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Abstract

This paper is concerned with systems with control whose state
evolution is described by linear skew-product semiflows. The con-
nection between uniform exponential stability of a linear skew-
product semiflow and the stabilizability of the associated system
is presented. The relationship between the concepts of exact con-
trollability and complete stabilizability of general control systems
is studied. Some results due to Clark, Latushkin, Montgomery-
Smith, Randolph, Megan, Zabczyk and Przyluski are generalized.

1 Introduction

A central concern in the study of infinite-dimensional linear control sys-
tems with unbounded coefficients is to establish the connections between
their asymptotic behaviour and their controllability. It is well known
that in Hilbert spaces for a linear control system associated to a C0

- group its exact controllability is equivalent to its exponential stabi-
lizability backward and forward in time (see [9], [12], [21]). Another
important result, in Banach spaces, expresses the relation between uni-
form exponential stability of an evolution family and the stabilizability
and detectability, respectively, of the associated linear control system
([7]).

In recent years, the theory of linear skew-product semiflows has been
developed and used to study the asymptotic behaviour of time-varying
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linear systems ([18]). This approach led to the generalization of some
classical theorems of dichotomy and stability (see [2]-[6], [10], [11], [13],
[14]).

Naturally, the question arises whether the connection between sta-
bilizability and controllability can be extended to systems associated to
linear skew-product semiflows.

The purpose of this paper is to answer this question. We shall con-
sider an abstract generalization of systems described by differential equa-
tions of the form{

ẋ(t) = A(σ(θ, t))x(t) + B(σ(θ, t))u(t)
y(t) = C(σ(θ, t))x(t)

where σ is a semiflow on a locally compact metric space Θ. For every θ ∈
Θ, the operators A(θ) are generally unbounded operators on a Banach
space X, while the operators B(θ) ∈ B(U,X), C(θ) ∈ B(X, Y ), where
U , Y are Banach spaces.

We establish the connection between the uniform exponential sta-
bility of a linear skew-product semiflow and the stabilizability and de-
tectability, respectively, of the associated control system, using a genera-
lization of a well-known stability theorem of Datko ([8]). Thus we extend
a theorem of Clark, Latushkin, Montgomery-Smith and Randolph ([7]).

We also study the relation between the complete stabilizability and
exact controllability of a control system associated to a linear skew-
product semiflow. The results obtained here generalize some theorems
due to Megan, Zabczyk and Przyluski (see [12], [17] and [21]).

2 Preliminaries

Let X be a Banach space, let (Θ, d) be a locally compact metric space
and let E = X × Θ . We denote by B(X) the Banach algebra of all
bounded linear operators from X into itself and by R+ = [0,∞).

Definition 2.1. A mapping σ : Θ ×R+ → Θ is called a semiflow on
Θ, if it has the following properties:

(i) σ(θ, 0) = θ, for all θ ∈ Θ;

(ii) σ(θ, s + t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ×R2
+;
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(iii) σ is continuous.

Definition 2.2. A pair π = (Φ, σ) is called a linear skew-product semi-
flow on E = X × Θ if σ is a semiflow on Θ and Φ : Θ ×R+ → B(X)
satisfies the following conditions:

(i) Φ(θ, 0) = I, the identity operator on X, for all θ ∈ Θ;

(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R2
+ (the

cocycle identity);

(iii) (θ, t) 7→ Φ(θ, t)x is continuous, for every x ∈ X;

(iv) there are M ≥ 1 and ω > 0 such that

||Φ(θ, t)|| ≤ Meωt (2.1)

for all (θ, t) ∈ Θ×R+.

The mapping Φ given by Definition 2.2. is called the cocycle associ-
ated to the linear skew-product semiflow π = (Φ, σ).

Remark 2.1. If π = (Φ, σ) is a linear skew-product semiflow on E =
X × Θ then for every β ∈ R the pair πβ = (Φβ, σ), where Φβ(θ, t) =
e−βt Φ(θ, t) for all (θ, t) ∈ Θ×R+, is also a linear skew-product semiflow
on E = X ×Θ.

Example 2.1. Let Θ be a locally compact metric space, let σ be a
semiflow on Θ and let T = {T (t)}t≥0 be a C0 - semigroup on X. Then
the pair πT = (ΦT , σ), where

ΦT (θ, t) = T (t)

for all (θ, t) ∈ Θ×R+, is a linear skew-product semiflow on E = X ×Θ,
which is called the linear skew-product semiflow generated by the C0 -
semigroup T and the semiflow σ.

