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Abstract

We study a model describing vibrations of a cylindrical domain
with thickness e > 0. A characteristic of this model is that it con-
tains “pollution terms” in the boundary data and “missing terms”
in the initial data. The “method of sentinels” of J.L. Lions [7]
is followed to construct a sentinel using the observed vibrations
on the boundary. Such a sentinel, by construction, provides in-
formation on pollution terms independent of missing terms. This
requires resolution of initial-boundary value problems with non-
zero boundary data of mixed type and an exact controllability
problem. Further, we characterize so called “stealthy pollution
terms” present in the model.

1 Introduction

The subject matter of this work is vibrations of three-dimensional do-
mains of cylindrical shape Ωe = ω ×

]
−e/2 , e/2

[
, ω being a planar

domain. Here e > 0 denotes the thickness of the domain in the x3-
direction. The vibrations of Ωe are modelized by the wave equation.
The boundary data are sums of principal terms and perturbing terms
known as “pollution terms”. Roughly speaking, these “pollution terms”
are unknown source terms creating the vibrations. Likewise, initial data
are of a similar nature and the terms of perturbation which occur here
are called “missing terms”. These terms of perturbation are assumed to
be small. The above system provides an example of what is known as
incomplete system in the literature.
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One of the objectives in the study of such systems is to obtain in-
formation on the pollution terms which are naturally required to be
“independent” of missing terms. We are thus dealing with a type of
inverse problem. The idea, as in many other cases, is to observe the
solution (here vibrations of Ωe) in a suitable portion of Ωe during a cer-
tain period of time. Using suitable averages of these observed data, one
constructs functionals which, a priori, depend on pollution terms as well
as on missing terms. It is natural to require that the first order varia-
tions of the functional w.r.t the missing terms are zero. Conditions thus
obtained are referred to as “insensitivity conditions” and functionals sat-
isfying them are called “sentinels”. Thus sentinels are independent of
missing terms to the first order. Once constructed, they provide useful
information on the pollution terms. Insensitivity conditions lead to an
exact controllability problem which we know how to treat.

Above is a short description of the method of sentinels introduced
and developed in the book of Lions [7] wherein the reader can also find
further the significance of pollution terms and missing terms and dis-
tinction between them. Many models occurring in practice do contain
such terms and hence the study of sentinels is very important in ap-
plications. As far as our knowledge goes, there are not many articles
devoted to sentinels except the work [7]. We mention also that H.U.M.
(Hilbert Uniqueness Method) introduced in the books of Lions [6] can be
employed fruitfully to analyze the exact controllability problem arising
in the construction of the sentinel.

In our work, there are essentially three parts. The first part (§3−§7)
deals with initial-boundary value problems with non-zero boundary data.
Our situation is slightly complicated because of the mixed nature of the
boundary conditions: Dirichlet condition on the lateral portion Γe0 of
the boundary ∂Ωe and Neumann condition on the top-bottom surfaces
Γe± of ∂Ωe. Starting from homogeneous problem, we proceed systemat-
ically and present a method of solving non-homogeneous problem and
obtaining estimates independent of e. For the treatment of non-mixed
problems, we refer the reader to [3], [4] and the references found therein.

The second part (§8) constructs a sentinel based on the observation
of the vibrations on Γe0 , Γe±. The resulting exact controllability problem
has already been solved by the authors [8]. Here we recall the results
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from [8] with some significant improvements.
The last part (§9) deals with yet another aspect of the problem: there

are degenerate situations where sentinels provide no information on the
pollution terms up to first order. If this happens, such pollution terms
are called stealthy ([7]). In §9, we characterize stealthy pollution terms
in our problem. They appear as boundary values in some overdetermined
systems. Whether they are nontrivial or not depends on the domain ω.

In this work, we derive estimates (uniform w.r.t e) on various prob-
lems connected with sentinel. Their asymptotic behaviour as e → 0 is
the object of a forthcoming paper.

2 Notations and problem to be studied

We are interested in the study of vibrations of the thin cylindrical do-
main Ωe. To carry out the analysis, following the usual practice, we
make the transformation zα = xα, α = 1, 2 and z3 = e−1x3 which takes
the domain Ωe to a fixed domain Ω = ω×]−1/2, 1/2[ of thickness unity.
Here ω is a bounded domain in R2 with smooth boundary γ. We set

(2.1) Γ0 = γ×]− 1/2, 1/2[, Γ± = ω × {±1/2}, Γ = Γ0 ∪ Γ+ ∪ Γ−.

We see that the boundary Γ of Ω is partitioned into the lateral part
Γ0, the upper part Γ+ and the lower part Γ−. Let ν = ν(z) denote the
outward unit normal erected at the boundary point z ∈ Γ.

We study the following initial-boundary value problem where the
state variable ye represents the amplitude of vibrations of the domain Ω
during a time interval 0 ≤ t ≤ T :

(2.2)

 e y
e = 0 in Q ,

ye = he0 + λ0 ĥ
e
0 on Σ0, e

−1 (∂ye/∂ν) = he± + λ± ĥ
e
± on Σ± ,

ye(0) = ye0 + τ0 ŷ
e
0 in Ω, (ye)′(0) = ye1 + τ1 ŷ

e
1 in Ω .

Here we used the following usual notations:

(2.3)
Q = Ω× ]0 , T [ , Σ = Γ× ]0 , T [ ,
Σ0 = Γ0× ]0 , T [ , Σ± = Γ±× ]0 , T [ .

(2.4) e = (∂2/∂t2)−∆e , where ∆e = (∂2/∂zα ∂zα) + e−2(∂2/∂z2
3) .
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Here and in the sequel, we follow the usual summation convention with
respect to the repeated indices. Greek indices take values in {1, 2}.

In the above system, τ0ŷe0 and τ1ŷ
e
1 represent the missing terms in

the initial data whereas λ0ĥ
e
0 and λ±ĥe± are the so-called pollution terms

appearing in boundary conditions. The parameters τ = (τ0, τ1) and
λ = (λ0, λ±) are supposed to be small.

The question we are concerned with is the following: can we obtain
some information on pollution terms which is insensitive to the missing
data, at least up to first order in τ0, τ1? For this purpose, we observe
ye = ye(λ, τ) on Σ± and its normal trace on Σ0. We then construct the
functional

(2.5)
∫

Σ0

ξe0
∂ye

∂ν
dσ dt−

∫
Σ+

ξe+ ye dσ dt−
∫

Σ−

ξe− y
e dσ dt ,

where we have taken averages of the observed data against given func-
tions ξ0 , ξ+ and ξ− . Unfortunately, such a functional may be sensitive
to the missing data. The idea is to introduce new unknowns we0 , w

e
+

and we− and define the sentinel in the form

(2.6)
Se(λ, τ) = e

∫
Σ0

(ξe0 + we0)
∂ye

∂ν
dσdt−

−
∫

Σ+

(ξe+ + we+) yedσdt −
∫

Σ−

(ξe− + we−) yedσdt .

We seek elements we0, w
e
± such that Se satisfies the insensivity condition

given below:

(2.7) (∂Se/∂τ0) (0, 0) = 0 , (∂Se/∂τ1) (0, 0) = 0 ∀ ŷe0 , ŷe1 .

It is natural to require the norm of (we0, w
e
±) to be minimal so that the

value of the sentinel is not far from the one given by (2.5). This condition
is automatically satisfied by the very nature of H.U.M. employed to
choose (we0, w

e
±) (cf. §8.4).

Thus, in order to construct the sentinel Se, we need to solve (2.2)
for ye and study its trace on Σ± and its normal trace on Σ0. This is the
object of §3 - §7. The task in §8 is to find (we0, w

e
±) such that (2.7) is

satisfied
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3 Non-homogeneous mixed problems - weak so-
lutions

The purpose of this section is to describe some results giving existence,
uniqueness and estimates independent of e to solutions to the initial-
boundary value problems of mixed type (2.2) in the case of cylindri-
cal domains considered in §2. It is to be noted that we have a non-
homogeneous mixed Dirichlet-Neumann condition in (2.2). Several re-
sults concerning the pure Dirichlet and the pure Neumann problems are
already available in the literature and we cite, for instance, Lions [6],
Lasiecka, Lions & Triggiani [3], Lasiecka & Triggiani [4].

We will be primarily concerned with three types of solutions: regu-
lar solutions belonging to C0([0, T ]; Hs(Ω)) for some s > 3/2, finite en-
ergy solutions belonging to C0([0, T ]; H1(Ω)) and solutions in the space
C0([0, T ]; L2(Ω)) which will be called weak solutions. In this section,
we focus our attention to the properties of weak solutions. Our plan is
to consider some properties of finite energy solutions with homogeneous
boundary conditions and, by duality arguments, deduce some informa-
tion on weak solutions.

3.1 Homogeneous mixed problem

Let us first introduce the function spaces

(3.1)


H = L2(Ω) , V =

{
v ∈ H1(Ω) ; v = 0 on Γ0

}
,

V e denotes the space V with the norm ‖v‖V e = ‖∇e v‖(H)3

where ∇e v =
(
(∂v/∂z1) , (∂v/∂z2) , e−1 (∂v/∂z3)

)
.

As usual, we identify L2(Ω) with its dual and, in this case we have the
dense inclusions:

V e ↪→ H = H ′ ↪→ (V e)′ .
With these notations, let us consider solutions θe of finite energy

to homogeneous initial-boundary value problem with mixed boundary
condition:

(3.2)

 e θ
e = F e in Q ,

θe = 0 on Σ0 and e−1 (∂θe/∂ν) = 0 on Σ± ,
θe(0) = θe0 and (θe)′ (0) = θe1,
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where we take

(3.3) F e ∈ L1(0 , T ; H) , θe0 ∈ V e , θe1 ∈ H .

We define the energy associated to problem (3.2):

(3.4) Ee(θe ; t) =
1
2

∫
Ω

{(∂θe
∂t

)2 + |∇e θ
e|2

}
dz.

We recall the following result from Saint Jean Paulin & Vanninathan
[8]:

Theorem 3.1. Under the condition (3.3), there exists a unique solution
θe satisfying (3.2) and

(3.5) θe ∈ C0([0, T ];V e), (θe)′ ∈ C0([0, T ];H), (θe)′′ ∈ L1(0, T ; (V e)′).

