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Abstract

Using an abstract result on Riesz basis generation for discrete
operators in general Hilbert spaces, we show, in this article, that
the generalized eigenfunctions of an Euler-Bernoulli beam equa-
tion with joint linear feedback control form a Riesz basis for the
state space. The spectrum-determined growth condition is hence
obtained. Meanwhile, the exponential stability as well as the
asymptotic expansion of eigenvalues are also readily obtained by
a straightforward computation.

1 Introduction

For a vibrating system, the most exciting property is that the general-
ized eigenfunctions of the system form a Riesz basis for the state Hilbert
space. The Riesz basis generation will trivially conclude many other im-
portant properties such as the spectrum-determined growth condition
that is significant both theoretically and practically but often not so
easy to determine for infinite dimensional systems. Since the general
model of serially connected Euler-Bernoulli beams with joint linear feed-
back control was proposed in Chen et al. (1987), many efforts have been
made to study the asymptotic distribution of the eigenvalues (Chen et
al. , 1989, 1990), and the exponential stability (Rebarber,1995) of the
two connected-beam equations. However, the Riesz basis generation
property and the spectrum-determined growth condition have not been
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reported until recently; the problem of a one beam equation was ex-
amined by Conrad and Morgul, (1998); Guo, (2001a). In Guo (2001a),
an abstract result on the Riesz basis generation for discrete operators
in general Hilbert spaces is presented, by which the feedback effect for
beam equations can be considered as the perturbation of an appropri-
ately chosen free Riesz system. The generalized eigenfunctions between
the controlled system and the free system are compared to get the Riesz
basis property by estimating only those ”high eigenmodes”. The suc-
cess in the choice of the appropriate auxiliary Riesz system relies on the
observation that the characteristic equation of the controlled system is
a lower order perturbation of that of free Riesz system, which is usually
true for serially connected beam equations with joints linear feedback
control. This idea has been applied successfully to get Riesz basis gen-
eration property for other systems such as the one dimensional linear
thermoelastic equation (Guo, 2001b).

In this paper, we shall use this abstract result to prove that there is a
sequence of generalized eigenfunctions of two connected Euler-Bernoulli
beam equations with joint linear feedback control, which forms a Riesz
basis for the state Hilbert space. The spectrum-determined growth con-
dition is thus concluded from the algebraic simplicity of eigenvalues.
Meanwhile, as a consequence, an asymptotic expansion of the eigenval-
ues as well as the exponential stability are readily obtained by direct
symbolic computation, which greatly improves and simplifies similar re-
sults developed by asymptotic techniques for eigenvalues (Chen et al. ,
1989, 1990) and the frequency domain approach for exponential stability
(Rebarber, 1995).

2 The explicit expression of eigenfunctions

Since the game is almost the same for other types of boundary conditions
and joint linear feedback controls, we demonstrate the whole process by
considering the following Euler-Bernoulli beam equation with the simply

206 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 205-229



bao-zhu guo and k.y. chan riesz basis generation, eigenvalues . . .

supported end conditions and shear stabilizer at the joint d, 0 < d < 1:
ytt(x, t) + yxxxx(x, t) = 0, 0 < x < d, d < x < 1,
y(0, t) = yxx(0, t) = 0, y(1, t) = yxx(1, t) = 0,
y(d+, t) = y(d−, t), yx(d+, t) = yx(d−, t), yxx(d+, t) = yxx(d−, t),
yxxx(d−, t)− yxxx(d+, t) = Kyt(d, t)

(1)
where K is a real constant. To make system (1) into a framework
of semigroups, we introduce the underlying state Hilbert space H =
H2

E(0, 1)× L2(0, 1), with the inner product induced norm:

‖(f, g)‖2 =
∫ 1

0
[|f ′′(x)|2 + |g(x)|2]dx

where H2
E(0, 1) = {f ∈ H2(0, 1)|f(0) = f(1) = 0}. System (1) is then

written as an evolutionary equation in H:
d

dt
Y (t) = AY (t) (2)

where Y (t) = (y(•, t), yt(•, t)) ∈ H and A is defined by

A(f, g) = (g(x),−f (4)(x)) (3)

with
D(A) = {(f, g) ∈ H2

E(0, 1)×H2
E(0, 1)|

f |[0,d] ∈ H4(0, d), f |[d,1] ∈ H4(d, 1),
f ′′(d−) = f ′′(d+),
f ′′′(d−)− f ′′′(d+) = Kg(d), f ′′(0) = f ′′(1) = 0}

(4)

where f |[a,b] denotes the function f confined to [a, b].
The following lemma is straightforward.

Lemma 1. A−1 exists and is compact on H. Therefore, σ(A) consists
of isolated eigenvalues only.

The task in the sequel of this section is to find an explicit expression
for any eigenfunction of A. It is easily seen that any eigenfunction of
A corresponding to λ ∈ σ(A) takes the form (φ, λφ) ∈ D(A), where φ
satisfies 

λ2φ(x) + φ(4)(x) = 0, 0 < x < d, d < x < 1,
φ(0) = φ′′(0) = φ(1) = φ′′(1) = 0,
φ(d−) = φ(d+), φ′(d−) = φ′(d+), φ′′(d−) = φ′′(d+),
φ′′′(d−)− φ′′′(d+) = Kλφ(d).