Example 2.2. Let Θ = R+, σ(θ, t) = θ + t and let U = {U(t, s)}t≥s≥0

be an evolution family on the Banach space X. We define

Φ(θ, t) = U(t + θ, θ)
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for all (θ, t) ∈ R2
+. Then π = (Φ, σ) is a linear skew-product semiflow

on E = X × Θ called the linear skew-product semiflow generated by the
evolution family U .

Example 2.3. Let X be a Banach space, Θ be a compact metric space
and let σ : Θ × R+ → Θ be a semiflow on Θ. Let A : Θ → B(X) be
a continuous mapping. If Φ(θ, t) denotes the solution operator of the
linear differential system

u̇(t) = A(σ(θ, t))u(t), t ≥ 0.

then the pair π = (Φ, σ) is a linear skew-product semiflow on E = X×Θ.
Often, these equations arise from the linearization of nonlinear evolution
equations (see e.g. [18] and the references therein).

Example 2.4. On the Banach space X, we consider the time-varying
differential equation

ẋ(t) = a(t) x(t), t ≥ 0

where a : R+ → R+ is a continuous function such that there exists
α := lim

t→∞
a(t) < ∞.

Let C(R+,R) be the space of all continuous functions f : R+ → R.
This space is metrizable with the metric

d(x, y) =
∞∑

n=1

1
2n

dn(x, y)
1 + dn(x, y)

,

where dn(x, y) = sup
t∈[0,n]

|x(t)− y(t)|.

If we denote by as(t) = a(t + s) and by Θ = closure {as : s ∈ R+}
then

σ : Θ×R+ → Θ, σ(θ, t)(s) := θ(t + s)

is a semiflow on Θ,

Φ : Θ×R+ → B(X), Φ(θ, t)x = exp (
∫ t

0
θ(τ) dτ) x

is a cocycle and hence π = (Φ, σ) is a linear skew-product semiflow on
E = X ×Θ.
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If U, Y are Banach spaces we denote by B(U, Y ) the space of all
bounded linear operators from U into Y . If Θ is a locally compact metric
space, we denote by Cs(Θ,B(U, Y )) the space of all strongly continuous
bounded mappings H : Θ → B(U, Y ), which is a Banach space with
respect to the norm

||H|| := sup
θ∈Θ

||H(θ)||.

If H ∈ Cs(Θ,B(U, Y )) and G ∈ Cs(Θ,B(Y, Z)) we shall denote by GH
the mapping Θ 3 θ 7→ G(θ)H(θ).

Theorem 2.1. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X ×Θ. If P ∈ Cs(Θ,B(X)) there is an unique linear skew product
semiflow πP = (ΦP , σ) on X ×Θ such that

ΦP (θ, t)x = Φ(θ, t)x +
∫ t

0
Φ(σ(θ, s), t− s) P (σ(θ, s))ΦP (θ, s)x ds (2.2)

for all (x, θ, t) ∈ X ×Θ×R+.

Proof. First, we shall show that for every θ ∈ Θ and every t ≥ 0 the
integral equation (2.2) has a solution which is a bounded linear operator
on X. Therefore we define:

Φ0(θ, t)x = Φ(θ, t)x

and

Φ1(θ, t)x =
∫ t

0
Φ(σ(θ, s), t− s) P (σ(θ, s))Φ0(θ, s)x ds

for all (x, θ, t) ∈ X ×Θ×R+.
Let M and ω given by (2.1). We have

||Φ1(θ, t)|| ≤ M2 ||P || t eωt,

for all (θ, t) ∈ Θ × R+. We prove that for every x ∈ X the function
(θ, t) 7→ Φ1(θ, t)x is continuous. Let x ∈ X and (θ0, t0) ∈ Θ × R+.
Because (Θ, d) is a locally compact metric space there exists r > 0 such
that V = Dd(θ0, r) is a compact neighbourhood of θ0.

Let ε > 0. For h > 0 and θ ∈ V we have:

||Φ1(θ, t0 + h)x− Φ1(θ0, t0)x|| ≤
∫ t0

0
||ϕ(θ, h, s)− ϕ(θ0, 0, s)|| ds +
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+
∫ t0+h

t0

||Φ(σ(θ, s), t0 + h− s) P (σ(θ, s))Φ(θ, s)x|| ds

where:
ϕ : V × [0, 1]× [0, t0] → X,

ϕ(θ, h, s) = Φ(σ(θ, s), t0 + h− s)P (σ(θ, s))Φ(θ, s)x.