Moreover, for all multipliers mk ∈W 1,∞(Ω) , k = 1, 2, 3, the solution θe

satisfies the following identity:

1
2

∫
Σ0

(mα να)
(∂θe
∂ν

)2
dσ dt+

+1
2

∫
Σ+∪Σ−

(m3 ν3)
{(∂θe

∂t

)2 − ∂θe

∂zα

∂θe

∂zα

}
dz dt =

=
[∫

Ω

∂θe

∂t
mk

∂θe

∂zk
dz

]T
0

+
1
2

∫
Q

∂mk

∂zk

{(∂θe
∂t

)2 − |∇e θ
e|2

}
dz dt+

+
∫
Q

∂mk

∂zα

∂θe

∂zα

∂θe

∂zk
dz dt+ e−2

∫
Q

∂mk

∂z3

∂θe

∂z3

∂θe

∂zk
dz dt−

−
∫
Q
F emk

∂θe

∂zk
dz dt .

Further, there exists a constant C > 0 such that

(3.6)

Ee(θe ; t) +
∫

Σ0

(∂θe
∂ν

)2
dσ dt+

+
∣∣∫

Σ+

{(∂θe
∂t

)2 − ∂θe

∂zα

∂θe

∂zα

}
dσ dt

∣∣ +

+
∣∣∫

Σ−

{(∂θe
∂t

)2 − ∂θe

∂zα

∂θe

∂zα

}
dσ dt

∣∣ ≤
≤ C

{
Ee(θe ; 0) +

(∫ T

0
‖F e(t)‖H dt

)2}
.
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Here, and in the sequel, C denotes a generic constant independent of the
thickness parameter e .

In our study, we require certain other estimates also on the problem
(3.2). Let us take

(3.7) F e = (F e1 )′ (≡ ∂ F e1 / ∂ t) with F e1 ∈ L1(0 , T ; V e).

Theorem 3.2. We suppose (3.7) and take θe0 = 0 and θe1 = 0 . Then
the following estimates hold for solutions of (3.2):

(3.8)


‖∇eθ

e‖L∞(0,T ;H) + ‖(θe)′‖L∞(0,T ;H) ≤ C‖∇eF
e
1 ‖L1(0,T ;H),

‖∇θe‖L∞(0,T ;H) ≤ C ‖∇F e1 ‖L1(0, T ;H),∥∥(∂θe/∂ν)
∥∥
L2(Σ0)

≤ C‖∇eF
e
1 ‖L1(0,T ;H).

Proof. We sketch the proof, following the ideas of Lions [6] who treated
the Dirichlet problem. By density arguments, we can assume F e1 is
smooth, F e1 (0) = 0 and F e1 (T ) = 0. We introduce we the solution of:

(3.9)

 ew
e = F e1 in Q,

we = 0 on Σ0 and e−1 (∂we/∂ν) = 0 on Σ±,
we(0) = (we)′ (0) = 0 ,

and note that θe = (we)′. Multiplying (3.9) by−∆e (we)′ and integrating
by parts, we get

(3.10) ‖∇e(we)′‖L∞(0,T ;H) + ‖∆ew
e‖L∞(0,T ;H) ≤ C‖∇eF

e
1 ‖L1(0,T ;H).

This implies immediately that

‖ (θe)′(T ) ‖H ≤ C ‖∇eF
e
1 ‖L1(0,T ;H).

Since T is arbitrary, we have the first inequality in (3.8).
To prove the second inequality in (3.8), we multiply (3.9) by−∆ (we)′

and integrate by parts. We obtain

(3.11)
e−1‖(∂2we/∂z2

3)‖L∞(0,T ;H) + ‖(∂2we/∂zα∂z3)‖L∞(0,T ;H)+
+e−1‖(∂2we/∂zα∂zα)‖L∞(0,T ;H) + ‖∇(we)′‖L∞(0,T ;H) ≤
≤ C‖∇F e1 ‖L1(0,T ;H).
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To prove the third inequality in (3.8) we multiply (3.2) by
mk (∂θe/∂zk) with mk in W 1,∞(Ω). We arrive at the following identity:

(3.12)

1
2

∫
Σ0

(mα να)
(∂θe
∂ν

)2
dσ dt+

+1
2

∫
Σ+∪Σ−

(m3 ν3)
{(∂θe

∂t

)2 − ∂θe

∂zα

∂θe

∂zα

}
dσ dt =

=
∫

Ω

(∂θe
∂t

)
(T ) mk

∂θe

∂zk
(T ) dz+

+1
2

∫
Q

∂mk

∂zk

{
|∆ew

e|2 − |∇e θ
e|2

}
dz dt+

+
∫
Q

∂θe

∂zα

∂mk

∂zα

∂θe

∂zk
dz dt+ e−2

∫
Q

∂θe

∂zk

∂mk

∂z3

∂θe

∂zk
dz dt−

−
∫
Q

∂F e1
∂zk

mk ∆ew
e dz dt− 1

2

∫
Σ+∪Σ−

(m3 ν3) (F e1 )2 dσ dt+

+
∫

Σ+∪Σ−

(m3 ν3) F e1
(∂θe
∂t

)
dσ dt .

Taking into account the cylindrical geometry of our domain Ω, we choose
the multipliers mk , k = 1, 2, 3 which were introduced in Saint Jean
Paulin & Vanninathan [8]:

(3.13) m1 , m2 independent of z3 , mα = να on Γ0 and m3 = 0 .

Using these multipliers in (3.12), we can easily complete the proof of
(3.8).

As shown by Theorem 3.1, the trace on Σ+ of solutions θe of (3.2) (with
F e ∈ L1(0, T ;H)) satisfies the inequality (3.6). Let us introduce the
spaces W e

± consisting of traces on Σ± of solutions θe of (3.2). We provide
W e
± with the following “quotient norm”:

‖we±‖W e
±

= inf
{
‖F e‖L1(0,T ;H) + ‖θe0‖V e + ‖θe1‖H | θe is associated

to (F e, θe0, θ
e
1) via (3.2) and θe|Σ± = we±

}
.

The dual spaces are denoted by (W e
±)′. Since θe ∈ C0([0, T ];V e) (cf

(3.5)), it follows from the trace results on H1(Ω) that we have the in-
clusions W e

± ⊆ C0([0 , T ] ; H1/2(Γ±)) .
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3.2 Existence of weak solutions

We seek weak solutions ψe satisfying

(3.14)

 e ψ
e = fe in Q ,

ψe = ge0 on Σ0 and e−1 (∂ψe/∂ν) = ge± on Σ± ,
ψe(0) = ψe0 and (ψe)′(0) = ψe1 in Ω .

The following result proves not only existence and uniqueness of weak
solutions of (3.14) but also specifies the precise sense in which (3.14) has
to be understood.

Theorem 3.3. We make the hypotheses that

(3.15)
fe ∈ L1(0, T ; (V e)′), ψe0 ∈ H,ψe1 ∈ (V e)′,
ge0 ∈ L2(Σ0), ge± ∈ (V e

±)′,

where we take V e
± = W e

± (or) V e
± = L2(0 , T ; H1/2(Γ±)) .

Then, there exists a unique weak solution ψe of (3.14) in the following
sense:

(3.16) ψe ∈ C0([0 , T ] ; H) ,

(3.17)

L1(0,T ;H) < F e, ψe >L∞(0,T ;H)=
=L1(0,T ;(V e)′)< fe, θe >L∞(0,T ;V e) +(V e)′ < ψe1, θ

e(0) >V e −
−H < ψe0, (θ

e)′(0) >H −L2(Σ0) < ge0, ∂θ
e/∂ν >L2(Σ0) +

+(V e
+)′ < e−1ge+, θ

e >V e
+

+(V e
−)′ < e−1 ge−, θ

e >V e
−
,

for all F e ∈ L1(0 , T ; H) and for all finite energy solutions θe satis-
fying the following backward mixed homogeneous initial-boundary value
problem:

(3.18)

 e θ
e = F e in Q ,

θe = 0 on Σ0 and e−1 (∂θe/∂ν) = 0 on Σ± ,
θe(T ) = (θe)′ (T ) = 0 in Ω.

Moreover, we have the following estimate:

(3.19)



‖ψe‖L∞(0,T ;H) ≤ CR1(fe, ψe0, ψ
e
1, g

e
0, g

e
+, g

e
−) with

R1(fe, ψe0, ψ
e
1, g

e
0, g

e
+, g

e
−) ≡ ‖fe‖L1(0,T ;(V e)′)+

+‖ψe0‖H + ‖ψe1‖(V e)′+
+‖ge0‖L2(Σ0) + e−1‖ge+‖(V e

+)′+
+e−1‖ge−‖(V e

−)′ .
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Proof. We follow the transposition technique to solve (3.14). Indeed
the formulation (3.17) is obtained by multiplying (3.14) by θe solution
of (3.18) and applying Green’s formula, assuming sufficient regularity of
θe and ψe.

To finish the proof, it suffices to consider the right-hand side of (3.17)
as a linear map of F e ∈ L1(0 , T ; H). Thanks to our assumptions and
the inequality (3.6) for the backward problem, the above map is con-
tinuous and hence given by a unique ψe ∈ L∞(0 , T ; H) satisfying the
estimate (3.19). The passage from the regularity ψe ∈ L∞(0 , T ; H) to
ψe ∈ C0([0 , T ] ; H) is done by the usual techniques (adapt for instance
Lions [6], tome 1, p. 46 to our case).

Corollary 3.4. The spaces W e
± are dense in L2(Σ±) respectively.

Proof. Let ge± ∈ L2(Σ±) be such that L2(Σ±) < ge± , θ
e >L2(Σ±)= 0 for

all solutions θe of (3.2), and in particular solutions of (3.18). By Theorem
3.3, we know that there exists a unique weak solution ψe ∈ L∞(0 , T ; H)
of (3.14) where we take ge± ∈ L2(Σ±) ⊂ L2(0 , T ; H−1/2 (Γ±)) and
fe = 0, ge0 = 0, ψe0 = 0, ψe1 = 0. If we apply (3.17), we obtain

L1(0 , T ;H) < F e , ψe >L∞(0 , T ;H)=
= L2(Σ+) < e−1 ge+ , θ

e >L2(Σ+) + L2(Σ−) < e−1 ge− , θ
e >L2(Σ−)= 0.

Since F e is arbitrary, we conclude that ψe = 0 and hence that ge± = 0.

3.3 Additional estimate on weak solutions

In this paragraph, we derive an estimate on (ψe)′ in the space
L∞(0 , T ; (V e)′) where ψe is the weak solution of (3.14).

