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DELTA LINK-HOMOTOPY ON SPATIAL

GRAPHS
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Abstract

We study new equivalence relations in spatial graph theory. We
consider natural generalizations of delta link-homotopy on links,
which is an equivalence relation generated by delta moves on the
same component and ambient isotopies. They are stronger than
edge-homotopy and vertex-homotopy on spatial graphs which are
natural generalizations of link-homotopy on links. Relationship to
existing familiar equivalence relations on spatial graphs are stated,
and several invariants are de�ned by using the second coeÆcient of
the Conway polynomial and the third derivative at 1 of the Jones
polynomial of a knot.

1 Introduction and results

Throughout this paper we work in the piecewise linear category. Let

G be a �nite simple graph, namely it has no loops and multiedges. We

denote the set of all edges of G by E(G). We consider G as a topological

space in the usual way and study an embedding of G into the 3-sphere

S
3, called a spatial embedding of G or simply a spatial graph.

In [28], eight equivalence relations (1) ambient isotopy, (2) cobordism,

(3) isotopy, (4) I-equivalence, (5) edge-homotopy, (6) vertex-homotopy,

(7) homology, (8) Z2-homology on spatial graphs are introduced and

the following implication between them are stated [28, Fundamental

Theorem]:
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ryo nikkuni delta link-homotopy on spatial graphs

(1) (4)

(2)

(3)

(5) (6) (7) (8) .

Moreover these eight equivalence relations are di�erent equivalence

relations. We refer the reader to [28] for precise de�nitions. Specially,

(5) and (6) (In [28], (5) and (6) was called homotopy and weak homotopy,

respectively) were introduced as natural generalizations of link-homotopy

[12] on links. Two spatial embeddings f; g : G! S
3 are said to be edge-

homotopic if f and g can be transformed into one another by self-crossing

changes and ambient isotopies, where a self-crossing change is a crossing

change on an edge, and vertex-homotopic if f and g can be transformed

into one another by crossing changes on adjacent edges and ambient

isotopies.

In this paper we de�ne new equivalence relations and discuss them. A

delta move is a local move as illustrated in Fig. 1.1. It is known that this

move is an unknotting operation, namely any knot can be transformed

into a trivial one by delta moves and ambient isotopies [11] [16].

Fig. 1.1.

We say that two spatial embeddings f; g : G! S
3 are (DEH) delta

edge-homotopic if f and g can be transformed into one another by self-

delta moves and ambient isotopies, where a self-delta move is a delta

move on an edge, and (DVH) delta vertex-homotopic if f and g can be

transformed into one another by quasi-adjacent delta moves and ambient

isotopies, where a quasi-adjacent delta move is a delta move on exactly

two adjacent edges. We note that these equivalence relations coincides
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with delta link-homotopy (or self delta-equivalence) on links [25] if G is

homeomorphic to a mutually disjoint union of 1-spheres. Namely these

are natural generalizations of delta link-homotopy on links. We refer

the reader to [26], [27], [20], [17], [18] and [19] for works related to delta

link-homotopy on links.

It is natural to ask how strong are the above-mentioned equivalence

relations. We show the following relations between (1),(2),: : :,(8) and

(DEH), (DVH).

Theorem 1.1.

(2)

(5) (6) (7) (8).

(DEH) (DVH)

(1) (3) (4)

Moreover these ten equivalence relations are di�erent equivalence re-

lations.

A graph H is called a minor of G if H is obtained from G by a

�nite sequence of the following two operations: (1) edge contraction, (2)

taking a subgraph. We note that any subgraph of G is a minor of G. For

delta vertex-homotopy, we have the following as a corollary of Theorem

1.1 and [28, Theorem B].

Corollary 1.2. For a graph G, the following conditions are mutually

equivalent:

(i) Any two spatial embeddings f; g : G! S
3 are delta vertex-homotopic.

(ii) None of G1, G2 and G3 as illustrated in Fig. 1.2 is a minor of G.

A graph satisfying with the condition of Corollary 1.2 is called a

generalized bouquet [28]. Therefore Corollary 1.2 means that a quasi-

adjacent delta move is an \unknotting operation" for spatial embeddings

of a generalized bouquet.