(5)

207 REVISTA MATEMÁTICA COMPLUTENSE
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The problem now is to find the nonzero solutions φ to equation (5). To
this end, let λ = iτ2. First, the general solutions of{

λ2φ(x) + φ(4)(x) = 0, 0 < x < d, or d < x < 1,
φ(0) = φ′′(0) = φ(1) = φ′′(1) = 0

(6)

are of the form{
φ(x) = c1shτx+ c2 sin τx, 0 ≤ x ≤ d,
φ(x) = d1shτ(1− x) + d2 sin τ(1− x), d < x ≤ 1

(7)

where ci, di, i = 1, 2, are constants and chτ = cosh τ, shτ = sinh τ denote
hyperbolic functions throughout the paper. Next, the condition φ(d−) =
φ(d+) reads

c1shτd+ c2 sin τd = d1shτ(1− d) + d2 sin τ(1− d), (8)

while φ′′(d−) = φ′′(d+) yields

c1shτd− c2 sin τd = d1shτ(1− d)− d2 sin τ(1− d). (9)

Adding (8) and ±(9) separately gives

c1shτd = d1shτ(1− d), c2 sin τd = d2 sin τ(1− d). (10)

Hence
c1 =

A

∆
d1, c2 =

B

∆
d2 (11)

where

∆ = shτd sin τd,A = shτ(1− d) sin τd,B = shτd sin τ(1− d). (12)

Thirdly, substituting (11) into the condition φ′(d−) = φ′(d+), we obtain

chτd
A

∆
d1 + cos τd

B

∆
d2 = −d1chτ(1− d)− d2 cos τ(1− d).

Hence

d1 = −B cos τd−∆ cos τ(1− d), d2 = Achτd+ ∆chτ(1− d). (13)

Substituting (13) back into (11) reduces to

c1 = −AB
∆

cos τd−A cos τ(1− d), c2 =
AB

∆
chτd+Bchτ(1− d). (14)
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Furthermore, substituting (12) into (13) and (14), after simple calcula-
tion, we find that 

c1 = −shτ(1− d) sin τ ;
c2 = shτ sin τ(1− d);
d1 = −shτd sin τ ;
d2 = shτ sin τ(1− d).

(15)

Finally substituting (15) into (7), we find the expression of φ:

φ(x) =
{
−shτ(1− d) sin τshτx+ shτ sin τ(1− d) sin τx, x ∈ [0, d],
−shτd sin τshτ(1− x) + shτ sin τd sin τ(1− x), x ∈ [d, 1].

(16)

Lemma 2. Suppose φ 6= 0, where φ(x) is given by (16). Then φ
is the unique linearly independent eigenfunction (up to a scalar) of A
corresponding to λ = iτ2, where τ is the solution of the following char-
acteristic equation

2τshτ sin τ = Ki[shτ(1− d) sin τshτd− shτ sin τ(1− d) sin τd]. (17)

Proof. We need only show the last part. It is seen from previous
discussions that the function φ defined by (16) satisfies

λ2φ(x) + φ(4)(x) = 0, 0 < x < d, d < x < 1,
φ(0) = φ′′(0) = φ(1) = φ′′(1) = 0,
φ(d+) = φ(d−), φ′(d+) = φ′(d−), φ′′(d+) = φ′′(d−)

(18)

for any λ = iτ2. Suppose φ 6= 0. Then for λ = iτ2 to be an eigenvalue
of A, it is necessary and sufficient that the last condition

φ′′′(d−)− φ′′′(d+) = Kλφ(d) (19)

should be satisfied. From (16)

φ′′′(d−)− φ′′′(d+) = −2τ3shτ sin τ (20)

and
φ(d) = −shτ(1− d) sin τshτd+ shτ sin τ(1− d) sin τd. (21)

Substituting (20) and (21) into (19), we get the characteristic equation
(17). The proof is complete.
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3 The asymptotic expression of eigenvalues

It should be noted that the characteristic equation (17) indicates the
following facts:
(a). For K = 0, (17) becomes shτ sin τ = 0 which is just the character-
istic equation of the following free system:{

ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1,
y(0, t) = yxx(0, t) = 0, y(1, t) = yxx(1, t) = 0.

(22)

The system operator A0 associated with (22) is nothing but the operator
A with K = 0{

A0(f, g) = (g(x),−f (4)(x)),
D(A0) = {(f, g) ∈ (H2

E ∩H4)×H2
E |f ′′(0) = f ′′(1) = 0}. (23)

A0 is skew-adjoint with compact resolvent in H. By general operator
theory, system (22) is a Riesz system, namely, there is a set of the maxi-
mal ω-linearly independent (i.e. the sequence itself is ω-linearly indepen-
dent and if any element is added to this sequence, the expanded sequence
must not be ω-linearly independent anymore) sequence of eigenfunctions
of system (22) which forms a Riesz (orthogonal) basis for H.

(b). As Reτ → ∞, Im|τ | bounded, and eγReτ grows faster than any
polynomial of τ as |τ | → ∞ for any γ > 0, the right hand side of (17)
caused, by feedback from free system (22), is a perturbation of the left
hand side with an order of O(|τ |−1) as |τ | → ∞.

(c). Because of facts (a) and (b), we may say roughly that the controlled
system (1) is a lower order perturbation of the free system (22).

Keeping these facts in mind is very important because in the sequel,
we need free system (22) to be a reference Riesz system. The choice of
auxiliary free system is based on the principle expressed by these facts.
For serially connected Euler-Bernoulli beams with joint linear feedback
control, we can use this principle to find a suitable auxiliary free system.