Theorem 3.5. Under the assumptions of Theorem 3.3, (ψe)′ ∈
C0([0, T ]; (V e)′) and

(3.20) ‖(ψe)′‖L∞(0 , T ; (V e)′) ≤ C R1(fe , ψe0 , ψ
e
1 , g

e
0 , g

e
+ , g

e
−).
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Proof. As in the proof of the previous theorem, we consider the linear
functional
F e → L(F e) defined by the right-hand side of (3.17) with the choice
that F e = (F e1 )′ where F e1 ∈ L1(0 , T ; V e). Applying the estimates
(3.8), we deduce that (see Lions [6] in the Dirichlet case)

|L(F e)| ≤ C ‖F e‖W−1 , 1(0 , T ;V e) R1(fe , ψe0 , ψ
e
1 , g

e
0 , g

e
+ , g

e
−) .

This easily implies that ψe ∈W 1,∞(0 , T ; (V e)′) and (3.20) holds.

4 Non-homogeneous mixed problems - finite en-
ergy solutions

We concentrate our efforts in this section in obtaining existence, unique-
ness and estimates of finite energy solutions to the system

(4.1)

 e θ
e = F e in Q ,

θe = he0 on Σ0 and e−1 (∂θe/∂ν) = he± on Σ± ,
θe(0) = θe0 and (θe)′ (0) = θe1 in Ω .

It will be convenient to decompose the solution into two parts: θe =
θ e+(θe−θ e) where θ e and θe−θ e are solutions of the following systems
respectively:

(4.2)

 e θ
e = 0 in Q ,

θ e = he0 on Σ0 and e−1 (∂θ e/∂ν) = he± on Σ± ,
θ e(0) = θe0 and (θ e)′ (0) = θe1 in Ω,

(4.3)

 e(θe − θ
e) = F e in Q,

(θe − θ e) = 0 on Σ0 and e−1(∂/∂ν)(θe − θ
e) = 0 on Σ±,

(θe − θ
e)(0) = (θe − θ

e)′(0) = 0 in Ω.

A simple application of Theorem 3.1 yields

(4.4) ‖∇e(θe−θ
e)‖L∞(0,T ;H)3 +‖(θe−θ e)′‖L∞(0,T ;H) ≤ C‖F e‖L1(0,T ;H).

It remains to study problem (4.2) and exhibit solutions of finite energy
for (4.2). This is the object of the following paragraphs.
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4.1 First results on problem (4.2)

To obtain finite energy solutions of (4.2), we need to follow a differ-
ent strategy. The technique adopted in the result below yields only
an estimate on (θ e)′ in L∞(0 , T ; H). To get an estimate on θ e in
L∞(0 , T ; H1(Ω)), we have to follow yet another method which will be
taken up in the next paragraph.

Theorem 4.1. We assume that

(4.5)


θe0 ∈ H1(Ω) , ∂θe0/∂ν ∈ H−1/2 (Γ±) , θe1 ∈ H ,

he0 ∈ H1(0 , T ; L2(Γ0)) ∩ C0([0 , T ] ; H1/2(Γ0)) ,
he± ∈ C0([0 , T ] ; H−1/2(Γ±)) , (he±)′ ∈ (W e

±)′ .

In addition, we assume the following compatibility conditions:

(4.6) he0
∣∣
t=0

= θe0 on Γ0 and he±
∣∣
t=0

= e−1 (∂θe0/∂ν) on Γ± .

Then, there exists a unique solution θ e satisfying (4.2) with the following
regularity:

(4.7) θ e ∈ C1([0 , T ] ; H) , (θ e)′′ ∈ C0([0 , T ] ; (V e)′).

Further, we have the estimates

(4.8)


‖(θe)′‖L∞(0,T ;H) + ‖(θe)′′‖L∞(0,T ;(V e)′) ≤

≤ C R2(θe0, θ
e
1, h

e
0, h

e
+, h

e
−)

with R2(θe0, θ
e
1, h

e
0, h

e
+, h

e
−) ≡ ‖θe1‖H+

+‖∆eθ
e
0‖(V e)′ + ‖(he0)′‖L2(Σ0)+

+e−1‖(he+)′‖(W e
+)′ + e−1 ‖(he−)′‖(W e

−)′ .

Proof. We set θ̃ e = (θ e)′ and note that θ̃ e formally satisfies the fol-
lowing system:

(4.9)


e θ̃

e = 0 in Q ,
θ̃ e = (he0)

′ on Σ0 and e−1 (∂θ̃ e/∂ν) = (he±)′ on Σ± ,
θ̃ e(0) = θe1 and (θ̃ e)′(0) = ∆e θ

e
0 in Ω .

It is in the verification of (4.9) in the sense of duality (cf. (3.17)) that
we use the compatibility conditions (4.6).
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It is important to note that ∆e θ
e
0 ∈ (V e)′ and its action is indeed defined

by

(4.10)
(V e)′ < ∆eθ

e
0, v >V e= −

∫
Ω

{ ∂θe0
∂zα

∂v

∂zα
+ e−2∂θ

e
0

∂z3

∂v

∂z3

}
dz+

+e−2
H−1/2(Γ+)

<
∂θe

0
∂ν , v >H1/2(Γ+) +

+e−2
H−1/2(Γ−)

<
∂θe

0
∂ν , v >H1/2(Γ−),

for all v ∈ V e . We now apply Theorems 3.3, 3.5 to problem (4.9) and
conclude.

To show that θ e has finite energy, it remains to prove that θ e ∈
C0 ([0 , T ] ; H1(Ω)). To this end, we use the equation in (4.2). More
precisely, we have the following stationary problem in which t plays the
rôle of a parameter

(4.11)
{
−∆eθ

e(t) = −(θe)′′ (t) ∈ (V e)′ in Ω,
θ
e(t) = he0(t) on Γ0, e

−1 (∂θ e/∂ν) (t) = he±(t) on Γ±.

4.2 Stationary problems of mixed boundary conditions

In the last paragraph, we were led to study stationary problems of the
following form:

(4.12)
{
−∆e ψ

e = Ge in Ω ,
ψe = he0 on Γ0 and e−1 (∂ψe/∂ν) = he± on Γ± .

It is classically known that there exists a unique solution ψe ∈ H1(Ω)
if Ge ∈ (V e)′, he0 ∈ H1/2(Γ0) and he± ∈ H−1/2(Γ±). However, in order
to have estimates on ψe uniform with respect to e, we need to assume
more regularity on the data. This is the purpose of this paragraph.

We decompose the solution into two parts ψe = ψ e+(ψe−ψ e) where
ψ e satisfies

(4.13)
{
−∆e ψ

e = 0 in Ω ,
ψ e = he0 on Γ0 and e−1 (∂ψ e/∂ν) = he± on Γ± .
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Clearly (ψe − ψ e) satisfies (4.12) with he0 = he± = 0. It is easy to
deduce the required energy estimate on (ψe − ψ e) from the variational
formulation of problem (4.12) with homogeneous boundary conditions.
We obtain

(4.14) ‖∇e (ψe − ψ e)‖H3 ≤ ‖Ge‖(V e)′ .

Now, it remains to study the problem (4.13). We will need some ad-
ditional hypotheses on he0 and he± in our analysis. To introduce these, let
us denote by τ1(z) , τ2(z) a piece-wise smooth selection of orthonormal
tangent vectors at boundary points z ∈ ∂Ω such that their components
satisfy {

τ1 = (0, 0, 1) and (τ2)3 = 0 on Γ0 ,
τ1 = (1, 0, 0) and τ2 = (0, 1, 0) on Γ± .

We can express the gradient of a function χ as follows:

(4.15) ∂χ/∂zk = νk (∂χ/∂ν) +
2∑
j=1

(τ j)k (∂χ/∂τ j) k = 1, 2, 3 ,

where ∂χ/∂τ j are tangential derivatives of χ on the boundary. We set

(4.16) σk χ =
2∑
j=1

(τ j)k (∂χ/∂τ j) and ∇σ χ = {σk χ}3
k=1 .

We are now in a position to state our next result.

Theorem 4.2. We suppose that he0 ∈ H1(Γ0) and he± ∈ H−1/2(Γ±).
Then we have the estimate satisfied by the solution ψ e of (4.13):

(4.17)



∫
Ω
|∇eψ

e|2 dz ≤ CR3(he0, h
e
+, h

e
−) with

R3(he0, h
e
+, h

e
−) ≡

∫
Γ0

{
|∇σh

e
0|2 + e−2∂h

e
0

∂z3
+ |he0|2

}
dσ+

+e−2‖he+‖2
H−1/2(Γ+)

+ e−2‖he−‖2
H−1/2(Γ−)

.

Proof. We decompose ψ e as follows: ψ e = ξe + (ψ e − ξe) where ξe is
the solution of

(4.18)
{
−∆e ξ

e = 0 in Ω ,
ξe = he0 on Γ0 and e−1 (∂ξe/∂ν) = 0 on Γ± .
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Then (ψ e− ξe) satisfies clearly (4.13) with he0 = 0. From the variational
formulation of Problem (4.13) with homogeneous boundary conditions
on Γ0, we deduce, using Poincaré and trace inequalities, that, for e < 1,

(4.19)

∫
Ω
|∇e(ψ

e − ξe)|2dz ≤

≤ C
{
e−2‖he+‖2

H−1/2(Γ+)
+ e−2‖he−‖2

H−1/2(Γ−)

}
.

Thus, we are reduced to derive the required estimate for the problem
(4.18). As a first step towards this goal, let us multiply (4.18) by ξe.
We obtain

(4.20)
∫

Ω
|∇eξ

e|2 dz =
∫

Γ0

he0
∂ξe

∂ν
dσ ≤ ‖he0‖L2(Γ0)

∥∥∂ξe/∂ν∥∥
L2(Γ0)

.

To estimate ∂ξe/∂ν in L2(Γ0), we multiply (4.18) bymk (∂ξe/∂zk) where
mk ∈W 1,∞(Ω). After some computation, we arrive at

(4.21)



1
2

∫
Γ0

(mβ νβ)
(∂ξe
∂ν

)2
dσ =

∫
Ω

∂ξe

∂zα

∂mk

∂zα

∂ξe

∂zk
dz−

−1
2

∫
Ω

∂mk

∂zk
|∇e ξ

e|2 dz+

+ e−2

∫
Ω

∂ξe

∂z3

∂mk

∂z3

∂ξe

∂zk
dz−

−
∫

Γ0

∂ξe

∂ν

{
mβ σβ h

e
0 +m3

∂he0
∂z3

}
dσ+

+ 1
2

∫
Γ0

(mβ νβ)
{
|∇σ h

e
0|2 + e−2

(∂he0
∂z3

)2}
dσ+

+ 1
2

∫
Γ+∪Γ−

(m3 ν3)
∂ξe

∂zα

∂ξe

∂zα
dσ .