The function ϕ is continuous on V × [0, 1] × [0, t0] and hence it is
uniformly continuous. Then there exist δ1 ∈ (0, 1) and r1 ∈ (0, r) such
that

||ϕ(θ, h, s)− ϕ(θ′, h′, s′)|| < ε

2(t0 + 1)
(2.3)

for all (θ, h, s), (θ′, h′, s′) ∈ V ×[0, 1]×[0, t0] with |h−h′| < δ1, |s−s′| < δ1

and d(θ, θ′) < r1.
Let δ̃ ∈ (0, δ1) such that∫ t0+h

t0

||Φ(σ(θ, s), t0 + h− s) P (σ(θ, s))Φ(θ, s)x|| ds ≤

≤ h M2 eω(t0+h) ||P || ||x|| < ε

2
, (2.4)

for all h ∈ [0, δ̃). Using (2.3) and (2.4) we obtain that

||Φ1(θ, t0 + h)x− Φ1(θ0, t0)x|| < ε (2.5)

for all h ∈ [0, δ̃) and θ ∈ Dd(θ0, r1).
Similary, one can show that there is δ ∈ (0, δ̃) and r0 ∈ (0, r1) such

that
||Φ1(θ, t0 − h)x− Φ1(θ0, t0)x|| < ε

for all h ∈ (0, δ) and θ ∈ Dd(θ0, r0), so the function (θ, t) 7→ Φ1(θ, t)x is
continuous on Θ×R+ for every x ∈ X.

Inductively we define

Φn+1(θ, t)x =
∫ t

0
Φ(σ(θ, s), t− s) P (σ(θ, s))Φn(θ, s)x ds,

for all (n, θ, t, x) ∈ N×Θ×R+ ×X. Then for every n ∈ N and x ∈ X
the function (θ, t) 7→ Φn(θ, t)x is continuous on Θ×R+ and

||Φn(θ, t)|| ≤ M eωt (M ||P ||t)n

n!
, (2.6)
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for all (n, θ, t) ∈ N×Θ×R+. It has sense to define:

ΦP (θ, t) =
∞∑

n=0

Φn(θ, t), (2.7)

for all (θ, t) ∈ Θ×R+. So ΦP (θ, 0) = I for every θ ∈ Θ. Using (2.6) we
obtain that for every t ≥ 0 and θ ∈ Θ ΦP (θ, t) ∈ B(X) and

||ΦP (θ, t)|| ≤ M e(ω+M ||P ||)t,

for all (θ, t) ∈ Θ×R+.
Let x ∈ X, (θ0, t0) ∈ Θ×R+ and let V be a compact neighbourhood

of θ0. Since the series (2.7) converges uniformly on V × [0, t0 + 1] by
the continuity of Φn, we obtain that the function (θ, t) 7→ ΦP (θ, t)x is
continuous in (θ0, t0). Moreover:

ΦP (θ, t)x = Φ(θ, t)x +
∞∑

n=1

Φn(θ, t)x =

= Φ(θ, t)x +
∞∑

n=1

∫ t

0
Φ(σ(θ, s), t− s) P (σ(θ, s))Φn−1(θ, s)x ds =

= Φ(θ, t)x +
∫ t

0
Φ(σ(θ, s), t− s) P (σ(θ, s))ΦP (θ, s)x ds,

so ΦP verifies the equation (2.2).
Using (2.2) and Gronwall’s lemma it is easy to show that ΦP verifies

the cocycle identity.
Finally, suppose that Φ′

P is a cocycle which verifies (2.2). Then we
have:

||ΦP (θ, t)x−Φ′P (θ, t)x|| ≤
∫ t

0
M ||P || eω(t−s) ||ΦP (θ, s)x−Φ′P (θ, s)x|| ds.

From Gronwall’s lemma it follows that ΦP (θ, t) = Φ′P (θ, t), for all t ≥ 0
and θ ∈ Θ.

Remark 2.2. The linear skew-product semiflow πP = (ΦP , σ) given by
Theorem 2.1. is called the linear skew-product semiflow generated by the
pair (π, P ).
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Corollary 2.1. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X × Θ. If P ∈ Cs(Θ,B(X)) then the linear skew-product semiflow
πP = (ΦP , σ) generated by the pair (π, P ) verifies the equation

ΦP (θ, t)x =

= Φ(θ, t)x +
∫ t

0
ΦP (σ(θ, s), t− s))P (σ(θ, s))Φ(θ, s)x ds (2.8)

for all (θ, t, x) ∈ Θ×R+ ×X.