Theorem 1. There is a family of eigenvalues λn = {iτ2
n,−iτ2

n} of
A for all sufficiently large positive integer n, satisfying the following
asymptotic expression

λn = iτ2
n = i(nπ)2 −K sin2 ndπ +O(n−1). (24)
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Proof. Consider (17) in a small neighborhood Un of nπ : |τ − nπ| ≤ C,
where C > 0 is a small constant and n is a positive integer. Note that

|e−τshτ |, |e−τchτ |, | sin τ |, | cos τ |

are uniformly bounded on all Un. Multiplying 2τ−1e−τ on both sides of
(17), we can write (17) to be{

sin τ = O(|τ |−1) or

sin τ =
Ki

2τ
[sin τ − sin dτ sin(1− d)τ ] +O(e−γReτ )

(25)

for some γ > 0, uniformly on all Un. For each sufficiently large n,
applying Rouche’s theorem to the first equation in (25) in a small circle
contained in Un and centered at nπ, we find a solution τn of the first
equation of (25) to be the form

τn = nπ +O(n−1). (26)

Substituting (26) into the second equation of (25) yields

cosnπO(n−1) =
Ki

2nπ
cosnπ sin2 ndπ +O(n−2).

Comparing the order of both sides above gives

O(n−1) =
Ki

2nπ
sin2 ndπ +O(n−2)

and so τn = nπ +
Ki

2nπ
sin2 ndπ +O(n−2). Therefore,

λn = iτ2
n = i(nπ)2 −K sin2 ndπ +O(n−1).

This is (24). To show that λn = iτ2
n is indeed an eigenvalue of A, we

have to show that there is a nonzero solution to (5) with τ = τn. Let φn

be the function defined by (16) with τ = τn. If φn 6= 0 then λn = iτ2
n is

an eigenvalue of A. If φn = 0, then by (16), it must have

shτn(1− d) sin τn = shτn sin τn(1− d) = shτnd sin τn = shτn sin τnd = 0.
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If sin τnd = 0, then τn is a real number and so shτnd 6= 0.
It follows from above that sin τn = 0. Therefore, φn(x) = sin τnx is a
nonzero solution to (5). If sin τnd 6= 0, we shall show in (27) below that
φn 6= 0 for n sufficiently large. So for all sufficiently large n, λn are
eigenvalues of A.

It should be pointed out that (24) is only an asymptotic expression
of “a family of” eigenvalues of A at the moment, in the next section,
however, we shall show that (24) is indeed an asymptotic expression for
all eigenvalues of A. This is one of the merits of this approach.

4 Riesz basis generation

Let us recall that for a closed linear operator A in a Hilbert space H,
a nonzero x ∈ H is called a generalized eigenvector of A, corresponding
to an eigenvalue λ of A which has finite algebraic multiplicity, if there
is a positive integer n such that (λ − A)nx = 0. A sequence {xn}∞1 in
H is called a Riesz basis for H if there is an orthonomal basis {en}∞1 in
H and a linear bounded invertible operator T such that

Ten = xn, n = 1, 2, . . . .

It is seen that each Riesz basis sequence must be approximately normal-
ized:

C1 ≤‖ xn ‖≤ C2, C1, C2 > 0, n = 1, 2, . . . .

Suppose that {λn}∞1 ⊂ σ(A). If each λn has finite algebraic multiplicity
mn, then there is a sequence of linear independent generalized eigenvec-
tors {xni}

mn
i=1 corresponding to λn. If {{xni}

mn
i=1}}∞n=1 forms a Riesz basis

for H, then A generates a C0-semigroup eAt which can be represented
as

eAtx =
∞∑

n=1

eλnt
mn∑
i=1

ani

mn∑
j=1

fnij (t)xnj , for any x =
∞∑

n=1

mn∑
i=1

anixni ∈ H

where fnij (t) is a polynomial of t with order less than mn. In particular,
if a < Reλ < b for some reals a and b then A generates a C0-group
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on H. Moreover, if mn are uniformly bounded with respect to n, then
the spectrum-determined growth condition holds for eAt : ω(A) = S(A),
where ω(A) is the growth order of eAt and S(A) is the spectral bound
of eAt.

From general operator theory, if A is a self-adjoint or skew-adjoint
operator with compact resolvent in H, then there is always a sequence
of eigenvectors of A which forms a Riesz (orthogonal, actually) basis
for H. Hence for such an operator, the geometric and algebraic multi-
plicity of each eigenvalue are the same. If A is self-adjoint, then all its
eigenvalues are located on the real axis, whereas if A is skew-adjoint, all
its eigenvalues lie on the imaginary axis. For a general nonself-adjoint
operator, the following result is recently reported in Guo (2001a) and a
simpler proof is presented in Guo (2001c).

Theorem 2. Let A be a densely defined discrete operator (that is,
(λ − A)−1 is compact for some λ ∈ ρ(A)) in a Hilbert space H. Let
{zn}∞1 be a Riesz basis for H. If there are an N ≥ 0 and a sequence of
generalized eigenvectors {xn}∞N+1 of A such that

∞∑
N+1

‖xn − zn‖2 <∞

then
(i). There are constants M > N and generalized eigenvectors {xn0}M

1

of A such that {xn0}M
1 ∪ {xn}∞M+1 forms a Riesz basis for H.

(ii). Let {xn0}M
1 ∪ {xn}∞M+1 correspond to eigenvalues {σn}∞1 of A.

Then σ(A) = {σn}∞1 , where σn is counted according to its algebraic
multiplicity.
(iii). If there is an M0 > 0 such that σn 6= σm for all m,n > M0, then
there is an N0 > M0 such that all σn, n > N0 are algebraically simple.