Let us now use the choice of multipliers defined by (3.13). We get

(4.22)



1
2

∫
Γ0

(∂ξe
∂ν

)2
dσ =

∫
Ω

∂ξe

∂zα

∂mβ

∂zα

∂ξe

∂zβ
dz−

−1
2

∫
Ω

∂mβ

∂zβ
|∇e ξ

e|2 dz+

+1
2

∫
Γ0

{
|∇σ h

e
0|2 + e−2

(∂he0
∂z3

)2}
dσ ,

≤ C‖m‖W 1,∞(Ω)2 ‖∇e ξ
e‖2
H3+

+1
2

∫
Γ0

{
|∇σ h

e
0|2 + e−2

(∂he0
∂z3

)2}
dσ .
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Combining (4.20) and (4.22), it is an easy matter to deduce

(4.23)

∫
Γ0

(∂ξe
∂ν

)2
dσ +

∫
Ω
|∇e ξ

e|2 dz ≤

≤ C

∫
Γ0

{
|∇σ h

e
0|2 + e−2

(∂he0
∂z3

)2 + |he0|2
}
dσ.

Combining (4.14) and (4.17), we can now easily state our estimate on
the problem (4.12).

Corollary 4.3. We consider the problem (4.12). We suppose that
F e∈ (V e)′, he0 ∈H1(Γ0) and he± ∈ H−1/2 (Γ±). Then we have

(4.24)
∫

Ω
|∇e ψ

e|2 dz ≤ C (‖F e‖(V e)′ + R3(he0, h
e
+, h

e
−)).

4.3 Final results on problem (4.1)

We now go back to problem (4.1) and derive estimates on the finite
energy solution θe. Combining the results of §4.1, §4.2, we obtain

Theorem 4.4. We suppose

(4.25)

 F e ∈ L1(0, T ;H), θe0 ∈ H1(Ω), ∂θ
e
0

∂ν ∈ H−1/2 (Γ±), θe1 ∈ H
he0 ∈ C0([0, T ];H1(Γ0)) ∩H1(0, T ;L2(Γ0)),
he± ∈ C0([0, T ];H−1/2(Γ±)), (he±)′ ∈ (W e

±)′.

We further assume the compatibility condition (4.6). Then there exists
a unique solution θe satisfying (4.1) with the following regularity:

(4.26)
(
θe, (θe)′

)
∈ C0

(
[0, T ];H1(Ω)×H

)
, (θe)′′ ∈ L1(0, T ; (V e)′)

Further the following estimate holds:

(4.27)
‖∇e θ

e‖L∞(0 , T ;H) + ‖(θe)′‖L∞(0 , T ;H) ≤
≤ C(‖F e‖L1(0 , T ;H) +R4(θe0 , θ

e
1 , h

e
0 , h

e
+ , h

e
−)) ,
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(4.28)

with R4(θe0 , θ
e
1 , h

e
0 , h

e
+ , h

e
−) = ‖θe1‖H + ‖∆e θ

e
0‖(V e)′+

+ ‖he0‖L∞(0 , T ;L2(Γ0)) + ‖∇σ h
e
0‖L∞(0 , T ;L2(Γ0))+

+ e−1
∥∥ (∂he0/∂z3)

∥∥
L∞(0 , T ;L2(Γ0))

+ ‖(he0)′‖L2(Σ0)+
+ e−1 ‖he+‖L∞(0 , T ;H−1/2(Γ+)) + e−1 ‖(he+)′‖(W e

+)′+
+ e−1 ‖he−‖L∞(0 , T ;H−1/2(Γ−)) + e−1 ‖(he−)′‖(W e

−)′ .

5 Regularity in z3-variable for solutions with fi-
nite energy

Let us consider the finite energy solution of system (4.1) whose existence
and uniqueness have been proved in Theorem 4.4 . We are now interested
in its regularity with respect to z3-variable. To this end, we exploit the
cylindrical structure of the domain. We introduce θ̃ e = ∂θe/∂z3 and
note that θ̃ e satisfies

(5.1)


e θ̃

e = F̃ e in Q ,
θ̃ e = h̃e0 on Σ0 and e−1 θ̃ e = he± ν3 on Σ± ,
θ̃ e(0) = θ̃ e0 and (θ̃ e)′ (0) = θ̃ e1 in Ω ,

where we have posed

F̃ e = (∂F e/∂z3) , h̃ e0 = (∂he0/∂z3) , θ̃
e
0 = (∂θe0/∂z3) , θ̃

e
1 = (∂θe1/∂z3).

Let us note that (5.1) is an initial-boundary value problem with
purely Dirichlet boundary conditions. A priori, we know that θ̃e ∈
C0([0 , T ] ; H) and (θ̃ e)′ ∈ C0([0 , T ] ; (V e)′), and so the problem (5.1)
has to be understood in the weak sense. The goal of this section is to
assume that the data in (5.1) are more regular in z3 and prove that θ̃ e

is more regular in z3. For this purpose, we need to derive estimates on
the Dirichlet problem (5.1).
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5.1 Problem with non-homogeneous Dirichlet boundary
condition

We begin by writing down the system which will be understood in a
weak sense:

(5.2)

 e ϕ
e = fe in Q ,

ϕe = ge0 on Σ0 and e−1 ϕe = ge± on Σ± ,
ϕe(0) = ϕe0 and (ϕe)′ (0) = ϕe1 in Ω .

The meaning of this problem is analogous to that of (3.14) and is de-
scribed in the following theorem, along with existence and uniqueness
result. For the Dirichlet problem (5.2), the natural function space is
V e = H1

0 (Ω) with norm ‖∇ev ‖H3 . Its dual is denoted by (V e)′.

Theorem 5.1. We assume that the data in (5.2) satisfy

(5.3)
f ∈ L1(0, T ; (V e)′), (ϕe0, ϕ

e
1) ∈ H × (V e)′,(

ge0, g
e
±
)
∈ GL2(Σ0)× L2(Σ±)

Then there exists a unique solution ϕe such that

(5.4) ϕe ∈ C0([0 , T ] ; H) , (ϕe)′ ∈ C0([0 , T ] ; (V e)′)

and satisfying (5.2) in the following sense:

(5.5)

L1(0,T ;H) < Ge, ϕe >L∞(0,T ;H)=
=L1(0,T ;(V e)′)< fe, χe >L∞(0,T ;V e) +
+(V e)′ < ϕe1, χ

e(0) >V e −
−H < ϕe0, (χ

e)′(0) >H −L2(Σ0) < (∂χe/∂ν), ge0 >L2(Σ0) −
−e−1

L2(Σ+)
< (∂χe/∂ν), ge+ >L2(Σ+) −

−e−1
L2(Σ−)

< (∂χe/∂ν), ge− >L2(Σ−),

for all Ge ∈ L1(0 , T ; H) and for all finite energy solutions χe of the
following backward homogeneous Dirichlet initial-boundary value prob-
lem:

(5.6)

 e χ
e = Ge in Q ,

χe = 0 on Σ0 ∪ Σ± ,
χe (T ) = (χe)′ (T ) = 0 in Ω .
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Moreover, we have the following estimates:

(5.7)



‖ϕe‖L∞(0,T ;H) + ‖(ϕe)′‖L∞(0,T ;(V e)′) ≤
≤ C R5(fe, ϕe0, ϕ

e
1, g

e
0, g

e
+, g

e
−)

with R5 (fe, ϕe0, ϕ
e
1, g

e
0, g

e
+, g

e
−) ≡

≡ ‖fe‖L1(0,T ;(V e)′)+
+‖ϕe0‖H + ‖ϕe1‖(V e)′ + ‖ge0‖L2(Σ0)+
+‖ge+‖L2(Σ+) + ‖ge−‖L2(Σ−).

Proof. The above result has been proved by Lions [6] in the case where
there is no parameter e in the problem. The effect of this parameter can
be analyzed as indicated in Section 3, in the case of mixed boundary
conditions. More precisely, for the proof of (5.7) we consider solutions
χe of (5.6) with Ge = (Ge1)

′ where Ge1 ∈ L1(0 , T ; V e) and establish

(5.8)
‖∇e χ

e‖L∞(0, T ;H) + ‖(χe)′‖L∞(0, T ;H) +
∥∥ (∂χe/∂ν)

∥∥
L2(Σ0)

+
+ e−1

∥∥ (∂χe/∂ν)
∥∥
L2(Σ+∪Σ−)

≤
≤ C‖∇eG

e
1‖L1(0 , T ;H) .

This requires the introduction of another type of multipliers m±
k ∈

W 1,∞(Ω) , k = 1, 2, 3 different from (3.13) and they satisfy:

(5.9)
{
m±

1 , m
±
2 independent of z3 , m±

α = 0 on Γ0,
m±

3 = ν3 on Γ± and m+
3 = 0 on Γ− , m−

3 = 0 on Γ+ .

Let us now turn our attention towards solutions with finite energy
for non-homogeneous Dirichlet problems. Thus, we consider

(5.10)

 e χ
e = Ge in Q ,

χe = `e0 on Σ0 and e−1 χe = `e± on Σ± ,
χe(0) = χe0 and (χe)′ (0) = χe1 in Ω .

Treatment of this problem is similar to that of (4.1) and one can indeed
prove

Theorem 5.2. We make the following regularity and compatibility

assumptions

(5.11)


Ge ∈ L1(0 , T ; H) , χe0 ∈ H1(Ω) , χe1 ∈ H ,
`e0 ∈ C0([0 , T ] ; H1(Γ0)) ∩H1(0 , T ; L2(Γ0)) ,
`e± ∈ C0([0 , T ] ; H1(Γ±)) ∩H1(0 , T ; L2(Γ±)) .
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(5.12) `e0 |t=0= χe0 on Γ0 and `e± |t=0= e−1χe0 on Γ± .

Then, there exists a unique solution χe to (5.10) with the following

regularity:

(5.13) χe ∈ C0([0 , T ] ; H1(Ω)) , (χe)′ ∈ C0([0 , T ] ; H) .