Proof. It is easy to verify that

Φn(θ, t) = Φ̃n(θ, t), (2.9)

for all (n, θ, t) ∈ N×Θ×R+ where Φ̃n(θ, t) is defined by:

Φ̃0(θ, t) = Φ(θ, t)

Φ̃n(θ, t)x =
∫ t

0
Φ̃n−1(σ(θ, s), t− s) P (σ(θ, s))Φ(θ, s)x ds

for all (n, t, θ, x) ∈ N∗ ×R+ × Θ × X. Then using (2.7) and (2.9) we
obtain

ΦP (θ, t)x = Φ(θ, t)x +
∞∑

n=1

Φ̃n(θ, t)x =

= Φ(θ, t)x +
∞∑

n=1

∫ t

0
Φn−1(σ(θ, s), t− s)P (σ(θ, s))Φ(θ, s)x ds =

= Φ(θ, t)x +
∫ t

0
ΦP (σ(θ, s), t− s)P (σ(θ, s))Φ(θ, s)x ds,

for all (x, θ, t) ∈ E ×R+, which ends the proof.

Definition 2.3. A linear skew-product semiflow π = (Φ, σ) on E =
X × Θ is called uniformly exponentially stable if there are N ≥ 1 and
ν > 0 such that

||Φ(θ, t)|| ≤ Ne−νt

for all (θ, t) ∈ Θ×R+.

Example 2.5. Consider the linear skew-product semiflow πβ = (Φβ, σ)
where

Φβ(θ, t) = e−βt Φ(θ, t), β ∈ R+

606 REVISTA MATEMÁTICA COMPLUTENSE
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and π = (Φ, σ) is the linear skew-product semiflow given in Example
2.4. It is easy to see that πβ is uniformly exponentially stable if and
only if β > α.

A sufficient condition for uniform exponential stability of linear skew-
product semiflows is given by:

Proposition 2.1. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X ×Θ. If there are t0 > 0 and c ∈ (0, 1) such that

||Φ(θ, t0)|| ≤ c,

for all θ ∈ Θ, then π = (Φ, σ) is uniformly exponentially stable.

Proof. Let M ≥ 1 and ω > 0 given by (2.1) and let ν > 0 such that
c = e−νt0 .

Let θ ∈ Θ. For every t ∈ R+ there are n ∈ N and r ∈ [0, t0) such
that t = nt0 + r. Then we obtain:

||Φ(θ, t)|| ≤ ||Φ(σ(θ, nt0), r)|| ||Φ(θ, nt0)|| ≤ Meωt0 e−nνt0 ≤ Ne−νt,

where N = Me(ω+ν)t0 . So π is uniformly exponentially stable.

Now, we give a characterization of uniform exponential stability of linear
skew-product semiflows, which generalizes the well-known theorem of
Datko ([8]).

Theorem 2.2. The linear skew-product semiflow π = (Φ, σ) is uni-
formly exponentially stable if and only if there are K > 0 and p ≥ 1
such that ∫ ∞

0
||Φ(θ, t)x||pdt ≤ K||x||p, (2.10)

for all (x, θ) ∈ E .

Proof. Necessity. If π = (Φ, σ) is uniformly exponentially stable and
N ≥ 1, ν > 0 are given by Definition 2.3. it follows that∫ ∞

0
||Φ(θ, t)x||p dt ≤ Np

νp
||x||p,

for all (x, θ) ∈ E and p ≥ 1.
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Sufficiency. Let t ≥ 1 and m =
∫ 1
0 M−pe−pωτdτ, where M ≥ 1 and

ω > 0 are given by (2.1). Then using the cocycle identity we obtain
from (2.10) that

m||Φ(θ, t)x||p ≤ ||Φ(θ, t)x||p
∫ t

0
M−pe−pω(t−s) ds ≤

≤
∫ t

0
||Φ(θ, s)x||pds ≤ K||x||p,

and hence

||Φ(θ, t)|| ≤ M1 = max

{
Meω, (

K

m
)

1
p

}
for all (t, θ) ∈ R+ ×Θ. Setting t0 = 2pMp

1 K we deduce:

t0||Φ(θ, t0)x||p ≤ Mp
1

∫ t0

0
||Φ(θ, s)x||p ds ≤ KMp

1 ||x||
p

and hence ||Φ(θ, t0)|| ≤ 1
2 , for all θ ∈ Θ. From Proposition 2.1. it results

that π is uniformly exponentially stable.