To detect the equivalence class, we construct some delta edge (resp.

vertex)-homotopy invariants. A cycle is a subgraph of G which is home-

omorphic to the 1-sphere S
1, and a k-cycle is a cycle which contains

exactly k vertices. We regard f() as a knot for a cycle  and a spatial
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G1 G2 G3

Fig. 1.2.

embedding f : G ! S
3. We denote the set of all cycles of G, the set

of all cycles containing an edge e of G and the set of all cycles contain-

ing edges e1; e2 of G by �(G), �e(G) and �e1;e2(G), respectively. Let

Zr = f0; 1; : : : ; r � 1g for a positive integer r and Z0 = Z, where Z is

the integers (We regard Zr (r � 1) as the cyclic group of order r when-

ever we consider Zr a group). Then a map ! : �(G) ! Zr is called a

weight on �(G). For a weight ! : �(G) ! Zr and a spatial embedding

f : G! S
3, we set

~�!(f) �
X

2�(G)

!()a2(f()) (mod r);

where a2(J) denotes the second coeÆcient of the Conway polynomial [2]

of a knot J . Then we have the following.

Theorem 1.3. (1) If a weight ! is weakly balanced on each of edges of

G, then ~�! is a delta edge-homotopy invariant.

(2) If a weight ! is weakly balanced on each pair of adjacent edges of G,

then ~�! is a delta vertex-homotopy invariant.

We give the de�nition of \weakly balanced" in section 3. Let ds

be the greatest common divisor of f]�e(G) j e 2 E(G)g, where ]f�g

means the number of elements of the set. If ds � 2, we de�ne a weight

!s : �(G) ! Zds
by !s() = 1 for any  2 �(G). Let dad be the

greatest common divisor of f]�e1;e2(G) j adjacent edges e1; e2 2 E(G)g.

If dad � 2, we de�ne a weight !ad : �(G) ! Zdad
by !s() = 1 for any

 2 �(G). Then by Theorem 1.3 we have the following.

Corollary 1.4. (1) ~�!s is a delta edge-homotopy invariant.

(2) ~�!ad is a delta vertex-homotopy invariant.
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By using ~�!s , we show that there exists a non-trivial �-curve up to

delta edge-homotopy (Example 4.1).

For a weight ! : �(G) ! Zr and a spatial embedding f : G ! S
3,

we set

n!(f) �
1

18

X
2�(G)

!()V
(3)

f()
(1) (mod r);

where V
(k)

J
(1) denotes the k-th derivative at 1 of the Jones polyno-

mial VJ(t) [6] of a knot J . We note that (1=18)
P

2�(G) !()V
(3)

f()
(1) is

integer-valued (cf. Remark 3.4 (1)). Then we have the following.

Theorem 1.5. (1) If a weight ! is balanced [29] on each of edges of G,

then n! is a delta edge-homotopy invariant.

(2) If a weight ! is balanced on each pair of adjacent edges of G, then

n! is a delta vertex-homotopy invariant. We give the de�nition of

\balanced" in section 3. By Theorem 1.1, we have the following imme-

diately.

Corollary 1.6. (1) If a weight ! is weakly balanced on each pair of

adjacent edges of G, then ~�! is an isotopy invariant.

(2) If a weight ! is balanced on each pair of adjacent edges of G, then

n! is an isotopy invariant.

Remark 1.7. If a weight ! : �(G) ! Zr is balanced on each of edges

(resp. each pair of adjacent edges) of G, then our ~�! coincides with the

Taniyama's edge (resp. vertex)-homotopy invariants �! [29].

In the next section we prove Theorem 1.1. The proofs of Theorems

1.3 and 1.5 are given in section 3. We give speci�c examples in section 4.

In this paper we calculate the Jones polynomial of a knot by the skein

relation tVJ+(t)� t
�1
VJ�(t) = (t�

1
2 � t

1
2 )VJ0(t).

2 Proof of Theorem 1.1

Lemma 2.1. (1) ) (DEH) ) (DVH) ) (5). Moreover these four

equivalence relations are di�erent equivalence relations.
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Proof. By the de�nition, (1)) (DEH) is clear. Since a self-delta move

is realized by quasi-adjacent delta moves (see Fig. 2.1) and a quasi-

adjacent delta move is realized by two self-crossing changes (see Fig.

2.2), we have that (DEH) ) (DVH) ) (5).

Fig. 2.1.

(1) and (DEH) are di�erent because a trefoil knot is delta-edge homo-

topic to a trivial knot but they are not ambient isotopic. In section 4,

we show that there are delta vertex-homotopic spatial graphs which are

not delta edge-homotopic (Example 4.1 and Example 4.2), and edge-

homotopic spatial graphs which are not delta vertex-homotopic (Exam-

ple 4.3). Therefore (1), (DEH), (DVH) and (5) are di�erent equivalence

relations.