Because every sequence of Riesz basis is approximately normalized,
in order to apply Theorem 2 to system (1), first, we have to normalize the
eigenfunctions. The results are summarized in the following theorem.

Theorem 3. Let λn = iτ2
n, where τn is determined by (26), be an eigen-

value of A. Then the corresponding eigenfunctions (φn, λnφn), where φn

is defined by (16) with τ = τn, have the following asymptotic expression:

2τ−2
n e−τn(sin τnd)−1

(
φ′′n(x)
λnφn(x)

)
= (−1)n

(
1
−i

)
sinnπx+O(n−1) (27)
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which holds uniformly for x ∈ [0, 1] when sin τnd 6= 0. Hence

lim
n→∞

‖2τ−2
n e−τn(sin τnd)−1(φn, λnφn)‖2

H = 2.

In particular, φn 6= 0 for sufficiently large n when sin τnd 6= 0. When
sin τnd = 0, we have shown in the end of the proof of Theorem 1 that
φn(x) = sin τnx is an eigenfunction of A corresponding to λn = iτ2

n.
Therefore, we may consider (27) valid for all sufficiently large n.

Proof. We treat only φn(x), 0 ≤ x < d since other terms can be treated
similarly using the following expression of φ′′n:

τ−2
n φ′′n(x) = −shτn(1−d) sin τnshτx−shτn sin τn(1−d) sin τnx, 0 ≤ x < d.

When sin τnd 6= 0,

2τ−2
n e−τn(sin τnd)−1φ′′n(x) =

sin τn
sin dτn

O(1) +
sin τn
sin dτn

O(1) +

+ cos τn sin τnx+O(n−1).

Note that{
cos τnx = cosnπx+O(n−1), sin τnx = sinnπx+O(n−1),
e−τny = e−nπy +O(n−1)

(28)

which hold uniformly pointwisely for any bounded y > 0 and x ∈ [0, 1].
Moreover, it follows from (17) that

sin τn
sin dτn

=
−Kishτn sin τn(1− d)

2τnshτn −Kishτn(1− d)shτnd
= O(n−1). (29)

By (28) and (29), we have

2τ−2
n e−τn(sin τnd)−1φ′′n(x) = cos τn sin τnx+O(n−1)

= cosnπ sinnπx+O(n−1)
= (−1)n sinnπx+O(n−1).

This is (27).
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Now we are in a position to develop the basis property for system
(1) by applying Theorem 2. Let

Φn = 2(−1)n+1τ−2
n e−τn(sin dτn)−1(φn, λnφn)

be the eigenfunctions of A corresponding to λn = iτ2
n claimed in Theo-

rem 3. Let
Ψn = (sinnπx/(nπ)2, i sinnπx), n ≥ 1.

All Ψn and their conjugates are composed of all eigenfunctions of A0,
which form a Riesz basis of H. It follows from Theorem 3 that there is
an N > 0 such that

∞∑
n>N

‖Ψn − Φn‖2
H =

∞∑
n>N

O(n−2) <∞. (30)

The same thing is true for the conjugates. Therefore, Theorem 2 is
applicable and we obtain our main result of this paper.

Theorem 4. For any real number K
(i) there is a sequence of generalized eigenfunctions of operator A, which
forms a Riesz basis for the state space H;
(ii) (24) is an asymptotic expression for all eigenvalues of A;
(iii) all eigenvalues of A with sufficiently large modulus are algebraically
simple, therefore, A generates a C0-group on H and the spectrum-
determined growth condition holds for the C0-semigroup eAt generated
by A: ω(A) = S(A).

Remark 1. To conclude that (24) is indeed an asymptotic expression
for all eigenvalues of A, we do not need necessarily Theorem 2. Actually,
it can follow from (27) and (30) and Bari’s theorem that a sequence in
a Hilbert space is a Riesz basis if it is quadratically close to a given
Riesz basis, because a nontrivial subset of a basis can not be a basis and
any finitely linearly independent generalized eigenvectors of a discrete
operator in a Hilbert space must be ω -linearly independent (see, e.g.,
Singer, 1975).

5 Exponential stability

This section is devoted to the stability analysis of system (1). Because
the spectrum-determined condition is valid for system (1), the stability
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of the system is determined by the distribution of eigenvalues. First,
by Theorem 4 and (24), a necessary condition for system (1) to be
asymptotically stable is K > 0.

Proposition 1. Assume that K > 0. Then system (1) is asymptotically
stable if and only if d is an irrational number.

Proof. A simple calculation shows that

Re < A(f, g), (f, g) >= −K|g(d)|2.

Hence A is dissipative for any K > 0. Because A is a discrete operator,
eAt is asymptotically stable if and only if Reλ 6= 0 for any λ ∈ σ(A). Let
(φ(x), λφ(x)) be an eigenfunction corresponding to λ, where φ satisfies
(5). Then a simple calculation shows that Reλ = 0 if and only if φ(d) = 0
for a nonzero φ satisfying{

φ(4)(x)− ω4φ(x) = 0, 0 < x < 1,
φ(0) = φ′′(0) = φ(1) = φ′′(1) = 0

(30)

for some ω > 0 satisfying sinω = 0. that is, d is a nodal point of the
free system (22). The solution of (30) is φ(x) = sinωx (up to a scalar).
Combining sinω = 0 and φ(d) = sinωd = 0 shows that d is a rational
number.

Suppose that d is an irrational number. We want to know when the
system is exponentially stable. It follows from Theorem 4 that system
(1) is asymptotically stable but not exponentially stable if and only if

sinndπ → 0 (31)

for some positive integer sequence {n} approaching infinity. In order to
derive condition (31) with respect to d, we need a result on the approx-
imation of irrational by rationals.