We denote by M(X) the linear space of all strongly Bochner mea-
surable functions u : R+ → X identifying the functions which are equal
almost everywhere. For every p ∈ [1,∞) the linear space

Lp(R+, X) = {u ∈M(X) :
∫ ∞

0
||u(t)||pdt < ∞}

is a Banach space with respect to the norm:

||u||p :=
(∫ ∞

0
||u(t)||pdt

) 1
p

.

We shall denote by L1
loc(R+, X) the set of all locally integrable func-

tions u : R+ → X.

Let U, Y be two Banach spaces and

{Aθ : L1
loc(R+, U) → L1

loc(R+, Y ), θ ∈ Θ}

a family of linear operators.

Definition 2.4. The family {Aθ}θ∈Θ is said to be uniformly (Lp(R+, U),
Lp(R+, Y )) - stable if the following conditions are satisfied:
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Vol. 15 Núm. 2 (2002), 599-618



mihail megan et al. stabilizability and controllability of systems. . .

(i) Aθu ∈ Lp(R+, Y ), for all (u, θ) ∈ Lp(R+, U)×Θ;

(ii) there is L > 0 such that ||Aθu||p ≤ L||u||p, for all (u, θ) ∈
Lp(R+, U)×Θ.

Remark 2.3. If the families {Aθ}θ∈Θ, {Bθ}θ∈Θ are uniformly
(Lp(R+, U), Lp(R+, Y )) - stables and the family {Cθ}θ∈Θ is uniformly
(Lp(R+, Y ), Lp(R+, Z)) - stable then

(i) the family {Aθ + Bθ}θ∈Θ is uniformly (Lp(R+, U), Lp(R+, Y )) -
stable;

(ii) the family {CθAθ}θ∈Θ is uniformly (Lp(R+, U), Lp(R+, Z)) - sta-
ble.

Let π = (Φ, σ) be a linear skew-product semiflow on E = X×Θ. For
every θ ∈ Θ we define the operator

Pθ : L1
loc(R+, X) → L1

loc(R+, X), (Pθu)(t) =
∫ t

0
Φ(σ(θ, s), t− s)u(s) ds

(2.11)

Another characterization of uniform exponential stability of linear
skew-product semiflows has been treated in [13] and it is given by:

Theorem 2.3. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X ×Θ. Then π is uniformly exponentially stable if and only if the
family {Pθ}θ∈Θ is uniformly (Lp(R+, X), Lp(R+, X)) - stable.

Proof. see [13], Theorem 3.2.

Remark 2.4. The above result is an extension of a well-known theorem
of Perron type, proved by Datko in [8]. Other approaches of this the-
orem have been presented by Neerven in [16] for the particular case of
C0-semigroups, employing a complex analysis technique and by Clark,
Latushkin, Montgomery-Smith and Randolph in [7], for the case of evo-
lution families, applying Neerven’s result for the associated evolution
semigroup.

609 REVISTA MATEMÁTICA COMPLUTENSE
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3 Stabilizability and detectability of linear
control sytems

In this section we shall establish the connection between the uniform
exponential stability of a linear skew-product semiflow and the stabi-
lizability and detectability of the system associated to the linear skew-
product semiflow. Thus, we shall extend a result due to Clark, La-
tushkin, Montgomery-Smith and Randolph ([7]).

Let X, Y, U be Banach spaces and let Θ be a locally compact metric
space. Let B ∈ Cs(Θ,B(U,X)) and C ∈ Cs(Θ,B(X, Y )). Let π = (Φ, σ)
be a linear skew-product semiflow on E = X ×Θ.

Consider the system S = (π,B,C) described by the following integral
model x(θ, t, x0, u) = Φ(θ, t)x0 +

∫ t
0 Φ(σ(θ, s), t− s)B(σ(θ, s))u(s) ds

y(θ, t, x0, u) = C(σ(θ, t))x(θ, t, x0, u)

where t ≥ 0, (x0, θ) ∈ E , p ∈ [1,∞) and u ∈ Lp
loc(R+, U).

Definition 3.1. The system S = (π,B,C) is called:

(i) stabilizable if there exists F ∈ Cs(Θ,B(X, U)) such that the li-
near skew-product semiflow πBF = (ΦBF , σ) generated by the pair
(π,BF ) is uniformly exponentially stable;

(ii) detectable if there exists K ∈ Cs(Θ,B(Y, X)) such that the li-
near skew-product semiflow πKC = (ΦKC , σ) generated by the pair
(π,KC) is uniformly exponentially stable.