Moreover, we have the estimate

(5.14)

‖∇e χ
e‖L∞(0 , T ;H)3 + ‖(χe)′‖L∞(0 , T ;H) ≤

≤ C(‖Ge‖L1(0 , T ;H) +R6(χe0 , χ
e
1 , `

e
0 , `

e
+ , `

e
−)

with R6(χe0, χ
e
1, `

e
0, `

e
+, `

e
−) ≡ ‖χe0‖H+

+‖∆eχ
e
0‖(V e)′ + ‖χe1‖H +

+‖`e0‖L∞(0,T ;L2(Γ0)) + ‖∇σ`
e
0‖L∞(0,T ;L2(Γ0))+

+e−1
∥∥∂`e0/∂z3∥∥L∞(0,T ;L2(Γ0))

+
+‖(`e0)′‖L2(Σ0) + ‖`e+‖H1(0,T ;L2(Γ+)) + ‖`e+
+‖L∞(0,T ;H1(Γ+)) + ‖`e−‖H1(0,T ;L2(Γ−)) + ‖`e−‖L∞(0,T ;H1(Γ−)).

5.2 Regularity in z3-variable

We establish the regularity of finite energy solutions θe of (4.1) with
respect to z3-variable under suitable additional assumptions on the data.
We impose conditions on F̃ e , h̃e0 , h̃

e
± , θ̃

e
0 , θ̃

e
1 which will imply existence

of a finite energy solution to (5.1) (via Theorem 5.2). Let us record these
results below.

Theorem 5.3. With reference to problem (4.1), let us make the hypoth-
esis that the data satisfy (4.6), (4.25) and in addition that

(5.15)


∂F e

∂z3
∈ L1(0 , T ; H) , ∂θ

e
0

∂z3
∈ H1(Ω) , ∂θ

e
1

∂z3
∈ H ,

∂he
0

∂z3
∈ C0([0 , T ] ; H1(Γ0)) ∩H1(0 , T ; L2(Γ0)) ,

he± ∈ C0([0 , T ] ; H1(Γ±)) ∩H1(0 , T ; L2(Γ±)) .

Then the solution θe has the additional regularity (apart from the one
announced in Theorem 4.4):

(5.16)
∂θe

∂z3
∈ C0([0 , T ] ; H1(Ω)) ,

∂(θe)′

∂z3
∈ C0([0 , T ] ; L2(Ω)) .
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Moreover, we have the estimate

(5.17)
‖∇e (∂θe/∂z3) ‖L∞(0 , T ;H)3 + ‖ (∂(θe)′/∂z3) ‖L∞(0 , T ;H) ≤
≤ C

(
‖ ∂F e

∂z3
‖L1(0 , T ;H) +R6

∂θe
0

∂z3
,
∂θe

1
∂z3

,
∂he

0
∂z3

, he+ , h
e
−)

)
.

Using classical trace results, we derive, from Theorem 5.3, the following:

Corollary 5.4. Under the assumptions of Theorem 5.3, we have

(5.18) θe |Σ±∈ C0([0 , T ] ; H1(Γ±)) , (θe)′ |Σ±∈ C0([0 , T ] ; L2(Γ±)) .

Further, the estimates below hold

(5.19)

‖θe‖L∞(0 , T ;H1(Γ±)) + ‖(θe)′‖L∞(0 , T ;L2(Γ±)) ≤
≤ C

{
‖F e‖L1(0 , T ;H) + ‖ (∂F e/∂z3) ‖L1(0 , T ;H)+

+R4(θe0 , θ
e
1 , h

e
0 , h

e
+ , h

e
−)+

+R6

(
∂θe0/∂z3 , ∂θ

e
1/∂z3 , ∂h

e
0/∂z3 , h

e
+ , h

e
−
)}
.

6 Regular solutions of (4.1)

We now establish a result which gives regularity of finite energy solutions
to (4.1) by imposing additional hypotheses on the data. The index s

appearing in the next theorem is due to the fact that our domain Ω is
cyclindrical and we have mixed boundary conditions. This index s is
the same as the one which occurs in the regularity of stationary mixed
boundary value problems (see Grisvard [2]).

Theorem 6.1. With reference to problem (4.1), we suppose

(6.1)


F e ∈ L1(0, T ;V e), θe0 ∈ H2(Ω), θe1 ∈ H1(Ω),
he0 ∈ C0([0, T ];H3/2(Γ0)), (he0)

′ ∈ C0([0, T ];H1/2(Γ0)),
(he0)

′′ ∈ L1(0, T ;H1/2(Γ0)), he± ∈ C0([0, T ];H1/2(Γ±)),
(he±)′ ∈ C0([0, T ];H−1/2(Γ±)), (he±)′′ ∈ L1(0, T ;H−1/2(Γ±)).

Further, we assume that the following compatibility conditions are sat-
isfied

(6.2)
θe0 = he0 |t=0 on Γ0, θ

e
1 = (he0)

′ |t=0 on Γ0,

e−1 ∂θ
e
0

∂ν = he± |t=0 on Γ±.
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Then, there exists s, with 3/2 < s < 2, such that the solution θe of (4.1)
has the regularity

(6.3) θe ∈ C0([0 , T ] ; Hs(Ω)) , (θe)′ ∈ C0([0 , T ] ; H1(Ω)) .

Proof. We introduce the stationary problem with non-homogeneous
boundary data parametrized by t:

(6.4)
{
−∆eH

e(t) = 0 in Ω ,
He(t) = he0(t) on Γ0 and e−1 ∂He

∂ν (t) = he±(t) on Γ± .

Applying the trace theorem from Grisvard [1] p. 230, for each fixed t, we
can lift the boundary data he0(t) , h

e
±(t) to a function in Hs(Ω), for some

s such that 3/2 < s < 2, without compatibility condition. This enables
us to transform the problem (6.4) into a problem with homogeneous
boundary data and a right-hand side belonging to Hs−2(Ω). It now
follows, from Grisvard [2], that there exists s, with 3/2 < s < 2 such
that

(6.5) He ∈ C0([0 , T ] ; Hs(Ω)) .

Thanks to our hypotheses on (he0)
′ , (he0)

′′ , (he±)′ and (he±)′′, we deduce
that

(6.6) (He)′ ∈ C0([0 , T ] ; H1(Ω)) , (He)′′ ∈ C0([0 , T ] ; H1(Ω)) .

The next step is to consider θ̃ e(t) = θe(t)−He(t). Then θ̃ e satisfies

(6.7)


e θ̃

e = F e − (He)′′ in Q ,
θ̃ e = 0 on Σ0 and e−1 (∂θ̃ e/∂ν) = 0 on Σ± ,
θ̃ e(0) = θe0 −He(0) and (θ̃ e)′ (0) = θe1 − (He)′ (0) in Ω .

From the conditions (6.2), it follows that θe0 − He(0) ∈ Hs(Ω) ∩ V e,
θe1− (He)′ (0) ∈ V e and (∂/∂ν) (θe0−He(0)) = 0 on Γ±. This enables us
to apply once more the regularity results of Grisvard [2] to θ̃ e and this
gives the result (6.3) on θe .
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7 Direct inequality for finite energy solutions
with non homogeneous mixed boundary con-
ditions

We begin by remarking that the result in the homogeneous case has been
proved in Saint Jean Paulin & Vanninathan [8], and we follow the same
method to treat the present non-homogeneous case. The main result of
this section (referred to as Direct Inequality in the literature) shows that
the normal derivative ∂θe/∂ν of the solution of (4.1) is in L2(Σ0). It is
to be stressed that this property is automatic for homogeneous solutions
with finite energy, whereas, in the non-homogeneous case it holds only
under additional hypotheses on data. This will be made clear by the
identity established in the result that follows.

Theorem 7.1. We consider the problem (4.1) and assume that the
data satisfy (4.6), (4.25) and (5.15). Then, for all multipliers mk ∈
W 1,∞(Ω) , k = 1, 2, 3, the solution θe satisfies the following identity:

(7.1)

1
2

∫
Σ0

(mανα)
(∂θe
∂ν

)2
dσdt+

+
1
2

∫
Σ+∪Σ−

(m3ν3)
{(∂θe

∂t

)2 − ∂θe

∂zα

∂θe

∂zα

}
dσdt =

=
[∫

Ω

∂θe

∂t
mk

∂θe

∂zk
dz

]T
0
+

+
1
2

∫
Q

∂mk

∂zk

{(∂θe
∂t

)2 − ∂θe

∂zα

∂θe

∂zα
− e−2

(∂θe
∂z3

)2}
dzdt+

+
∫
Q

∂mk

∂zα

∂θe

∂zα

∂θe

∂zk
dzdt+ e−2

∫
Q

∂mk

∂z3

∂θe

∂z3

∂θe

∂zk
dzdt−

−
∫
Q
F emk

∂θe

∂zk
dzdt−

−1
2

∫
Σ0

(mα να)
{(∂he0

∂t

)2 − σβh
e
0 σβh

e
0 − e−2

(∂he0
∂z3

)2}
dσdt−

−
∫

Σ0

∂θe

∂ν

{
mα σαh

e
0 +m3

∂he0
∂z3

}
dσdt−

−1
2

∫
Σ+

(m3 ν3) (he+)2dσdt− 1
2

∫
Σ−

(m3 ν3) (he−)2dσdt−

−e−1

∫
Σ+

he+mα
∂θe

∂zα
dσdt− e−1

∫
Σ−

he−mα
∂θe

∂zα
dσdt.

293 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 271-309



j. saint jean paulin and m. vanninathan boundary sentinels in . . .

Proof. The proof of the above identity is done in two steps.

Step 1. We establish the identity (7.1) for solution θe of (4.1) with data
satisfying (4.6), (4.25) and (5.15) and having the additional properties
assumed in Theorem 6.1.

Step 2. By density arguments, we conclude that (7.1) remains valid for
solutions θe when data satisfy (4.6), (4.25) and (5.15).

Proof of Step 1. Following Lions [6], we multiply the equation in
(4.1) by mk ∂θ

e/∂zk and integrate by parts (which is allowed because
the solution is smooth by Theorem 6.1). Now, we have

(7.2)

∫
Q
F emk

∂θe

∂zk
dz dt =

[∫
Ω

(θe)′mk
∂θe

∂zk
dz

]T
0

+

+1
2

∫
Q

∂mk

∂zk
| (θe)′ |2 dz dt− 1

2

∫
Σ0

(mα να) | (he0)′ |2 dσ dt−

−1
2

∫
Σ+∪Σ−

(m3 ν3) | (θe)′ |2 dσ dt−
∫
Q

(∆e θ
e)mk

∂θe

∂zk
dz dt .

We will now do the computation of the last integral separately.