Lemma 3. [9, Theorem 438]: If d is irrational, α is arbitrary and N
and ε are positive, then there are integers n and p such that n > N and

|nd− p− α| < ε

.
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Theorem 5. Suppose that K > 0. Then system (1) is not exponentially
stable for any 0 < d < 1.

Proof. We need only show that (31) holds for any irrational d.
For irrational d, it follows from Lemma 3 that for any 0 < ε < π/2

and N > 0, there are integers n, p, n > N such that

|nd− p| < ε. (32)

Hence

| sin dnπ| = | sin(nd− p+ p)π| = | sin(nd− p)π cos pπ| ≤ ε.

Therefore, there exists a sequence {n} approaching infinity such that

sinndπ → 0.

The proof is complete.

The proof of Theorem 5 which relies mainly on the asymptotic ex-
pression (24) of eigenvalues gives us much more information on the distri-
bution of eigenvalues than exponential stability itself. Let us investigate
a special case where d = 1/2. In this case, it follows from (24) that

Reλ→ −K sin2 nπ/2 (33)

as |λ| → ∞. There are two branches of eigenvalues. One branch ap-
proaches imaginary axis and another approaches Reλ = −K. This prop-
erty was also observed in Chen et al. (1989) for the same equation with
different joint feedback and boundary conditions. However, we shall
explain by Example 1 in the next section that this phenomenon is not
intrinsic for beam equation with middle joint feedback control.

Moreover, if d is not the middle point, the situation becomes much
more complicated. If d = p

q is a rational number for some coprime
integers p, q, then for any integer n, there are integers w, k such that

n = wq + k, 0 ≤ k < q. (34)

Hence
sin2 ndπ = sin2 kdπ
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where 0 ≤ k < q, and so the eigenvalues may have at most q branches
as follows:

Reλ→ −K sin2 kdπ, k = 0, 1, 2, · · · , q − 1. (35)

If d is irrational, similar to (32), we have, for any given θ > 0

sin2 ndπ = sin2(nd− p− θ + p+ θ)π
= [sin(nd− p− θ)π cos(p+ θ)π + cos(nd− p− θ)π sin(p+ θ)π]2

for any integer p. By Lemma 3, we can choose sufficiently large n and p
such that nd− p− θ is as small as possible. Therefore, for any θ, there
exists a sequence of positive integers {n} approaching infinity such that

Reλn → −K sin2 θπ. (36)

That is, the asymptotes of eigenvalues are dense in

{z| −K ≤ Rez ≤ 0}. (37)

This is not unexpected because, for a string vibration equation with joint
feedback control, when the system is asymptotically but not exponen-
tially stable which is usually true for an irrational joint point d (Zhu et
al. ,1997), then there are infinite number of asymptotes of eigenvalues.
This is a consequence of a general property for zeros of analytic almost
periodic functions (see, e.g., Lemma 3.2 in Henry, 1975).

6 Additional examples

To demonstrate the approach further, we investigate two more exam-
ples. Both of them have been studied in Rebarber (1995) and Chen et
al. (1989) respectively, for which exponential stability and the asymp-
totic distribution of eigenvalues are already known from the articles
cited. Here we show that more profound results such as the Riesz basis
generation and spectrum-determined growth condition are also true for
these systems, we omit the computation process because the proof can
be done easily by following the procedures for system (1). We partic-
ularly pay more attention to the distribution of eigenvalues. It will be
seen that our treatment greatly improves and simplifies the proof by
other existing approaches.
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For notational simplicity, we use, in the sequel, λ = iτ2 or λn = iτ2
n

to denote the eigenvalues of the controlled systems and by µ = iω2 or
µn = iω2

n to denote those of the associated auxiliary free Riesz systems.

Example 1. The first equation in Rebarber (1995) is just equation (1)
but with different boundary conditions:

ytt(x, t) + yxxxx(x, t) = 0, 0 < x < d, d < x < 1,
y(0, t) = yxx(0, t) = 0, yx(1, t) = yxxx(1, t) = 0,
y(d+, t) = y(d−, t), yx(d+, t) = yx(d−, t), yxx(d+, t) = yxx(d−, t),
yxxx(d−, t)− yxxx(d+, t) = Kyt(d, t).

(38)
Similar to (2) we can write (38) as an evolution equation in the state

Hilbert space H = H2
e (0, 1)× L2(0, 1):

d

dt
Y (t) = BY (t) (39)

where Y (t) = (y(•, t), yt(•, t)) ∈ H and B is defined by
B(f, g) = (g(x),−f (4)(x)),∀(f, g) ∈ D(B),
D(B) = {(f, g) ∈ H2

e (0, 1)×H2
e (0, 1)|f |[0,d] ∈ H4(0, d),

f |[d,1] ∈ H4(d, 1),
f ′′(d−) = f ′′(d+), f ′′′(d−)− f ′′′(d+) = Kg(d),
f ′′(0) = f ′′′(1) = 0}

(40)

where H2
e (0, 1) = {f ∈ H2(0, 1)|f(0) = f ′(1) = 0} with the inner prod-

uct induced norm:

‖f‖2
H2

e
=

∫ 1

0
|f ′′(x)|dx.

With almost the same computation process as we have done for sys-
tem (1), we can get the parallel results for system (38).