For every θ ∈ Θ we define the operators

Bθ : L1
loc(R+, U) → L1

loc(R+, X), (Bθu)(t) = B(σ(θ, t))u(t)

Cθ : L1
loc(R+, X) → L1

loc(R+, Y ), (Cθu)(t) = C(σ(θ, t))u(t)

Theorem 3.1. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X ×Θ, let {P (θ)}θ∈Θ the family associated to π by relation (2.11)
and let p ∈ [1,∞). The following assertions are equivalent:
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(i) π is uniformly exponentially stable;

(ii) the system S = (π,B,C) is stabilizable and the family {PθBθ}θ∈Θ

is uniformly (Lp(R+, U), Lp(R+, X)) - stable;

(iii) the system S = (π,B,C) is detectable and the family {CθPθ}θ∈Θ

is uniformly (Lp(R+, X), Lp(R+, Y )) - stable;

(iv) the system S = (π,B,C) is stabilizable, detectable and the family
{CθPθBθ}θ∈Θ is uniformly (Lp(R+, U), Lp(R+, Y )) - stable.

Proof. (i) =⇒ (ii) Since π is uniformly exponentially stable,
according to Theorem 2.3., the family {Pθ}θ∈Θ is uniformly
(Lp(R+, X), Lp(R+, X)) - stable. Because

||Bθu||p ≤ ||B|| ||u||p,

for all (u, θ) ∈ Lp(R+, U) × Θ, it follows that the family {Bθ}θ∈Θ is
uniformly (Lp(R+, U), Lp(R+, X)) - stable, so from Remark 2.3. the
family {PθBθ}θ∈Θ is uniformly (Lp(R+, U), Lp(R+, X)) - stable.

The implications (i) =⇒ (iii) and (i) =⇒ (iv) can be obtained in an
analogous manner.

(ii) =⇒ (i) Let F ∈ Cs(Θ,B(X, U)) such that πBF = (ΦBF , σ) is uni-
formly exponentially stable. For every θ ∈ Θ we consider the operators

Gθ : L1
loc(R+, X) → L1

loc(R+, X), (Gθu)(t) =
∫ t

0

ΦBF (σ(θ, s), t− s)u(s) ds

Fθ : L1
loc(R+, X) → L1

loc(R+, U), (Fθu)(t) = F (σ(θ, t))u(t).

Because πBF is uniformly exponentially stable the family {Gθ}θ∈Θ is
uniformly (Lp(R+, X), Lp(R+, X)) - stable.

Let θ ∈ Θ, t ≥ 0 and u ∈ L1
loc(R+, X). Using Fubini’s theorem we

obtain
(PθBθFθGθu)(t) =

=
∫ t

0

∫ s

0

Φ(σ(θ, s), t− s)B(σ(θ, s))F (σ(θ, s))ΦBF (σ(θ, τ), s− τ)u(τ) dτ ds =

=
∫ t

0

∫ t

τ

Φ(σ(θ, s), t− s)B(σ(θ, s))F (σ(θ, s))ΦBF (σ(θ, τ), s− τ)u(τ) ds dτ =
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=
∫ t

0

[ΦBF (σ(θ, τ), t− τ)u(τ)− Φ(σ(θ, τ), t− τ)u(τ)] dτ.

So
Pθ = Gθ − PθBθFθGθ, (3.1)

for every θ ∈ Θ.
Using the hypothesis and the fact that the families {Fθ}θ∈Θ

and {PθBθ}θ∈Θ are uniformly (Lp(R+, X), Lp(R+, U)) -stable and
(Lp(R+, U), Lp(R+, X)) -stable, respectively, we deduce from
Remark 2.3. that the family {PθBθFθGθ}θ∈Θ is uniformly
(Lp(R+, X), Lp(R+, X)) -stable.

Hence from (3.1) and Remark 2.3. we obtain that the the family
{Pθ}θ∈Θ is uniformly (Lp(R+, X), Lp(R+, X)) - stable. From Theorem
2.3. it follows that π is uniformly exponentially stable.

(iii) =⇒ (i) Let K ∈ Cs(Θ,B(Y, X)) such that πKC = (ΦKC , σ)
is uniformly exponentially stable. For every θ ∈ Θ we consider the
operators

Hθ : L1
loc(R+, X) → L1

loc(R+, X), (Hθu)(t) =
∫ t

0

ΦKC(σ(θ, s), t− s)u(s) ds

Kθ : L1
loc(R+, Y ) → L1

loc(R+, X), (Kθu)(t) = K(σ(θ, t))u(t).