(7.3)

∫
Q
(∆e θ

e)mk
∂θe

∂zk
dzdt = −

−
∫
Q

∂θe

∂zα

∂mk

∂zα

∂θe

∂zk
dzdt− e−2

∫
Q

∂θe

∂z3

∂mk

∂z3

∂θe

∂zk
dzdt+

+
1
2

∫
Q

∂mk

∂zk

{ ∂θe
∂zα

∂θe

∂zα
+ e−2

(∂θe
∂z3

)2}
dzdt+

+
∫

Σ0

∂θe

∂zα
ναmk

∂θe

∂zk
dσ dt+

+e−2

∫
Σ+∪Σ−

∂θe

∂z3
ν3mk

∂θe

∂zk
dσ dt−

−1
2

∫
Σ0

(mβ νβ)
{ ∂θe
∂zα

∂θe

∂zα
+ e−2

(∂θe
∂z3

)2}
dzdt−

−1
2

∫
Σ+∪Σ−

(m3 ν3)
{ ∂θe
∂zα

∂θe

∂zα
+ e−2

(∂θe
∂z3

)2}
dσ dt .

We use the following relations

(7.4)
{
e−1 (∂θe/∂z3) ν3 = e−1 (∂θe/∂ν) = he± on Σ± ,
∂θe

∂zα
= να

∂θe

∂ν + σα h
e
0 on Σ0 and να σα he0 = 0 on Σ0 .
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Use of (7.4) in (7.3) yields (7.1) and this completes Step 1.

Proof of Step 2. On one hand, it is obvious that data satisfying (4.6),
(4.25) and (5.15) can be approximated by those satisfying additional
hypotheses of Theorem 6.1. On the other hand, each term of the iden-
tity (7.1) established in Step 1 remains continuous with respect to data
satisfying (4.6), (4.25) and (5.15). This ends the proof.

The last two terms in (7.1) are especially troublesome. To bound
them, we need hypothesis (5.15), Corollary 5.4 and hence the regularity
result w.r.t z3 in cylindrical domains. All other terms can be estimated
with the hypotheses under which we obtain energy estimates (cf. The-
orem 4.4) and these are available for general domains.

Corollary 7.2. Under the hypotheses of Theorem 7.1, we have ∂θe/∂ν ∈
L2(Σ0) and we have the estimate

‖ (∂θe/∂ν) ‖L2(Σ0) ≤ C
{
‖F e‖L1(0 , T ;H) +R4(θe0 , θ

e
1 , h

e
0 , h

e
+ , h

e
−)+

+R6 (∂θe0/∂z3 , ∂θ
e
1/∂z3 , ∂h

e
0/∂z3 , h

e
+ , h

e
−)

}
,

where R4 and R6 are defined by (4.28) and (5.14) respectively.

Proof. We decompose the solution into two parts: θe = θ e+(θe−θ e),
where θ e and (θe − θ e) are solutions of finite energy of (4.2) and (4.3)
respectively.
The estimate of (∂/∂ν) (θe−θ e) in L2(Σ0) is already announced in (3.7):

‖ (∂/∂ν) (θe − θ e)‖L2(Σ0) ≤ C ‖F e‖L1(0 , T ;H) .

To estimate ∂θ e/∂ν in L2(Σ0), we use the identity (7.1), Theorem 4.4
and Corollary 5.4.

Remark 7.3. Let ϕe be a solution with finite energy of problem (4.1)
with F e = 0, he0 = he± = 0 and with initial conditions (ϕe0 , ϕ

e
1). Then,

295 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 271-309



j. saint jean paulin and m. vanninathan boundary sentinels in . . .

performing calculations analogous to (7.1), we obtain

(7.5)

∫
Σ0

(mβ νβ)
∂ϕe

∂ν

∂θe

∂ν
dσ dt+

+
∫

Σ+∪Σ−

(m3 ν3)
{∂ϕe
∂t

∂θe

∂t
− ∂ϕe

∂zα

∂θe

∂zα

}
dσ dt =

= −
∫
Q
F emk

∂ϕe

∂zk
dz dt+

+
[∫

Ω

{∂θe
∂t

mk
∂ϕe

∂zk
+

∂ϕe

∂t
mk

∂θe

∂zk

}
dz

]T
0

+

+
∫
Q

∂mk

∂zk

{∂ϕe
∂t

∂θe

∂t
−∇eϕ

e · ∇eθ
e
}
dz dt+

+
∫
Q

∂mk

∂zα

{∂ϕe
∂zk

∂θe

∂zα
+
∂θe

∂zk

∂ϕe

∂zα

}
dz dt+

+e−2

∫
Q

∂mk

∂z3

{∂ϕe
∂zk

∂θe

∂z3
+
∂ϕe

∂z3

∂θe

∂zk

}
dz dt .

By making the choice of multipliers (5.9), we see that

∣∣∫
Σ±

(
(ϕe)′ (θe)′ − (∂ϕe/∂zα) (∂θe/∂zα)

)
dσ dt

∣∣≤
≤ C Ee(ϕe ; 0)1/2

{
‖F e‖L1(0 , T ;H)+

+sup0≤t≤T E
e(θe ; t)1/2 +

∥∥ (∂he0/∂z3)
∥∥
L2(Σ0)

}
.

Thus we get an estimate merely under the hypotheses of Theorem 4.4.

On the other hand, to estimate |
∫

Σ0

(∂ϕe/∂ν) (∂θe/∂ν) dσdt|, we make

the choice of multipliers

mα independent of z3 mα = να on γ , m3 ≡ 0,

and require additional hypothesis (5.15). Thus, somewhat surprisingly,
θe on Σ± behaves better than expected.

Remark 7.4. In Theorem 7.1, if we replace the assumption (5.15) by

(7.6) he± ∈ C0([0 , T ] ; H1
0 (Γ±)) and mα ∈W 2,∞ (Ω) ,
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then relation (7.1) remains valid with the last two terms replaced by

(7.7) + e−1

∫
Σ+

∂(he+mα)
∂zα

θe dσ dt+ e−1

∫
Σ−

∂(he−mα)
∂zα

θe dσ dt .

The proof uses usual density arguments. This trick shows a different
way of managing the troublesome terms in (7.1) without using regularity
w.r.t z3.

8 Construction of boundary sentinels

We consider the original problem of sentinels posed in Section 2. We
start by stating a result which ensures existence of a unique finite energy
solution to the problem (2.2). This result is an easy consequence of
Theorem 4.4, Corollary 5.4 and Corollary 7.2 and the fact that F e ≡ 0.

Theorem 8.1. With regard to problem (2.2), we suppose that

(8.1)

(
ye0, ŷ

e
0,
∂ye

0
∂z3

,
∂ŷe

0
∂z3

)
∈ (H1(Ω))4,

(∂ye
0

∂ν ,
∂ŷe

0
∂ν

)
∈ (H−1/2(Γ±))2,(

ye1, ŷ
e
1,
∂ye

1
∂z3

,
∂ŷ,e1
∂z3

)
∈ H4 ,

(he0 , ĥ
e
0,
∂he

0
∂z3

,
∂ĥe

0
∂z3

) ∈
[
C0([0, T ];H1(Γ0)) ∩H1(0, T ;L2(Γ0))

]4
,

(he±, ĥ
e
±) ∈

[
C0([0, T ];H1(Γ±)) ∩H1(0, T ;L2(Γ±))

]2
.

The following compatibility conditions are also assumed:

(8.2)

{
he0 |t=0= ye0 on Γ0 , he± |t=0= e−1 ∂y

e
0

∂ν on Γ± ,
ĥ e0 |t=0= ŷ e0 = 0 on Γ0 , ĥ e± |t=0= e−1 ∂ŷ

e
0

∂ν = 0 on Γ± .

Then, there exists a unique solution ye to (2.2) such that

(8.3)
(
ye, (ye)′, (ye)′′

)
∈ C0

(
[0, T ];H1(Ω)×H × (V e)′

)
,

(8.4)
∂ye

∂ν
∈ L2(Σ0),

(
ye |Σ± , (ye)′ |Σ±

)
∈ C0([0, T ];H1(Γ±)× L2(Γ±)).

Further we have the estimates

(8.5)
‖∇ey

e‖L∞(0,T ;H1(Ω))3 + ‖(∂ye/∂t)‖L∞(0,T ;H) ≤
≤ CR4(ye0 + τ0ŷ

e
0, y

e
1 + τ1ŷ

e
1,

he0 + λ0ĥ
e
0, h

e
+ + λ+ĥ

e
+, h

e
− + λ−ĥ

e
−),
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(8.6)

‖L2(Σ0) + ‖ye‖L∞(0 , T ;H1(Γ±)) + ‖ (ye)′ ‖L∞(0 , T ;L2(Γ±)) ≤
≤ C

{
R4 (ye0 + τ0 ŷ

e
0 , y

e
1 + τ1 ŷ

e
1 ,

he0 + λ ĥ e0 , h
e
+ + λ+ ĥ

e
+ , h

e
− + λ− ĥ

e
−)+

+R6

(∂ye
0

∂z3
+ τ0

∂ŷe
0

∂z3
,
∂ye

1
∂z3

+ τ1
∂ŷ e

1
∂z3

,
∂ye

0
∂z3

+ λ0
∂ĥ e

0
∂z3

, he+ + λ+ ĥ
e
+, h

e
− + λ− ĥ

e
−
)}
,

where R4 and R6 were defined by (4.28) and (5.14) respectively.

Remark 8.2. Obviously, we can modify hypothesis (8.1) in the light of
Remark 7.4.

The purpose of this section is to give a reformulation of the insen-
sitivity conditions (2.7) as an exact controllability problem and thereby
construct the sentinel in the form prescribed by (2.6). To this end, let
us start by introducing the adjoint state.

8.1 Adjoint state

It is classical in Control Theory to introduce the adjoint state in the
following manner:

(8.7)

 e q
e = 0 in Q ,

qe = ξe0 + we0 on Σ0 and e−1 ∂qe

∂ν = ξe± + we± on Σ± ,
qe(T ) = (qe)′ (T ) = 0 in Ω .

We assume that

(8.8) ξe0 ∈ L2(Σ0) , ξe± ∈ (W e
±)′ .

We seek therefore we0 and we± such that insensitivity conditions (2.7) are
satisfied and

(8.9) we0 ∈ L2(Σ0) , we± ∈ (W e
±)′ .

By Theorems 3.3 and 3.4, we know that there exists a unique weak
solution qe such that

(8.10) qe ∈ C0([0 , T ] ; H) , (qe)′ ∈ C0([0 , T ] ; (V e)′) .
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Further, it has the property that

(8.11)
‖qe‖L∞(0, T ;H) + ‖(qe)′‖L∞(0, T ; (V e)′) ≤
≤ CR1(0 , 0 , 0 , ξe0 + we0 , ξ

e
+ + we+ , ξ

e
− + we−) ,

where R1 is defined by (3.19).