In the following we investigate more about isotopy and delta vertex-

homotopy. For a spatial embedding f : G ! S
3 and a 3-ball B in S

3,

we say that the pair (B;B\f(G)) is a ball-star pair (cf. [5]) if B\f(G)

is either a proper arc or a star of degree n, where n is a natural number,

that is, intB contains only one vertex f(v), and B \ f(G) consists of n

edges f(ei) that are incident to f(v) and f(@ei) � ff(v)g � @B (when

B \ f(G) is a proper arc, it is regarded as a star of degree 2 even if
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Fig. 2.2.

it does not contain vertices of f(G)). A ball-star pair (B;B \ f(G))

is said to be standard if there exists a properly embedded 2-disk D in

B with D�B \ f(G). We set J = G � f
�1(intB). Then a spatial

embedding g : G! S
3 is said to be obtained from f by a blowing-down

in B if gjJ = f jJ and (B;B \ g(G)) is standard. Conversely f is said

to be obtained from g by a blowing-up occurring in B. It is known that

spatial embeddings f; g : G ! S
3 are isotopic if and only if they can

be transformed into one another by blowing-downs, blowing-ups and

ambient isotopies [28] (see also [24] for links). The following lemma

shows that (3) implies (5).

Lemma 2.2. ([28, Lemma 2.1]) A blowing down is realized by self-

crossing changes.

Moreover we have the following.
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Lemma 2.3. Isotopy implies delta vertex-homotopy.

Proof. It is suÆcient to show that a blowing-down is realized by quasi-

adjacent delta moves. Let f; g : G ! S
3 be spatial embeddings such

that g is obtained from f by a blowing-down in B. By Lemma 2.2, f is

obtained from g by self-crossing changes on B\g(G), where (B;B\g(G))

is a standard ball-star pair. For each of crossing points, we deform f up

to ambient isotopy as illustrated in Fig. 2.3. Therefore we can deform

f up to ambient isotopy so that a \band sum of Hopf links and g" (cf.

[31] and [30]). We note that the deformations as illustrated in Fig. 2.4

Fig. 2.3.

are realized by delta moves [30]. For (1) and (2), see Fig. 2.5 (1) and

(2), respectively. (3) is realized by ambient isotopies only. (4) is clear

by (2). For (5), see Fig. 2.5 (5). By using the deformation of Fig. 2.4

(1), we can undo the linking between Hopf bands whose attaching edges

are di�erent (see Fig. 2.6). Moreover Hopf bands attached to the same

edge are gone by self-delta moves by the deformations of Fig. 2.4 (see

Fig. 2.7), thus by quasi-adjacent delta moves. Therefore we can remove

all Hopf bands by quasi-adjacent delta moves, namely we can obtain g

from f up to delta vertex-homotopy. This completes the proof.

Lemma 2.4. (i) Delta edge-homotopy and delta vertex-homotopy do not

imply cobordism, isotopy and I-equivalence.

(ii) Cobordism and I-equivalence do not imply delta edge-homotopy and

delta vertex-homotopy.

(iii) Isotopy does not imply delta edge-homotopy.

Proof. (i) Let M be a 2-component link as illustrated in Fig. 2.8. We

have that M is delta edge-homotopic to a trivial 2-component link (by

using the deformation of Fig. 2.4 (1)) but not I-equivalent to a trivial 2-

component link because they have di�erent Milnor ��-invariant [13] (see

also [1]). Thus we also have that they are not cobordant and isotopic.
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(1) (2)

(3)

(5)

(4)

Fig. 2.4.
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(1)

(2)

(5)

delta
move

(1)

(1)

Fig. 2.5.
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Fig. 2.6.

Fig. 2.7.
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Therefore delta edge-homotopy and delta vertex-homotopy do not imply

cobordism, isotopy and I-equivalence.

(ii) Let L be a 2-component link as illustrated in Fig. 2.8. It is known

that L and a Hopf link are cobordant but not delta vertex-homotopic [20,

Claim 4.5]. Thus a cobordism does not imply delta edge-homotopy and

delta vertex-homotopy for links. Thus we also have that I-equivalence

does not imply delta edge-homotopy and delta vertex-homotopy.

M L

Fig. 2.8.

(iii) In Example 4.1, we show that there exist �-curves which are not

delta edge-homotopic. Since any �-curves are isotopic (see [28, Theorem

B]), we have the desired conclusion.

Proof of Theorem 1.1. By Lemmas 2.1, 2.3 and 2.4, we have the

result.

We have the following immediately as well.

Corollary 2.5. Isotopy implies delta link-homotopy on links.

