satisfying the following 3 conditions.

1. The morphism f is of degree g + 1.

2. The restriction of f to any real component of C is a homeomor-
phism onto P1(R).

3. Any closed point P ∈ C such that f(P ) ∈ P1(R) is real.

Moreover, in that case, there is an effective divisor D on C of degree g+1
with degX(D) = 1 for all real components X of C such that f is the
morphism associated to D.

Proof. It follows from Proposition 3.2 that the 3 conditions are neces-
sary. In order to show that they are sufficient, assume that C is a real
algebraic curve and that f : C → P1 is a morphism satisfying Conditions
1, 2 and 3. Let s be the number of real components of C. Choose a
point Q ∈ P1(R) such that f is unramified over Q. Then, by Conditions
2 and 3, the divisor f?Q is of degree s. By Condition 1, s = g + 1.

In order to prove the last statement, observe that the effective divisor
D = f?∞ is of degree g + 1, by Condition 1, and satisfies degX(D) ≥ 1
for all real components X of C, by Condition 2. Since C has g + 1 real
components, degX(D) = 1 for all real components X of C. This shows
the last statement of the proposition.
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4 Divisors with real support

Let C be an M -curve and let g be its genus. Let Pic(C) denote the Pi-
card group of linear equivalence classes of divisors on C. Denote by cl the
morphism from Div(C) into Pic(C) that associates to a divisor its class.
For an integer d, denote by Divd(C) the subset of Div(C) consisting of
divisors of degree d and let Picd(C) be the cl-image of Divd(C). Recall [3,
2] that Pic0(C) is a compact commutative real Lie group of dimension g.
Its group of connected components is isomorphic to (Z/2Z)g. The neu-
tral component of Pic0(C) is isomorphic to the real Lie group (S1)g.
Moreover, Picd(C) is a principal homogeneous space under the action
of Pic0(C). In particular, Picd(C) is a compact real analytic manifold
of dimension g having 2g connected components. Each of its connected
components is real analytically isomorphic to the real analytic mani-
fold (S1)g.

Theorem 4.1. Let C be an M -curve of genus g. Let X1, . . . , Xg be
distinct real components of C and let X =

∏
Xi. Define

σ : X −→ Picg(C)

by letting σ(P1, . . . , Pg) be the divisor class cl(
∑

Pi). Then, the map σ
is a real analytic isomorphism onto a connected component of Picg(C).

Proof. Let C(g) denote the g-fold symmetric product of C. Since the
real components X1, . . . , Xg are distinct, the natural map from X into
C(g)(R) is a real analytic isomorphism from X onto a connected com-
ponent of C(g)(R). Identify X with this connected component. Then, σ
extends to a morphism of real algebraic varieties, again denoted by σ,
from C(g) into Picg

C . Here, Picg
C denotes the degree-g part of the Picard

scheme PicC of C. The real analytic manifold Picg(C) is equal to the set
of real points of Picg

C . It is well known that σ is a birational morphism.
In fact, let U ⊆ C(g) be the subset of nonspecial divisors. Then, U and
σ(U) are open and nonempty, and σ is an isomorphism of U onto σ(U).
By Theorem 2.4, X is entirely contained in U . In particular, X is a
connected component of U(R). Then, σ(X) is connected component of
σ(U)(R) and the restriction of σ to X is a real analytic isomorphism onto
the connected component σ(X) of σ(U)(R). Since X is compact, σ(X)
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is compact and is, therefore, also a connected component of Picg(C).

Since the proof of Theorem 4.1 does not use the fact that the con-
nected components of Picg(C) are real analytically isomorphic to (S1)g,
it provides another proof of this fact.

Theorem 4.1 allows to answer for M -curves the following problem for-
mulated by Scheiderer [7, §2]: Given a real algebraic curve C of genus g
with C(R) 6= ∅, determine explicitly an integer n with the following
property. For every complete linear system |D| with deg(D) ≥ n there
is D′ ∈ |D| such that Supp(D′) consists of real points only. Indeed, if C is
an M -curve, the following statement claims that one can take n = 2g−1
if g > 0.