Proposition 2. (i). B−1 exists and is compact.
(ii). For each λ = iτ2 ∈ σ(B), an eigenfunction corresponding to λ

is (φ, λφ) if φ 6= 0, where

φ(x) =
{
−chτ(1− d) cos τshτx+ chτ cos τ(1− d) sin τx, 0 ≤ x < d,
−shτd cos τchτ(1− x) + chτ sin τd cos τ(1− x), d < x ≤ 1,

(41)
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satisfying
λ2φ(x) + φ(4)(x) = 0, 0 < x < d, d < x < 1,
φ(0) = φ′′(0) = φ′(1) = φ′′′(1) = 0,
φ(d−) = φ(d+), φ′(d−) = φ′(d+), φ′′(d−) = φ′′(d+),
φ′′′(d−)− φ′′′(d+) = Kλφ(d).

(42)

Each eigenfunction associated with λ takes the form ( φ(x), λφ(x)) where
φ is a nonzero solution to (42). The characteristic equation that λ sat-
isfies is

2τchτ cos τ = Ki[chτ(1− d)shτd cos τ − chτ cos τ(1− d) sin τd]. (43)

(iii). There is a family of eigenvalues of B having the following
asymptotic expression:

λn = iτ2
n = i(mπ)2 −K sin2mπd+O(n−1) (44)

for all sufficiently large integers n, where m = n− 1/2.

It follows from (43) and (44) that when sin τnd 6= 0,

cos τn
sin τnd

= O(|τn|−1).

Let φn be the function defined by (41) with τ = τn. Then by similar
arguments as (27), we can obtain

2(−1)nτ−2
n (sin τnd)−1e−τn

(
φ′′n(x)
λnφn(x)

)
= sinmπx

(
−1
i

)
+O(n−1) (45)

which holds uniformly for x ∈ [0, 1]. When φn = 0, it follows from (41)
that

chτn(1−d) cos τn = chτn cos τn(1−d) = shτnd cos τn = chτn sin τnd = 0.

It is seen that if sin τnd = 0, then τn is a real number and so shτn 6= 0.
Hence cos τn = 0. A direct computation shows that φn = sin τnx is a
nonzero solution to (42) and hence (sin τnx, iτ2

n sin τnx) is an eigenfunc-
tion corresponding to λn = iτ2

n. So same as (27), we may consider (45)
to be valid for all sufficiently large n.
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Let

Φn(x) = 2(−1)nτ−2
n (sin τnd)−1e−τn(φn, λnφn(x)).

Then it follows from (45) that there is an N > 0 such that

∞∑
n>N

‖Φn(x)−Ψn(x)‖2 <∞

where Ψn(x) = {sinmπx/(mπ)2, i sinmπx}∞1 . The same thing is true
for the conjugates. Because {Ψn(x),Ψn(x)}∞1 forms a Riesz basis in H,
Theorem 2 is applicable and we obtain the following paralleling results
for system (38) with Theorem 4.

Theorem 6. For any real number K
(i) there is a sequence of generalized eigenfunctions of operator B, which
forms a Riesz basis for the state space H;
(ii) (44) is an asymptotic expression for all eigenvalues of B;
(iii) all eigenvalues of B with sufficiently large modulus are algebraically
simple; therefore, B generates a C0-group on H and the spectrum-
determined growth condition holds for the C0-semigroup eBt generated
by B: ω(B) = S(B).

The following conclusions are obtained in Theorem 1.1 of Rebarber
(1995). Here we give a simple proof based on Theorem 6.

Corollary 1. Suppose K > 0. Then
(i). System (38) is asymptotically stable if and only if d is either a

irrational number or a rational number so that

d 6= 2s
2k − 1

for any integers s, k.
(ii). System (38) is exponentially stable if and only if it is asymp-

totically stable and d is not an irrational number.

Proof. Similar to operator A, when K > 0, B is dissipative. eBt is
asymptotically stable if and only if Reλ 6= 0 for any λ ∈ σ(B). Let
(φ(x), λφ(x)) be the eigenfunction corresponding to λ = iτ2 which is a
nonzero solution of (42). Then a simple calculation shows that Reλ = 0
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if and only if φ(d) = 0 for some positive τ satisfying cos τ = 0. Mean-
while, a simple calculation shows that in this case φ(x) = sin τx. Com-
bining cos τ = 0 and sin τd = 0 gives

d =
2s

2k − 1

for some positive integers s, k, proving (i). Next, by (ii) of Theorem 6,
we know that when K > 0 system (38) is asymptotically stable but not
exponentially stable if and only if

sin2(n− 1/2)dπ → 0 (46)

for some positive integers sequence {n} approaching infinity. We distin-
guish two cases as in Theorem 5:
(i). d = p/q is a rational number for some coprime positive integers p
and q. In this case, writing any positive integer n = wq + k for some
integers w and k, 0 ≤ k < q, we have sin2(n − 1

2)dπ = sin2(k − 1
2)dπ.

Hence condition (46) holds if and only if (k− 1
2)dπ = sπ for some integer

s, that is d = 2s
2k−1 . Hence the system is not asymptotically stable.

(ii). If d is irrational, a similar treatment as in Theorem 5 (see also
Lemma 2.9 in Rebarber, 1995) shows that (46) is always valid for some
positive integers sequence. Therefore, system (38) is never exponentially
stable for any irrational joint d.

Finally, we indicate an interesting fact for system (38). When d =
1/2, that is the stabilizer is installed at the middle of the beam as it was
studied in Chen et al. (1989, 1990), we see from (ii) of Theorem 6 that

Reλn → −K sin2 π/4 = −K
2
, as n→∞.