3 Delta edge and vertex-homotopy invariants

In this section we prove Theorems 1.3, 1.5 and their corollaries. Let

! : �(G)! Zr be a weight. Let e be an edge of G. Then we say that !

is weakly balanced on e if

X
2�e(G)

!() � 0 (mod r):
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Let e1 and e2 be adjacent edges of G. Then we say that ! is weakly

balanced on e1, e2 if

X
2�e1;e2 (G)

!() � 0 (mod r):

Lemma 3.1. (1) Let e be an edge of G and ! : �(G) ! Zr a weight

which is weakly balanced on e. Let f; g : G ! S
3 be spatial embed-

dings such that g is obtained from f by a self-delta move on f(e). Then

~�!(f) � ~�!(g) (mod r).

(2) Let e1 and e2 be adjacent edges of G and ! : �(G) ! Zr a weight

which is weakly balanced on e1; e2. Let f; g : G ! S
3 be spatial embed-

dings such that g is obtained from f by a quasi-adjacent delta move on

f(e1) and f(e2). Then ~�!(f) � ~�!(g) (mod r).

To prove Lemma 3.1, we recall the M. Okada's work. She showed

that the variation of a2 of knots which di�ered by a single delta move is

�1 [22, Theorem 1.1]. We can rewrite the fact above as the following:

a2(K+)� a2(K�) = 1; (3.1)

where K+, K� are knots as illustrated in Fig. 3.1. We remark here

K+ K-

Fig. 3.1.

that each of the following two local moves (i) and (ii) got from the one

as illustrated in Fig. 3.1: (i) the orientation of one string is changed,

(ii) the upper-lower relations at all crossings are reversed, is obtained
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by using the move as illustrated in Fig. 3.1 (cf. [16]). Therefore any

application of a delta move can be regarded just as the one in Fig. 3.1.

Proof of Lemma 3.1. (1) Let f; g : G ! S
3 be spatial embeddings

such that g is obtained from f by a single self-delta move on f(e). It is

suÆcient to show that ~�!(f) � ~�!(g) (mod r). For  2 �e(G), we may

assume that f() and g() are as illustrated in Fig. 3.2 without loss of

generality. Then by (3.1) we have that

f( )γ g( )γ

f(e)

g(e)

Fig. 3.2.

~�!(f)� ~�!(g) �
X

2�(G)

!()a2(f())�
X

2�(G)

!()a2(g())

=
X

2�(G)

!() fa2(f())� a2(g())g

=
X

2�e(G)

!() fa2(f())� a2(g())g

=
X

2�e(G)

!()

� 0 (mod r):

Therefore we have that ~�!(f) � ~�!(g) (mod r).

(2) We can prove in the same way as (1) (see Fig. 3.3).

Proof of Theorem 1.3. It is clear by Lemma 3.1.
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f( )γ g( )γ

f(e )1

f(e )2

g(e )2

g(e )1

Fig. 3.3.

Proof of Corollary 1.4. It is clear that the weight !s : �(G)! Zds
is

weakly balanced on each of edges of G and the weight !ad : �(G)! Zdad

is weakly balanced on each pair of adjacent edges of G. Therefore by

Theorem 1.3 we have the desired conclusion.

In [29], Taniyama de�ned edge (resp. vertex)-homotopy invariants

�! of spatial graphs by taking advantage of the following fact which is

well-known in knot theory (cf. [8]):

a2(J+)� a2(J�) = lk(J0); (3.2)

where J+, J� and J0 are knots and a 2-component link which are iden-

tical except inside the depicted regions as illustrated in Fig. 3.4, and lk

denotes the linking number. We note that �! is a delta edge (vertex)-

J+ J- J0

Fig. 3.4.

homotopy invariant by Theorem 1.1. The essential advantage of (3.2)
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was that the variation of a2 of knots which di�ered by a single cross-

ing change is determined by the linking number which is a homological

invariant (cf. [23]). On the other hand, we have the following.

Theorem 3.2.

1

18
V
(3)
K+

(1) �
1

18
V
(3)
K�

(1) = 2Lk(K0)� 1;

where K+, K� and K0 are knots and a 3-component link which are

identical except inside the depicted regions as illustrated in Fig. 3.5 and

Lk denotes the total linking number (namely the summation of all linking

numbers of 2-component sublinks).

K+ K- K0

Fig. 3.5.

Therefore the variation of V (3)(1) of knots which di�ered by a single

delta move is also determined by the linking number. We de�ne some

delta edge (resp. vertex)-homotopy invariants by taking advantage of

Theorem 3.2 in a similar way as Taniyama's construction of edge (resp.

vertex)-homotopy invariants.