Theorem 4.2. Let C be an M -curve of genus g > 0. Let d be a natural
integer and let Divd,≥0

rs (C) be the subset of Divd(C) of effective divisors
having entirely real support. If d ≥ 2g − 1 then

cl(Divd,≥0
rs (C)) = Picd(C).

Proof. Denote the real components of C by X0, . . . , Xg. It is well
known that if D and D′ are linearly equivalent divisors on C then
degX(D) ≡ degX(D′)mod 2 for all real components X of C (see [3,
Lemma 4.1]). It follows that

δ(D) = (deg(D),degX0
(D), . . . , degXg

(D))

defines a morphism δ from Pic(C) into Z⊕ (Z/2Z)g+1. The kernel of δ
is the neutral component of Pic(C). Therefore, the image of δ is the
group of connected components of Pic(C). It is clear that

im(δ) = {(x, x0, . . . , xg) |x ≡
∑

ximod2}.

We denote by x, x0, . . . , xg the coordinates on Z ⊕ (Z/2Z)g+1. For i =
0, . . . , g, let ei ∈ im(δ) be defined by x(ei) = g, xi(ei) = 0, and xj(ei) =
1 for j 6= i, i.e.,

ei = (g, 1, 1, . . . , 1, 0, 1, . . . , 1, 1)
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where the entry 0 is at the (i + 2)-nd place. By Theorem 4.1, the
connected component δ−1(ei) is contained in the cl-image of Divg,≥0

rs (C),
for i = 0, . . . , g.

Now, it clearly suffices to show the statement for d = 2g−1. Choose
a connected component of Pic2g−1(C). Such a connected component is
of the form δ−1(e) for some e ∈ im(δ). One has x(e) = 2g− 1. We show
that there is an effective divisor D on C of degree g−1 with real support
such that the translation-by-cl(D) map on Pic(C) maps a connected
component of Pic(C) of the form δ−1(ei) onto δ−1(e). Since δ−1(ei) is
contained in cl(Divg,≥0

rs (C)), it will imply that δ−1(e) is contained in the
cl-image of Div2g−1,≥0

rs (C).
There are two cases to consider:
First case: all coordinates xi(e) are nonzero. Since e ∈ im(δ), one

has 2g−1 ≡ g+1mod 2, i.e., g is even. Let P be any real point contained
in X0. Let D be the divisor (g− 1)P . Let τ be the translation-by-cl(D)
map on Pic(C). Since g − 1 is odd, τ(δ−1(e0)) = δ−1(e). Since D is an
effective divisor with real support, it follows that δ−1(e) is contained in
the cl-image of Div2g−1,≥0

rs (C).
Second case: there is an integer i such that xi(e) = 0. Since 2g − 1

is odd, there is an integer j such that xj(e) = 1. For any integer k such
that xk(e) 6= xk(ei), choose a point Pk ∈ Xk. Let

D′ =
∑

xk(e) 6=xk(ei)

Pk.

Since xi(e) = 0 = xi(ei) and xj(e) = 1 = xj(ei), the degree of D′ is at
most g − 1. Moreover,

deg(D′) ≡
g∑

k=0

xk(e)− xk(ei) ≡ (2g − 1)− g ≡ g − 1mod 2.

Therefore, there is a nonnegative integer ` such that deg(D′) + 2` =
g − 1. Choose a point Pi ∈ Xi and let D = D′ + 2`Pi. Let τ be the
translation-by-cl(D) map on Pic(C). Then, τ(δ−1(ei)) = δ−1(e). Since
D is an effective divisor with real support, it follows again that δ−1(e)
is contained in the cl-image of Div2g−1,≥0

rs (C).
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One may wonder whether the sufficient condition d ≥ 2g − 1 in
Theorem 4.2 is also necessary. It is tempting to suspect that it is, i.e.,
that

cl(Div2g−2,≥0
rs (C))  Pic2g−2(C).

One may also wonder whether the conclusion of Theorem 4.2 holds for
any real algebraic curve C of genus g > 0 with C(R) 6= ∅.

References

[1] Bochnak, J., Coste, M., Roy M-F.: Géométrie algébrique réelle. Ergeb.
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