Because πKC is uniformly exponentially stable the family {Hθ}θ∈Θ is
uniformly (Lp(R+, X), Lp(R+, X)) - stable. Using an analogous argu-
ment as in the proof of (ii) =⇒ (i) one obtain that

Pθ = Hθ −HθKθCθPθ,

for all θ ∈ Θ. Then we immediately deduce that the family {Pθ}θ∈Θ is
uniformly (Lp(R+, X), Lp(R+, X)) - stable, so from Theorem 2.3. π is
uniformly exponentially stable.

(iv) =⇒ (i) If {Hθ}θ∈Θ and {Kθ}θ∈Θ are defined in the same manner
as above we obtain that

PθBθ = HθBθ −HθKθCθPθBθ,

for all θ ∈ Θ. Then, using the hypothesis we deduce that the family
{PθBθ}θ∈Θ is uniformly (Lp(R+, U), Lp(R+, X)) - stable. Because S is
stabilizable we finally conclude that π is uniformly exponentially stable.

612 REVISTA MATEMÁTICA COMPLUTENSE
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Remark 3.1. The above theorem has been obtained by Clark, La-
tushkin, Montgomery-Smith and Randolph ([7]), for the case of time-
varying systems associated to evolution families.

Remark 3.2. Another characterization for exponential stability of li-
near systems in Hilbert spaces, in terms of dual concepts, have been
presented by Weiss and Rebarber in [19]. There, it is proved that a
system associated to a C0-semigroup is exponentially stable if and only
if it is optimizable, estimatable and input-output stable.

4 Complete stabilizability and exact controlla-
bility

In this section we shall present the connection between complete stabili-
zability and the exact controllability of a system associated to a linear
skew-product semiflow.

Let X, U, Y be reflexive Banach spaces and let Θ be a locally compact
metric space. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X×Θ, B ∈ Cs(Θ,B(U,X)) and C ∈ Cs(Θ,B(X, Y )). Let p ∈ (1,∞).

Let S = (π,B,C) be the system considered in the previous section.

Definition 4.1. The system S = (π,B,C) is said to be exactly control-
lable if for every θ ∈ Θ there is t > 0 such that for all x0, x1 ∈ X there
exists u ∈ Lp(R+, U) with x(θ, t, x0, u) = x1.

Remark 4.1. Because the concept of exact controllability does not
depend on the mapping C we suppose C = 0 and in all what follows we
shall denote the system S = (π,B, 0) by S = (π,B).

For every (θ, t) ∈ Θ×R+ consider the bounded linear operator

Cθ,t
S : Lp(R+, U) → X, Cθ,t

S u =
∫ t

0
Φ(σ(θ, s), t− s) B(σ(θ, s))u(s) ds.

Lemma 4.1. Let X be a Banach space and let X ′ be a reflexive Banach
space. If A ∈ B(X ′, X) then A is surjective if and only if there is c > 0
such that

||A∗x∗|| ≥ c||x∗||,

for all x∗ ∈ X∗.
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Proof. See [21], pp. 207-209.

Proposition 4.1. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X ×Θ and S = (π,B). The following assertions are equivalent:

(i) S is exactly controllable;

(ii) for every θ ∈ Θ there is t > 0 such that Cθ,t
S is surjective;

(iii) for every θ ∈ Θ there are t > 0 and c > 0 such that ||(Cθ,t
S )∗ x∗|| ≥

c ||x∗||, for all x∗ ∈ X∗.

Proof. It is immediate from Definition 4.1. and Lemma 4.1.

As a consequence of Theorem 2.1. and Definition 4.1. we obtain

Proposition 4.2. Let π = (Φ, σ) be a linear skew-product semiflow
on E = X × Θ and let F ∈ Cs(Θ,B(X, U)). The system S = (π,B) is
exactly controllable if and only if the system SBF = (πBF , B) is exactly
controllable.

Proof. Let (θ, t) ∈ Θ ×R+ and u ∈ Lp(R+, U). Using Theorem 2.1.
and Fubini’s theorem we obtain that

Cθ,t
SBF

u = Cθ,t
S (u + u1),

where

u1(τ)=
{

F (σ(θ, τ))
∫ τ
0 ΦBF (σ(θ, s), τ − s)B(σ(θ, s))u(s)ds , τ ∈ [0, t]

0 , τ > t
.

So Range Cθ,t
SBF

⊂ Range Cθ,t
S . In the same way by using Corollary

2.1. we obtain that Range Cθ,t
S ⊂ Range Cθ,t

SBF
, which ends the proof.