To prove Theorem 3.2, we show the following relation between a

single delta move on a knot and the Jones polynomial.

Lemma 3.3.

VK+
(t)� VK�(t) = (t� 2t2 + t

3) fVK1(t)� VK0
(t)g ; (3.3)

where K+, K�, K1 and K0 are knots and a 3-component link which are

identical except inside the depicted regions as illustrated in Fig. 3.5 and

Fig. 3.6.
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K 8

Fig. 3.6.

K+ -

08

K

KK

1K

3K2K 4K 4K

ambient
isotopic

Fig. 3.7.
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Proof. Consider a skein tree as illustrated in Fig. 3.7. For K2, K4 and

K1 we have that

tVK4
(t)� t

�1
VK2

(t) = (t�
1
2 � t

1
2 )VK1(t): (3.4)

For K+, K1 and K2 we have that

tVK1
(t)� t

�1
VK+

(t) = (t�
1
2 � t

1
2 )VK2

(t): (3.5)

By (3.4) and (3.5) we have that

VK1
(t)� t

�2
VK+

(t)

= t(t�
1
2 � t

1
2 )VK4

(t)� (t�
1
2 � t

1
2 )2VK1(t): (3.6)

On the other hand, for K3, K4 and K0 we have that

tVK4
(t)� t

�1
VK3

(t) = (t�
1
2 � t

1
2 )VK0

(t): (3.7)

For K1, K� and K3 we have that

tVK1
(t)� t

�1
VK�(t) = (t�

1
2 � t

1
2 )VK3

(t): (3.8)

By (3.7) and (3.8) we have that

VK1
(t)� t

�2
VK�(t)

= t(t�
1
2 � t

1
2 )VK4

(t)� (t�
1
2 � t

1
2 )2VK0

(t): (3.9)

By (3.6) and (3.9), we have the desired conclusion.

Proof of Theorem 3.2. We set f(t) = t�2t2+ t
3 and denote the k-th

derivative of f(t) by f
(k)(t). By di�erentiating both sides of (3.3), we

have that

V
(3)
K+

(t)� V
(3)
K�

(t) = f
(3)(t) fVK1(t)� VK0

(t)g

+3f (2)(t)
n
V
(1)

K1
(t)� V

(1)

K0
(t)
o

+3f (1)(t)
n
V
(2)
K1

(t)� V
(2)
K0

(t)
o

+f(t)
n
V
(3)
K1

(t)� V
(3)
K0

(t)
o
:
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Thus it is clear that

V
(3)

K+
(1)� V

(3)

K�
(1) = 6 fVK1(1) � VK0

(1)g

+6
n
V
(1)

K1
(1) � V

(1)

K0
(1)
o
: (3.10)

Since it is known that

VL(1) = (�2)n�1 ([6;Theorem 15]) (3.11)

and

V
(1)
L

(1) =

�
0 if n = 1,

3(�2)n�2Lk(L) if n � 2,
(3.12)

([6;Theorem 16]; [15;Theorem 1])

for an n-component link L, therefore by (3.11), (3.12) and (3.10) we

have that

V
(3)

K+
(1)� V

(3)

K�
(1) = 6

�
1� (�2)2

	
+ 6 f�3(�2)Lk(K0)g

= 36Lk(K0)� 18:

This completes the proof. .

Remark 3.4. (1) Since the delta move is an unknotting operation for

knots, Theorem 3.2 implies that (1=18)V
(3)
J

(1) is an integer for any knot

J .

(2) The essential idea of the proof of Lemma 3.3 has already appeared

in [22] (namely in the proof of (3.1)) and extended to a self-delta move

on links in terms of the Conway polynomial [17]. Moreover it can be

applied to the HOMFLY polynomial [4]. We are due to mention it in

the future paper [7].

Let e be an edge of G. We give an orientation to e. We give an

orientation to each  2 �e(G) by the orientation of e. Since H1(G;Zr) =

Ker@1, we denote [] 2 H1(G;Zr) by  for a cycle . Then a weight

! : �(G)! Zr is said to be balanced on e if

X
2�e(G)

!() = 0 2 H1(G;Zr):
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Note that this de�nition does not depend on the choice of the orientation

of e.