Hence there is only one family of eigenvalues. This is different from
the cases studied in Chen et al. (1989, 1990) that the middle joint sta-
bilizer for Euler-Bernoulli beams produces most often two families of
eigenvalues.

222 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 205-229



bao-zhu guo and k.y. chan riesz basis generation, eigenvalues . . .

Example 2. Our next example is a special case of the equation consid-
ered in Chen et al. (1989, 1990):

ytt(x, t) + yxxxx(x, t) = 0, 0 < x < d, d < x < 1,
y(0, t) = yx(0, t) = 0, yxx(1, t) = yxxx(1, t) = 0,
yx(d+, t) = yx(d−, t), yxx(d+, t) = yxx(d−, t),
yxxx(d−, t) = yxxx(d+, t)
yt(d−, t)− yt(d+, t) = Kyxxx(d, t)

(47)

where d = 1/2. Define the energy state space H for system (47):
H = H2

p (0, 1) × L2(0, 1), where H2
p (0, 1) = {f |[0,d] ∈ H2(0, d), f |[d,1] ∈

H2(d, 1)|f(0) = f ′(0) = 0, f ′(d−) = f ′(d+)}. Then system (47) can be
written as an evolutionary equation in H:

d

dt
Y (t) = CY (t) (48)

where Y (t) = (y(•, t), yt(•, t)) ∈ H and C is defined by

C(f, g) = (g(x),−f (4)(x)),∀(f, g) ∈ D(C),
D(C) = {(f, g)|{(f, g)|[0,d] ∈ H4(0, d) ∩H2(0, d),

(f, g)|[d,1] ∈ H4(d, 1) ∩H2(d, 1),
f(0) = f ′(0) = f ′′(1) = f ′′′(1) = g(0) = g′(0) = 0,
f ′(d−) = f ′(d+), g′(d−) = g′(d+),
f ′′(d−) = f ′′(d+), f ′′′(d−) = f ′′′(d+),
g(d−)− g(d+) = Kf ′′′(d)}.

(49)

In this example, the function φ corresponding to (16) takes the following
form:

φ(x) = F (x) +


−chτ(x− d)− cos τ(x− d)− chτ cos τ(1− d+ x)
−chτ(1− d+ x) cos τ, 0 ≤ x < d,
chτ(x− d) + cos τ(x− d) + chτ cos τ(1 + d− x)
+chτ(1 + d− x) cos τ, d < x ≤ 1

(50)
where

F (x) = chτd cos τx− shτd sin τx+ chτx cos τd+ shτx sin τd
−shτ sin τ(1− d− x) + shτ(1− d− x) sin τ
+shτ(1− x) sin τ(1− d) + chτ(1− x) cos τ(1− d)
+chτ(1− d) cos τ(1− x)− shτ(1− d) sin τ(1− x), 0 ≤ x ≤ 1.

(51)
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And the characteristic equation is

4 + 4chτ cos τ = Kiτ [−chτ sin τ − shτ cos τ + 2chτd sin τd
+2shτd cos τd
−shτ cos τ(1− 2d)− chτ(1− 2d) sin τ
−2chτ(1− d) sin τ(1− d)
−2shτ(1− d) cos τ(1− d)].

(52)

From (52), the left hand side is a lower perturbation of the right hand
side, so we should choose the following auxiliary free system by letting
1/K = 0 in (47):

ytt(x, t) + yxxxx(x, t) = 0, 0 < x < d, d < x < 1,
y(0, t) = yx(0, t) = 0, yxx(1, t) = yxxx(1, t) = 0,
yx(d+, t) = yx(d−, t), yxx(d+, t) = yxx(d−, t),
yxxx(d−, t) = yxxx(d+, t) = 0.

(53)

The system operator C0 of (55) is operator C with 1/K = 0, that is

C0(f, g) = (g(x),−f (4)(x)),∀(f, g) ∈ D(C0),
D(C0) = {(f, g)|{(f, g)|[0,d] ∈ H4(0, d) ∩H2(0, d),

(f, g)|[d,1] ∈ H4(d, 1) ∩H2(d, 1),
f(0) = f ′(0) = f ′′(1) = f ′′′(1) = g(0) = g′(0) = 0,
f ′(d−) = f ′(d+), g′(d−) = g′(d+),
f ′′(d−) = f ′′(d+), f ′′′(d−) = f ′′′(d+) = 0}.

(54)

The characteristic equation of (53) can be obtained by letting the right
hand side of (52) be zero:

−chω sinω − shω cosω + 2chωd sinωd+ 2shωd cosωd
−shω cosω(1− 2d)− chω(1− 2d) sinω
−2chω(1− d) sinω(1− d)− 2shω(1− d) cosω(1− d) = 0.

(55)

Finding eigenvalues of operator C0 is equivalent to finding nonnegative
solutions of (55). Let

σ(C0) = {iω2,−iω2} (56)

where ω is a positive solution of (55). Writing (55) asymptotically for
large positive ω , we have

sinω + cosω + cosω(1− 2d) = O(e−γω), for some γ > 0. (57)
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Since d = 1/2, (57) is just

sinω + cosω = −1 +O(e−γω), for some γ > 0. (58)

There are two branches of solutions to (58):{
The first branch: ωn = 2nπ − π +O(n−1);
The second branch: ωn = 2nπ − 1

2π +O(n−1)
(59)

where n is a large positive integer. Particular attention should be paid
to (59) which is an asymptotic expression for all eigenvalues of C0.