8.2 First reformulation of the insensitivity conditions

With the help of the adjoint state qe, we rewrite the insensitivity con-
ditions in a different form. To this end, let us differentiate (2.2) with
respect to τ0 and τ1. We set yeτj = (∂ye/∂τj)

∣∣
τ=0 , λ=0

for j = 0, 1 . Then
for instance, yeτ0 satisfies

(8.12)

 e y
e
τ0 = 0 in Q ,

yeτ0 = 0 on Σ0 and e−1 (∂yeτ0/∂ν) = 0 on Σ± ,
yeτ0 (0) = ŷ e0 and (yeτ0)

′ (0) = 0 in Ω .

Multiplying (8.7) by yeτ0 , we see that the insensitivity condition
(∂Se/∂τ0)

∣∣
τ=0 , λ=0

= 0 is equivalent to

(8.13) (V e)′ < (qe)′(0), ŷ e0 >V e= 0,
∀ŷ e0 ∈ V e satisfying ∂ŷe

0
∂ν = 0 on Γ±.

Since such functions are dense in V e, above condition becomes

(8.14) (qe)′ (0) = 0 .

Likewise, multiplying (8.7) by yeτ1 , we can see that the second insensi-
tivity condition in (2.7) can be rewritten as

(8.15) qe(0) = 0.

8.3 Transformation to an exact controllability problem

In this paragraph, we reformulate the insensitivity conditions (8.14),
(8.15) as a problem of exact controllability. To this end, let us decom-
pose the solution qe of (8.7) as follows: qe = ue + ve , where ue , ve are
respective weak solutions of

(8.16)

 e u
e = 0 in Q ,

ue = ξe0 on Σ0 and e−1 (∂ue/∂ν) = ξe± on Σ± ,
ue(T ) = (ue)′ (T ) = 0 in Ω .
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(8.17)

 e v
e = 0 in Q ,

ve = we0 on Σ0 and e−1 (∂ve/∂ν) = we± on Σ± ,
ve(T ) = (ve)′ (T ) = 0 in Ω .

The insensitivity conditions (8.14) and (8.15) are then clearly rewritten
as:

(8.18) ve(0) = −ue(0) in Ω , (ve)′ (0) = − (ue)′ (0) in Ω .

Finding we0 , w
e
± such that (8.17), (8.18) are satisfied is obviously

an exact controllability problem. This has been studied by Saint Jean
Paulin & Vanninathan [8]. We will recall in §8.4 some relevant results
from this work, along with some improvements.

8.4 Study of the exact controllability problem

Following Hilbert Uniqueness Method (HUM) (cf. Lions [6]), the solv-
ability of problem (8.17) and (8.18) is transformed into the resolution of
an equation associated with a certain operator Λe. To define it, let us
consider the homogeneous mixed problem

(8.19)

 e ϕ
e = 0 in Q ,

ϕe = 0 on Σ0 and e−1 (∂ϕe/∂ν) = 0 on Σ± ,
ϕe(0) = ϕe0 and (ϕe)′ (0) = ϕe1 in Ω ,

where the initial condition (ϕe0 , ϕ
e
1) is taken in the space V e×H. Hence,

we know by Theorem 3.1 that there exists a unique solution ϕe such that

(8.20)
(
ϕe, (ϕe)′, (ϕe)′′

)
∈ C0

(
[0, T ]; V e ×H × (V e)′

)

(8.21)

∫
Σ0

(∂ϕe
∂ν

)2
dσ dt+

∣∣∫
Σ+

{(∂ϕe
∂t

)2 − ∂ϕe

∂zα

∂ϕe

∂zα

}
dσ dt

∣∣+
+

∣∣∫
Σ−

{ (∂ϕe
∂t

)2 − ∂ϕe

∂zα

∂ϕe

∂zα

}
dσ dt

∣∣ ≤ C T Ee (ϕe ; 0) .

Above estimate is generally known as Direct Inequality.

300 REVISTA MATEMÁTICA COMPLUTENSE
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Let us now consider finite energy solution θe of

(8.22)

 e θ
e = F e in Q ,

θe = 0 on Σ0 and e−1 (∂θe/∂ν) = 0 on Σ± ,
θe(0) = θe0 and (θe)′ (0) = θe1 in Ω .

Using the multipliers (3.13) and (5.9), we deduce from (7.5) the
following inequality, which is a generalization of (8.21).

(8.23)

∣∣∫
Σ0

(∂ϕe/∂ν) (∂θe/∂ν) dσ dt
∣∣+

+
∣∣∫

Σ+

{
(ϕe)′ (θe)′ − (∂ϕe/∂zα) (∂θe/∂zα)

}
dσ dt

∣∣+
+

∣∣∫
Σ−

{
(ϕe)′ (θe)′ − (∂ϕe/∂zα) (∂θe/∂zα)

}
dσ dt

∣∣ ≤
≤ C T Ee (ϕe ; 0)1/2

{
Ee (θe ; 0)1/2 + ‖F e‖L1(0 , T ;H)

}
.

Above inequality in particular shows that the bilinear form

(8.24)
∫

Σ+∪Σ−

{
(ϕe)′ (θe)′ − (

∂ϕe

∂zα
) (
∂θe

∂zα
)
}
dσ dt

is well defined for all finite energy solutions. Indeed, the definition of
the bilinear form can be obtained from the right-hand side of (7.5). We
interpret (8.24) as the duality action

(8.25) −
∫

Σ+∪Σ−

(∂2ϕe

∂t2
− ∂2ϕe

∂zα∂zα

)
θe dσ dt.

Recalling thatW e
± denote the spaces of the traces on Σ± of solutions with

finite energy, we see that the above procedure shows that
(
(∂2ϕe/∂t2)−

(∂2ϕe/∂zα∂zα)
)∣∣

Σ±
∈ (W e

±)′. Further, (8.23) shows that

(8.26)
∥∥∂2ϕe

∂t2
− ∂2ϕe

∂zα ∂zα

∥∥
(W e

±)′
≤ C T Ee(ϕe ; 0)1/2 .

Let us now pass on to what is referred to as Inverse Inequality and it is
as follows.
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Proposition 8.3. There exists T? > 0 and a constant C > 0, both
independent of e, such that ∀T ≥ T ?, we have

(8.27)
T Ee (ϕe ; 0) ≤ C

[∫
Σ0

(∂ϕe
∂ν

)2
dσdt+

+
∫

Σ+∪Σ−

{(∂ϕe
∂t

)2 − ∂ϕe

∂zα

∂ϕe

∂zα

}
dσdt

]
.

Before giving the proof, let us observe that there is no modulus in
the second integral on the right-hand side of the inequality.

Proof. We multiply (8.19) by mk (∂ϕe/∂zk) with mk = zk − z0
k where

z0 = (z0
1 , z

0
2 , 0) is a point a priori fixed. After some standard computa-

tions, we arrive at (see relation (5.6) of Saint Jean Paulin & Vanninathan
[8]):

(8.28)

1
2

∫
Q

{(
∂ϕe

∂t

)2

+ |∇e ϕ
e|2

}
dz dt =

=
1
2

∫
Σ0

(mα να)
(
∂ϕe

∂ν

)2

dσ dt+

+
1
4

∫
Σ+∪Σ−

{(
∂ϕe

∂t

)2

− ∂ϕe

∂zα

∂ϕe

∂zα

}
dσ dt−

−
[∫

Ω

∂ϕe

∂t

(
ϕe +mk

∂ϕe

∂zk

)
dz

]T
0

.

Now, we estimate the last term in a fashion different from Saint
Jean Paulin & Vanninathan [8] and this yields a marked improvement.
Indeed, we have

(8.29)

∣∣∣∣∫
Ω

∂ϕe

∂t

(
ϕe +mk

∂ϕe

∂zk

)
dz

∣∣∣∣ ≤ 1
2

∫
Ω

(
∂ϕe

∂t

)2

dz+

+1
2

∫
Ω

(
ϕe +mk

∂ϕe

∂zk

)2

dz

≤ C Ee (ϕe ; 0) , by Poincaré Inequality.

If we apply this inequality in (8.28), then classical arguments imply
(8.27).
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The next step in H.U.M is to consider the backward problem written
formally as follows:

(8.30)


e ψ

e = 0 in Q ,
ψe = ∂ϕe

∂ν on Σ0, e
−1 ∂ψe

∂ν = e
(
∂2ϕe

∂t2
− ∂2ϕe

∂zα ∂zα

)
on Σ± ,

ψe(T ) = (ψe)′ (T ) = 0 in Ω ,

where ϕe is the solution of (8.19) with initial conditions (ϕe0 , ϕ
e
1) ∈

V e ×H .

To give a rigorous formulation of (8.30), let us multiply (8.22) by ψe.
Using (7.5) and multipliers m0

k are such that
m0
α independent of z3 , m0

α = 0 on Γ0 , m0
3 = ν3 on Γ± ,

we obtain

(8.31)

∫
Q
F e ψe dz dt−

∫
Ω

{∂ψe
∂t

(0) θe0 − ψe(0) θe1
}
dz =

−
∫

Σ0

∂ϕe

∂ν

∂θe

∂ν
dσdt +

∫
Q
F em0

k

∂ϕe

∂zk
dzdt−

−
[∫

Ω

{∂θe
∂t

m0
k

∂ϕe

∂zk
+
∂ϕe

∂t
m0
k

∂θe

∂zk

}
dz

]T
0
−

−
∫
Q

∂m0
k

∂zk

{∂ϕe
∂t

∂θe

∂t
−∇e ϕ

e · ∇e θ
e
}
dzdt−

−
∫
Q

∂m0
k

∂zα

{ ∂θe
∂zα

∂ϕe

∂zk
+
∂ϕe

∂zα

∂θe

∂zk

}
dzdt−

−2e−2

∫
Q

∂m0
3

∂z3

∂θe

∂z3

∂ϕe

∂z3
dzdt .

We demand that relation (8.31) is satisfied for all F e ∈ L1(0 , T ; H)
and for all corresponding solutions θe of (8.22). This is the rigorous
formulation of the problem (8.30). It follows from (8.31) (cf. Saint Jean
Paulin & Vanninathan [8]) that there is a unique solution to (8.30) such
that

(8.32) (ψe, (ψe)′) ∈ L∞(0, T ;H× (V e)′),
(
(ψe)′(0), ψe(0)

)
∈ (V e)′×H.