Let e1; e2 be adjacent edges of G. We give an orientation to e1. We

give an orientation to each  2 �e1;e2(G) by the orientation of e1. Then

a weight ! : �(G)! Zr is said to be balanced on e1; e2 if

X
2�e1 ;e2 (G)

!() = 0 2 H1(G;Zr):

We also note that this de�nition does not depend on the choice of the

orientation of e1. We remark here that a weight ! : �(G)! Zr which is

balanced on an edge e (resp. adjacent edges e1, e2) is weakly balanced

on an edge e (resp. adjacent edges e1, e2), namely it is easy to see that

if
P

2�e(G)
!() = 0 (resp.

P
2�e1;e2 (G)

!() = 0) in H1(G;Zr) thenP
2�e(G)

!() � 0 (mod r) (resp.
P

2�e1;e2 (G)
!() � 0 (mod r)).

Lemma 3.5. (1) Let e be an edge of G and ! : �(G) ! Zr a weight

which is balanced on e. Let f; g : G ! S
3 be spatial embeddings such

that g is obtained from f by a self-delta move on f(e). Then n!(f) �

n!(g) (mod r).

(2) Let e1 and e2 be adjacent edges of G and ! : �(G) ! Zr a weight

which is balanced on e1; e2. Let f; g : G! S
3 be spatial embeddings such

that g is obtained from f by a quasi-adjacent delta move on f(e1) and

f(e2). Then n!(f) � n!(g) (mod r).

Proof. (1) Note that the orientation of  2 �e(G) is given by the one

of e. We may assume that f() and g() are as illustrated in Fig. 3.8

without loss of generality. Let Lf;g() = l
(1)

f;g
() [ l

(2)

f;g
[ l

(3)

f;g
be a 3-

component link as the right-hand �gure in Fig. 3.8. Note that l
(2)

f;g
and

l
(3)

f;g
are common to all  2 �e(G). Then we have

n!(f)� n!(g)

�
1

18

X
2�(G)

!()V
(3)

f()
(1)�

1

18

X
2�(G)

!()V
(3)

g()
(1)

=
X

2�(G)

!()

�
1

18
V
(3)

f()
(1)�

1

18
V
(3)

g()
(1)

�
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f( )γ g( )γ

f(e)

g(e)

lf,g
(1)

lf,g
(2)

lf,g
(3)

)γ(

Fig. 3.8.

=
X

2�e(G)

!()

�
1

18
V
(3)

f()
(1)�

1

18
V
(3)

g()
(1)

�

=
X

2�e(G)

!()
n
2lk(l

(1)

f;g
(); l

(2)

f;g
) + 2lk(l

(1)

f;g
(); l

(3)

f;g
) + 2lk(l

(2)

f;g
; l
(3)

f;g
)� 1

o

= 2
X
k=2;3

X
2�e(G)

!()lk(l
(1)

f;g
(); l

(k)

f;g
) +
n
2lk(l

(2)

f;g
; l
(3)

f;g
)� 1

o X
2�e(G)

!()

� 2
X
k=2;3

lk(
X

2�e(G)

!()l
(1)

f;g
(); l

(k)

f;g
)

� 2
X
k=2;3

lk(0; l
(k)

f;g
)

� 0 (mod r):

Thus we have the desired conclusion.

(2) We can complete the proof in a similar way as (1) (see Fig. 3.9).

Proof of Theorem 1.5. It is clear by Lemma 3.5.

4 Examples

Example 4.1. Let fm be a �-curve as illustrated in Fig. 4.1, where m is

a non-negative integer. Note that fi and fj are delta vertex-homotopic

for any i; j. It is easy to see that fm contains a unique non-trivial knot J

which is a connected sum of m trefoil knots for m 6= 0. Since ]�e(�) = 2
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f( )γ g( )γ

f(e

lf,g
(1)

lf,g
(2)

lf,g
(3)

)γ(

)1

f(e )2

g(e )2

g(e )1

Fig. 3.9.

fm

m times

Fig. 4.1.
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for any edge e, we have that ds = 2. By a calculation we have that

a2(J) = m. Therefore we have that ~�!s(fm) � 0 (mod 2) if m is even

and 1 (mod 2) if m is odd. Thus by Corollary 1.4 (1) we have that fi
and fj are not delta edge-homotopic if the one of i; j is odd and the

other is even. Especially fm is not delta edge-homotopic to the trivial

embedding f0 if m is odd.