Same as before, in a small neighborhood of ωn, we write (52) to be

sin τ + cos τ + 1 =
4i
Kτ

cos τ +O(e−γReτ ), for some γ > 0. (60)

By Rouche’s theorem again, we first find a solution of (60) as

τn = ωn +O(n−1). (61)

And then substituting (61) into (60) yields

(cosωn − sinωn)O(n−1) =
4i
Kωn

cosωn +O(n−2). (62)

With ωn = 2nπ − π, we have O(n−1) = 4i
Kωn

+ O(n−2); hence τn =
ωn + 4i

Kωn
+O(n−2), and λn = − 8

K + iω2
n +O(n−1). With ωn = 2nπ −

1
2π, we have O(n−1) = O(n−2), and λn = iω2

n +O(n−2). Therefore, the
two branches of eigenvalues of system (47) have the following asymptotic
expression:

λn =
{
−8/K + i[(2n− 1)π]2 +O(n−1);
i[(2n− 1/2)π]2 +O(n−2).

(63)

The estimates (63) are exactly consistent with the main theorem of
section 2 in Chen et al. (1989) with c1 = c2 = k2

2 = 0, EI = m = 1. How-
ever, to explain (63) reasonably, we have to estimate the corresponding
eigenfunctions. This is summarized in the following theorem.

Theorem 7. Suppose that d = 1/2. Then for any real number K

(i) there is a sequence of generalized eigenfunctions of operator C, which
forms a Riesz basis for the state space H;

225 REVISTA MATEMÁTICA COMPLUTENSE
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(ii) (63) is an asymptotic expression for all eigenvalues of C;

(iii) all eigenvalues of C with sufficiently large modulus are algebraically
simple; therefore, C generates a C0-group on H and the spectrum-
determined growth condition holds for the C0-semigroup eCt generated
by C: ω(C) = S(C).

Proof. Let λn = iτ2
n be defined as in (63) where τn satisfies (61). Let

φn be the function defined by (50) and (51) with τ = τn. By virtue of
(28), we have

2τ−2
n e−τnφ′′n(x) = e−τn(1−x)(cos τnd+ sin τnd)

+ sin τn(1− d− x) + cos τn(1− d+ x)
+e−τnx[sin τn(1− d) + cos τn(1− d)]
−e−τn(d−x) cos τn +O(n−1)
= e−τn(1−x)(cos τnd+ sin τnd)
+(sin τnd+ cos τnd)(cos τnx− sin τnx)
+e−τnx[sin τnd+ cos τnd]− e−τn(d−x) cos τn +O(n−1)
= sinωnx− cosωnx− e−ωn(1−x) − e−ωnx

−e−ωn(d−x) cosωn +O(n−1).

(64)

Similarly

2τ−2
n e−τnφn(x) = − cos τn(1− d+ x)− sin τn(1− d− x)

+e−τn(1−x)(cos τnd+ sin τnd)
+e−τnx[sin τn(1− d) + cos τn(1− d)]
−e−τn(d−x) cos τn +O(n−1)
= −(sinωnx− cosωnx)− e−ωn(1−x) − e−ωnx

−e−ωn(d−x) cosωn +O(n−1).

(65)

In particular, φn 6= 0 for all sufficiently large n. Hence (63) is indeed
a family of eigenvalues of C. We note that (a) (59) represents all but a
finite set of eigenvalues of C; (b) (64) and (65) are also valid for eigenfunc-
tions of C0, that is if (ψn, iω

2
nψn) is an eigenfunction of C0 corresponding

to eigenvalues iω2
n where ψn is defined by (50) and (51) with τ = ωn

then
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2ω−2
n e−ωn

(
ψ′′n(x)
iω2

nψ(x)

)
=(

sinωnx− cosωnx− e−ωn(1−x) − e−ωnx − e−ωn(d−x) cosωn

i[− sinωnx+ cosωnx− e−ωn(1−x) − e−ωnx − e−ωn(d−x) cosωn]

)
+O(n−1),

(66)
and

lim
n→∞

‖2ω−2
n e−ωn(ψn, iω

2
nψn)‖2 = 2; (67)

(c) all (ψn, iω
2
nψn) but a finte set are composed of all eigenfunctions of

C0; (d) C0 is a discrete operator with compact resolvent in H. We may
assume without loss of generality that

2ω−2
n e−ωn(ψn, iω

2
nψn), n = 1, 2, · · ·

with their conjugates are all eigenfunctions of C0 which form a Riesz
basis for H. By (64), (65) and (66), there is an N > 0 such that

∞∑
n>N

‖2τ−2
n e−τn(φn, iτ

2
nφn)− 2ω−2

n e−ωn(ψn, iω
2
nψn)‖2 <∞. (68)

Theorem 2 is then applied again to conclude Theorem 7.

7 Concluding remarks

By means of an abstract result on Riesz basis generation properties
for discrete operators in general Hilbert spaces, we have shown that
the usual Euler-Bernoulli beam equation with joint linear feedback is a
Riesz system, which is one of the most profound properties for vibrat-
ing systems. Two further examples are presented to show that by this
approach, the spectrum-determined growth condition, the asymptotic
expression of eigenvalues as well as exponential stability can be readily
obtained, giving a much clearer picture of the distribution of eigenval-
ues and greatly simplifies the proof by existing approaches. Moreover,
our approach involves only some very elementary and straightforward

227 REVISTA MATEMÁTICA COMPLUTENSE
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calculations. This approach depends strongly on a better understand-
ing of the asymptotic distribution of eigenvalues of the auxiliary free
Riesz system. Unfortunately however, this is not always easy. A typical
example can be found in Rebarber (1995) that still needs for further
investigation.
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