Further, we have the estimate

(8.33)
‖

(
ψe , (ψe)′

)
‖L∞(0,T ;H×(V e)′)+

+‖
(
(ψe)′(0), ψe(0)

)
‖(V e)′×H ≤ CEe(ϕe; 0)1/2.

303 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 271-309



j. saint jean paulin and m. vanninathan boundary sentinels in . . .

With the help of the backward problem, we are now in a position
to introduce the operator Λe which will solve the exact controllability
problem. Let us define

(8.34)
Λe : V e ×H −→ (V e)×H
(ϕe0, ϕ

e
1) 7−→ ((ψe)′(0), −ψe(0)) .

It is verified that, if T ≥ T ?, then Λe is an isomorphism and in fact we
have

(8.35) (V e)′×H < Λe(ϕe0 , ϕ
e
1) , (ϕe0 , ϕ

e
1) >V e×H ≥ C ‖(ϕe0 , ϕe1)‖2

V e×H .

This is a consequence of the Inverse Inequality stated in Proposition 8.3.
Thanks to the isomorphism Λe, we can now go back to the exact

controllability problem (8.17), (8.18) and solve it. In fact, it is enough
to observe that ((ue)′ (0) , ue(0)) ∈ (V e)′ × H and the problem (8.17)
coincides with (8.30) where the boundary controls are given by

(8.36) we0 = (∂ϕe/∂ν) on Σ0 ,

(8.37) we± = e
(
(ϕe)′′ − (∂2ϕe/∂zα ∂zα)

)
on Σ± .

Here ϕe is the solution of (8.19) with initial conditions defined by

(8.38) Λe(ϕe0 , ϕ
e
1) = (−(ue)′ (0) , ue(0)) .

Let us terminate this paragraph by writing down the estimates that
easily follow from our analysis. First, it is an easy consequence of (8.35)
that

(8.39) ‖(ϕe0 , ϕe1)‖V e×H ≤ C ‖
(
−(ue)′ (0) , ue(0)

)
‖(V e)′×H .

Next the inequalities (8.21) and (8.26) show that (we0 , w
e
±) ∈ L2(Σ0)×

(W e
±)′ and we have the estimate

(8.40)
‖we0‖L2(Σ0) + e−1‖we+‖(W e

+)′ + e−1‖we−‖(W e
−)′ ≤

≤ C T‖
(
−(ue)′ (0) , ue(0)

)
‖(V e)′×H .
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8.5 Definition of the boundary sentinel

Let us recall that, for given functions (ξe0 , ξ
e
±) ∈ L2(Σ0) × (W e

±)′, the
boundary sentinel is defined by (cf. (2.6)):

Se(λ , τ) = e

∫
Σ0

(ξe0 + we0) (∂ye/∂ν) (λ , τ) dσ dt−

−
∫

Σ+

(ξe+ + we+) ye(λ , τ) dσ dt−
∫

Σ−

(ξe− + we−) ye(λ , τ) dσ dt .

We are now in a position to answer the question of finding we0 , w
e
±

such that the sentinel defined by (2.6) satisfies the insensitivity condi-
tions (2.7). Indeed, we0 , w

e
± are given by (8.36), (8.37) respectively, and

so the boundary sentinel takes the form

(8.41)

Se(λ, τ) = e

∫
Σ0

ξe0
∂ye

∂ν
(λ, τ)dσdt−

∫
Σ+

ξe+y
e(λ, τ)dσdt−

−
∫

Σ−

ξe−y
e(λ, τ) dσdt+ e

∫
Σ0

(∂ϕe/∂ν)(∂ye/∂ν)(λ, τ)dσdt+

+e
∫

Σ+∪Σ−

(
(ϕe)′(ye)′ − (∂ϕe/∂zα)(∂ye/∂zα)

)
dσdt.

Let us remember that the mapping (ξe0 , ξ
e
±) 7→ ϕe is defined by (8.16),

(8.38). We end this paragraph by observing that the sum of the last two
terms can be obtained from the relation (7.5) with the following choice
of multipliers:

(8.42)
m1,m2 independent of z3,
mβ = νβ on Γ0, β = 1, 2,m3 = ν3 on Γ±.

In particular, this shows that e−1we± acts not only on homogeneous
solutions θe, but also on non-homogeneous solutions ye of finite energy.

9 Stealthiness conditions

In general, the boundary sentinel Se, defined in (8.41), (which satisfies,
by our construction, the insensitivity conditions) depends on the pollu-
tion terms λ0 ĥ

e
0 , λ± ĥ

e
± since the solution ye(λ , τ) does so. In order
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to bring out this dependence, at least up to first order in λ0 , λ± , let us
do a Taylor expansion:

(9.1) Se(λ , τ) = Se (0 , 0) + λ · (∂Se/∂λ) (0 , 0) + · · ·

From this, it is clear that Se(λ , τ) contains no information on the pol-
lution terms (at least up to first order) if

(9.2)
∂Se

∂λ0
(0 , 0) = 0 ,

∂Se

∂λ+
(0 , 0) = 0 ,

∂Se

∂λ−
(0 , 0) = 0 .

If the pollution terms are such that (9.2) holds for all sentinels Se of the
form (2.6) (or equivalently for all choices ξe0 , ξ

e
±), then such pollution

terms are called stealthy.
Our objective, in this section, is to write down explicitly the condi-

tion (9.2) for the system (2.2) under investigation and thereby charac-
terize all stealthy pollutions. To achieve this, let us differentiate (2.2)
with respect to λ0 , λ±. We set

(9.3) yeλ0
= (∂ye/∂λ0) (0 , 0) , yeλ± = (∂ye/∂λ±) (0 , 0) .

For instance yeλ0
satisfies the system

(9.4)

 e y
e
λ0

= 0 in Q ,
yeλ0

= ĥ e0 on Σ0 and e−1 (∂yeλ0
/∂ν) = 0 on Σ± ,

(yeλ0
) (0) = (yeλ0

)′ (0) = 0 in Ω .

Recall that Theorem 8.1 guarantees the existence and the uniqueness of
solutions yeλ0

.
Now the first condition in (9.3) is written as

(9.5)
e

∫
Σ0

(ξe0 + we0) (∂yeλ0
/∂ν) dσ dt−

−
∫

Σ+

(ξe+ + we+) yeλ0
dσ dt −

∫
Σ−

(ξe− + we−) yeλ0
dσ dt = 0 .

Let us recall that we0 , w
e
± are defined by (8.36), (8.37) and that they

are determined by (ξe0 , ξ
e
±) (cf. (8.16), (8.38), (8.19)). In order to make

this dependence transparent, we introduce the following operators:

(9.6)
{
M e : L2(Σ0)× (W e

+)′ × (W e
−)′ → (V e)′ ×H

M e(ξe0 , ξ
e
+ , ξ

e
−) = ((ue)′ (0) , −ue(0)) .

306 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 271-309



j. saint jean paulin and m. vanninathan boundary sentinels in . . .

(9.7)


N e : V e ×H → L2(Σ0)× (W e

+)′ × (W e
−)′

N e(ϕe0 , ϕ
e
1) =(∂ϕe

∂ν

∣∣
Σ0
, e

(∂2ϕe

∂t2
− ∂2ϕe

∂zα ∂zα

)∣∣
Σ+
, e

(∂2ϕe

∂t2
− ∂2ϕe

∂zα ∂zα

)∣∣
Σ−

)
.

Easy computations show that the adjoint of M e is given by

(9.8)

{
(M e)? : V e ×H → L2(Σ0)×W e

+ ×W e
−

(M e)? ϕ
e
0
ϕe

1
=

( ∂ϕe

∂ν

∣∣
Σ0
, − e−1ϕe

∣∣
Σ+

, − e−1ϕe
∣∣
Σ−

)
.

With these definitions, it is quite clear that

(9.9) (we0 , w
e
+ , w

e
−) = −N e(Λe)−1M e(ξe0 , ξ

e
+ , ξ

e
−) .

We can now recast the relation (9.5) as

(9.10) <
(
e
∂ye

λ0
∂ν

∣∣
Σ0
, yeλ0

∣∣
Σ+

, yeλ0

∣∣
Σ−

)
,

(I −N e (Λe)−1M e) (ξe0 , ξ
e
+ , ξ

e
−) >= 0 .

Stealthiness requires that this be true for all (ξe0 , ξ
e
+ , ξ

e
−) and thus we

obtain

(9.11)

(
I − (M e)? (Λe)−1 (N e)?

) (
(∂yeλ0

/∂ν)
∣∣
Σ0

,

−− e−1yeλ0

∣∣
Σ+

, − e−1yeλ0

∣∣
Σ−

)
= 0 .

The second and the third relations in (9.3) may be treated in the same
manner and we get

(9.12)

(
I − (M e)? (Λe)−1 (N e)?

) (
(∂yeλ+

/∂ν)
∣∣
Σ0

,

− e−1yeλ+

∣∣
Σ+

, − e−1yeλ+

∣∣
Σ−

)
= 0 .

(9.13)

(
I − (M e)? (Λe)−1 (N e)?

) (
(∂yeλ−/∂ν)

∣∣
Σ0

,

−e−1yeλ−

∣∣
Σ+

, − e−1yeλ−

∣∣
Σ−

)
= 0 .

Thus (9.11) - (9.13) constitute the necessary and sufficient conditions
for the stealthiness of the pollution terms λ0 ĥ

e
0 and λ± ĥ

e
±. If we use

the form of the image of (M e)? (cf. (9.8)) in the above relations, we
arrive at the following conclusion.
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Theorem 9.1. The pollution terms λ0 ĥ
e
0 , λ± ĥ

e
± are stealthy iff there

exist finite energy solutions χe0 , χ
e
+ , χ

e
− satisfying the overdetermined

systems  e χ
e
0 = in Q ,

χe0 = ĥ e0 and (∂χ̂ e0/∂ν) = 0 on Σ0 ,
χe0 = e−1 (∂χe0/∂ν) = 0 on Σ+ ∪ Σ− .



e χ
e
± = 0 in Q ,

χe± = (
∂χe

±
∂ν ) = 0 on Σ0 ,

e−1 ∂χe
+

∂ν =
{
ĥ e+ on Σ+ ,
0 on Σ− ,

and e−1 ∂χe
−

∂ν =
{

0 on Σ+ ,

ĥ e− on Σ− ,
χe± = 0 on Σ+ ∪ Σ− .
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308 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 271-309



j. saint jean paulin and m. vanninathan boundary sentinels in . . .

[7] J.L. LIONS, Sentinelles pour les systèmes distribués à données in-
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Département de Mathématiques
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