Example 4.2. (cf. [29, Example 3.1]) Let K4 be the complete graph

on 4 vertices (namely the graph G2 as illustrated in Fig. 1.2). Let fm
and g be spatial embeddings of K4 as illustrated in Fig. 4.2, where m

is an integer. Note that fm and g are delta vertex-homotopic (Undo

the local Borromean ring in f(K4) by a quasi-adjacent delta move). It

m-full twists

f

g

m

Fig. 4.2.

is easy to see that fm(K4) contains two non-trivial knots J1 and J2 as

illustrated in Fig. 4.3. Since ]�e(K4) = 4 for any edge e 2 E(K4), we

have that ds = 4. By a calculation we have that a2(J1) = a2(J2) = 1.

Therefore we have that ~�!s(fm) � 2 (mod 4) for any integer m. Since

~�!s(g) � 0 (mod 4), by Theorem 1.4 (1) we have that fm and g are not

delta edge-homotopic for any integer m.

Let ! : �(K4)! Z be a weight de�ned by

!() =

�
1 if  is a 4-cycle,

�1 if  is a 3-cycle.

Then we can see that ! is balanced on each of edges of K4. Thus by

Theorem 1.5 (1), n! is a delta edge-homotopy invariant. By Theorem

3.2 we have that V
(3)

J1
(1) = 36m � 18 and V

(3)

J2
(1) = �18. Therefore
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we have that n!(fm) = 2m. This shows that fi and fj are not delta

edge-homotopic for i 6= j.

J1

m-full twists

J2

Fig. 4.3.

Example 4.3. (cf. [29, Example 3.2]) Let K5 be the complete graph

on 5 vertices. Let fm be a spatial embedding of K5 as illustrated in

Fig. 4.4, where m is a non-negative integer. Note that fi and fj are

edge-homotopic for any i; j (Undo the local Borromean ring in fm(K5)

by two self-crossing changes). It is easy to see that fm(K5) contains six

m times

m

m

fm

Fig. 4.4.

non-trivial knots Jk (k = 1; 2; : : : ; 6) for m 6= 0 as illustrated in Fig.

4.5. Note that Jk is the image of a 4-cycle if k = 1; 2 and the image of

a 5-cycle if k = 3; 4; 5; 6. Since ]�e1;e2(K5) = 5 for any adjacent edges

e1; e2 2 E(K5), we have that dad = 5. By a calculation we have that

a2(J1) = a2(J3) = a2(J5) = m and a2(J2) = a2(J4) = a2(J6) = �m.

Therefore we have that ~�!ad(fm) � 0 (mod 5). Since ~�!ad(g) � 0
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(mod 5), We can not distinguish fi and fj for i 6= j up to delta vertex-

homotopy by using ~�!ad .

Let ! : �(K5)! Z be a weight de�ned by

!() =

8<
:
1 if  is a 5-cycle,

�1 if  is a 4-cycle and

0 if  is a 3-cycle.

Then we can see that ! is balanced on each pair of adjacent edges of K5.

Thus by Theorem 1.5 (2), n! is a delta vertex-homotopy invariant. By

Theorem 3.2 we have that V
(3)

Jk
(1) = �18m (k = 1; 2; : : : ; 6). Therefore

we have that n!(fm) = �2m. This shows that fi and fj are not delta

vertex-homotopic for i 6= j.

m m m

m m m

J1 J2 J3

J4 J5 J6

Fig. 4.5.

Acknowledgements. The author is most grateful to Professors T.

Asoh and K. Shimokawa for their invaluable comments and encourage-

ment. The author is grateful to the referee for his (or her) comments.

567 REVISTA MATEM�ATICA COMPLUTENSE

Vol. 15 N�um. 2 (2002), 543-570



ryo nikkuni delta link-homotopy on spatial graphs

References

[1] Cochran, Tim D., Concordance invariance of coeÆcients of Conway's link

polynomial, Invent. Math., 82 (1985) 527-541.

[2] Conway, J.H., An enumeration of knots and links, and some of their alge-

braic properties, In: Computational Problems in Abstract Algebra (Proc.
Conf., Oxford, 1967) (1970) 329-358.

[3] Conway, J.H. and Gordon, McA., Knots and links in spatial graphs, J.
Graph Theory, 7 (1983) 445-453.

[4] Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K. and Oc-
neanu, A., A new polynomial invariant of knots and links, Bull. Amer.
Math. Soc. (N.S.), 12 (1985) 239-246.

[5] Inaba, H. and Soma, T., On spatial graphs isotopic to planar embeddings,
In: S. Suzuki (ed.) Proceedings of Knots '96 Tokyo (World Scienti�c Publ.
Co., 1997) 1-22.

[6] Jones, V.F.R., A polynomial invariant for knots via von Neumann alge-

bras, Bull. Amer. Math. Soc., 12 (1985) 103-111.