Definition 4.2. The system S = (π,B) is said to be completely stabili-
zable if for every ν > 0 there are N ≥ 1 and F ∈ Cs(Θ,B(X, U))
such that the linear skew-product semiflow πBF = (ΦBF , σ) satisfies the
inequality

||ΦBF (θ, t)|| ≤ Ne−νt,

for all (θ, t) ∈ Θ×R+.

Now we can give:
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Theorem 4.1. Let π = (Φ, σ) be a linear skew-product semiflow on
E = X × Θ with the property that for every θ ∈ Θ there is t0 > 0
such that Φ(θ, t0) is surjective. If the system S = (π,B) is completely
stabilizable then S is exactly controllable.

Proof. Suppose the contrary, i.e. there exists θ0 ∈ Θ such that for all
t > 0 Range Cθ0,t

S 6= X. It follows from Proposition 4.1. that for every
ε > 0 and every t > 0 there is x∗t,ε ∈ X∗ with ||x∗t,ε|| = 1 such that

||(Cθ0,t
S )∗ x∗t,ε|| < ε. (4.1)

Let t0 > 0 such that Φ(θ0, t0) is surjective. Since X is reflexive from
Lemma 4.1. it follows that there exists k > 0 with

k||x∗|| ≤ ||Φ(θ0, t0)∗x∗||, (4.2)

for all x∗ ∈ X∗.
Let ν > 0. Since S is completely stabilizable there is F : Θ →

B(X, U) a strongly continuous mapping with ||F || = sup
θ∈Θ

||F (θ)|| < ∞

and N ≥ 1 such that

||ΦBF (θ, t)|| ≤ Ne−νt,

for all (θ, t) ∈ Θ×R+. Using Theorem 2.1. we obtain that

Φ(θ, t)x = ΦBF (θ, t)x− Cθ,t
S Γθ x,

for all (θ, t, x) ∈ Θ×R+ ×X, where for every θ ∈ Θ

Γθ : X → Lp(R+, U), (Γθ x)(s) = F (σ(θ, s))ΦBF (θ, s)x.

Then we have

Φ(θ, t)∗ x∗ = ΦBF (θ, t)∗ x∗ − (Γθ)∗ (Cθ,t
S )∗ x∗,

for all x∗ ∈ X∗. It follows that

||Φ(θ, t)∗ x∗|| ≤ N e−νt ||x∗||+ ||(Γθ)∗|| ||(Cθ,t
S )∗ x∗||, (4.3)

for all (θ, t, x∗) ∈ Θ×R+ ×X∗. Since

||(Γθ)∗|| = ||Γθ|| ≤ N1 :=
||F ||N

νp
,
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from (4.3) applied for x∗t0,ε, θ0 and t0 using (4.1) and (4.2) we obtain
that

k < Ne−νt0 + N1ε.

Since ε > 0 was arbitrary we obtain from above that

eνt0 <
N

k
,

for all ν > 0, which is absurd.
So the system S = (π,B) is exactly controllable.

Remark 4.2. The above theorem generalizes a result obtained by
Megan ([12]), Zabczyk ([20], [21] Theorem 3.4., pp. 229-231) and Przy-
luski ([17]), for systems with control described by C0 - groups and C0 -
semigroups, respectively.

Remark 4.3. The hypothesis imposed in Theorem 4.1. on the surjec-
tivity of Φ is essential, even for linear skew-product semiflows generated
by C0 - semigroups, as shows:

Example 4.1. Let {en}n≥0 be an ortonormal basis in the separable real
Hilbert space X and T = {T (t)}t≥0 be the C0 - semigroup defined by

T (t)x =
∞∑

n=0

e−ntxnen, for x =
∞∑

n=0

xnen.

Let σ be a semiflow on the locally compact metric space Θ and ΦT be the
cocycle generated by T and σ. Let U = X, B : Θ → B(X), B(θ) = I,
the identity operator on X and p = 2. Since for every every t > 0

Range T (t) = {x =
∞∑

n=0

xnen :
∞∑

n=0

e2ntx2
n < ∞}

it follows that for every θ ∈ Θ, ΦT (θ, t) = T (t) is not surjective.
It is easy to see that S = (π,B) is completely stabilizable but

Range Cθ,t
S = {x =

∞∑
n=0

xnen :
∞∑

n=1

n2x2
n < ∞},

for every (θ, t) ∈ Θ × R+, so the system S = (π,B) is not exactly
controllable.
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1995.

Department of Mathematics
University of the West
Bul V. Parvan 4
1900 - Timişoara
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