[7] Kanenobu, T. and Nikkuni, R., Delta move and polynomial invariants of

links, preprint.

[8] Kau�man, L., Formal Knot Theory (Mathematical Notes 30, Princeton
Univ. Press, 1983).

[9] Kau�man, L., On Knots (Ann. of Math. Studies, 115, Princeton Univ.
Press, Princeton, N.J, 1987)

[10] Kawauchi, A., A Survey of Knot Theory (Birkh�auser, 1996).

[11] Matveev, S., Generalized surgeries of three-dimensional manifolds and rep-

resentations of homology sphere (Russian), Mat. Zametki, 42 (1987) 268-
278, 345 (English translation: Math. Notes 42 (1987) 651-656.)

[12] Milnor, J., Link groups, Ann. of Math. 59 (1954) 177-195.

[13] Milnor, J., Isotopy of links. Algebraic geometry and topology, In: A sym-
posium in honor of S. Lefschetz, (Princeton University Press, Princeton,
N. J., 1957) 280-306.

[14] Motohashi, T. and Taniyama, K., Delta unknotting operation and vertex

homotopy of spatial graphs, In: S. Suzuki (ed.) Proceedings of Knots '96
Tokyo (World Scienti�c Publ. Co., 1997) 185-200.

[15] Murakami, H., On derivatives of the Jones polynomial, Kobe J. Math., 3
(1986) 61-64.

568 REVISTA MATEM�ATICA COMPLUTENSE

Vol. 15 N�um. 2 (2002), 543-570



ryo nikkuni delta link-homotopy on spatial graphs

[16] Murakami, H. and Nakanishi, Y., On a certain move generating link-

homology, Math. Ann., 284 (1989) 75-89.

[17] Nakanishi, Y., Delta link homotopy for two component links, to appear in
Topology and its Applications. (Proceedings of Mexico-Japan �rst joint
meeting for Topology and its Applications.)

[18] Nakanishi, Y. and Ohyama, Y., Delta link homotopy for two component

links, II, to appear in Journal of Knot Thory and Its Rami�cations

[19] Nakanishi, Y. and Ohyama, Y., Delta link homotopy for two component

links, III, preprint

[20] Nakanishi, Y. and Shibuya, T., Link homotopy and quasi self delta-

equivalence for links, J. Knot Theory Rami�cations., 9 (2000), 683-691.

[21] Ohyama, Y. and Taniyama, K., Vassiliev invariants of knots in a spatial

graph, to appear in Paci�c Journal of Mathematics

[22] Okada, M., Delta-unknotting operation and the second coeÆcient of the

Conway polynomial, J. Math. Soc. Japan., 42 (1990) 713-717.

[23] Rolfsen, D., Knots and Links, (Mathematics Lecture Series, 7, Publish or
Perish, Inc., Berkeley, Calif., 1976).

[24] Rolfsen, D., Isotopy of links in codimension two, J. Indian Math. Soc.
(N.S.), 36 (1972) 263-278.

[25] Shibuya, T., Self �-equivalence of ribbon links, Osaka J. Math., 33 (1996)
751-760.

[26] Shibuya, T., Self delta-equivalence of F -isotopic links, Mem. Osaka Inst.
Tech. Ser. A, 43 (1998) 21-25.

[27] Shibuya, T., On self �-equivalence of boundary links, Osaka J. Math., 37
(2000) 37-55.

[28] Taniyama, K., Cobordism, homotopy and homology of graphs in R3, Topol-
ogy, 33 (1994) 509-523.

[29] Taniyama, K., Link homotopy invariants of graphs in R3, Rev. Mat. Univ.
Complut. Madrid., 7 (1994) 129-144.

[30] Taniyama, K. and Yasuhara, A., Clasp-pass moves on knots, links and

spatial graphs, to appear in Topology and its Applications

[31] Yamamoto, M., Knots in spatial embeddings of the complete graph on four

vertices, Topology Appl., 36 (1990) 291-298.

569 REVISTA MATEM�ATICA COMPLUTENSE

Vol. 15 N�um. 2 (2002), 543-570



ryo nikkuni delta link-homotopy on spatial graphs

Division of Mathematics,
Graduate School of Information Sciences,
Tohoku University,
Aramaki aza Aoba 09, Aoba-ku, Sendai 980-8579, Japan
E-mail: nick@ims.is.tohoku.ac.jp

Recibido: 18 de Abril de 2001
Revisado: 7 de Marzo de 2002

570 REVISTA MATEM�ATICA COMPLUTENSE

Vol. 15 N�um. 2 (2002), 543-570


