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ABSTRACT

The work is devoted to reaction-di�usion-convection problems in unbounded

cylinders. We study the Fredholm property and properness of the corresponding

elliptic operators and de�ne the topological degree. Together with analysis of

the spectrum of the linearized operators it allows us to study bifurcations of

solutions, to prove existence of convective waves, and to make some conclusions

about their stability.
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1. Introduction

Propagation of chemical waves can be accompanied by various instabilities. If the
density of the medium depends on the temperature or on the depth of conversion,
then the gravity can lead to appearance of natural convection. Convective instability
of reaction fronts is studied experimentally [5], [17], [20], [21], [22] and theoretically
[9], [11], [12], [18], [19], with the use of approximate analytical and asymptotical
methods.

In this work we study elliptic operators of the reaction-di�usion-convection (RDC)
type in unbounded cylinders. We de�ne the topological degree and use it to study
bifurcations of convective fronts.
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Consider a reaction-di�usion system coupled with the Navier-Stokes equations:

@T

@t
+ v � rT = ��T + F0(T;A) (11)

@Aj

@t
+ v � rAj = dj�Aj + Fj(T;A); j = 1; :::;m (12)

@v

@t
+ (v � r)v = �

1

�
rp+ ��v + �g(T � T �)� (13)

div v = 0 (14)

Here T is the temperature, Aj are concentrations of reagents, v = (v1; v2) is the
velocity of the medium, p the pressure, � the coeÆcient of thermal di�usivity, dj
are the coeÆcients of mass di�usion, � is the density, � the coeÆcient of thermal
expansion, g the gravity acceleration, T � a characteristic constant temperature, � =
(0; 1) the unit vector in the vertical direction, Fj ; j = 0; :::;m are nonlinear terms
describing the rates of chemical reactions. Their speci�c form determined by equations
of chemical kinetics will not be used.

The system of equations (11)-(14) is considered in the strip 0 < x1 < l, �1 <

x2 < 1 with the no-ux boundary conditions for the temperature and for the con-
centrations:

x1 = 0; l :
@T

@x1
= 0;

@Aj

@x1
= 0; (15)

and with the free surface boundary conditions for the velocity:

x1 = 0; l : v1 = 0;
@v2

@x1
= 0: (16)

We will see below that these boundary conditions for the velocity allow some simpli-
�cations and, what is more important, in this case we can obtain a more complete
information about the spectrum of the linearized problem.

The Navier-Stokes equations are written above under the so-called Boussinesq
approximation where the medium is considered as incompressible and the density
is everywhere constant except for the buoyancy term, which describes the action of
gravity and appears as a result of linearization of the density. Existence of solutions
of the RDC problems and some of their properties are studied in [1], [4], [15], [16].

If the medium is unmovable, then we have a reaction-di�usion system (11), (12)
with v = 0. Under certain conditions there exists a travelling wave solution of this
system, i.e., a solution of the form

T (x1; x2; t) = ~T (x1; x2 � ct); Aj(x1; x2; t) = ~Aj(x1; x2 � ct)

(see [29]), and this solution may not depend on the variable x1 (see Section 2). Here c

is the wave velocity. Obviously this is also a solution of the complete system (11)-(14)
with v = 0, since the pressure can take into account the term for the temperature in
the Navier-Stokes equations.
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Suppose that this solution is stable as a solution of the reaction-di�usion system
(11), (12). However it can be unstable as a solution of (11)-(14). The physical in-
terpretation of this e�ect is related to natural convection. If the wave propagates
upwards (c > 0) and the reaction is exothermic, then under some conditions convec-
tion will appear. There is an analogy with convection in a layer of a liquid heated
from below. If the Rayleigh number is suÆciently large, then a stationary tempera-
ture distribution loses its stability, and a convective structure appears. In the case
of upwards propagating reacting fronts, an exothermic chemical reaction plays a role
of heating from below, and can lead to appearance of convective travelling waves.
Under some additional conditions on the functions Fj , the principal eigenvalue of the
linearized problem can be found in the form of a minimax representation [32]. This
allows us to �nd the stability boundary.

If an eigenvalue of the linearized problem passes through zero, then we can expect
a bifurcation of new solutions. To justify this conclusion, our approach consists in
de�ning a topological degree for the corresponding operators. Since we consider a
problem in unbounded domains, the Leray-Schauder theory cannot be applied. How-
ever the degree for elliptic operators in unbounded domains can be de�ned [7], [8],
[27], [28], [33]. One of the approaches is based on the theory of Fredholm operators
[10], [14], [25]. We employ it in this work to de�ne the degree for the RDC operators.
We show �rst that the corresponding linearized operators are Fredholm and study
their index (Section 4). In Section 5 we prove that nonlinear operators are proper.
(An operator A : E1 ! E2 is called proper if for any compact set D � E2 and for any
ball B in E1, the set A

�1(D)\B is compact.) The degree construction is discussed in
Section 6. In Section 7 we analyse the discrete spectrum of the operators linearized
about the one-dimensional wave and study bifurcations of convective waves. Finally
in Section 8 we analyze the spectrum of the operators linearized about the bifurcating
waves.

2. Main results

To formulate the main results of this work we suppose in this section that the reaction-
di�usion system (11)-(12) with v = 0 consists only of one equation. The results remain
valid for a system, if

� = d1 = ::: = dm = D

and if chemical kinetics allow the reduction to the so-called monotone system [29].
This means that there exists a linear change of variables

�i = ai0T +

mX
j=1

aijAj ; i = 0; :::m;

such that the system
@�

@t
= D�� + F (�); (21)
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where � = (�0; � � � �m), F = (F0; � � �Fm), satis�es the condition

@Fi

@�j
> 0; i; j = 0; :::m; i 6= j: (22)

This condition is essential for the bifurcation analysis, because we need to reduce
the reaction-di�usion system to a monotone system. In the general case we cannot
study the eigenvalues with the method presented here. However, the equality of
the di�usion coeÆcients is not necessary in Sections 3 to 6, where we study some
qualitative properties of the operators and construct the topological degree. Hence
this condition will not be assumed in those sections.

Remarks.

1. We point out that, due to the change of variables, the nonlinear function F

appearing here is not the same function as in equations (11)-(12).

2. To simplify the presentation, in the following we view �0 as the temperature,
and �1; � � � �m as dimensionless concentrations. In the analysis of eigenvalues,
we consider � as a scalar variable.

In this case, existence and stability of travelling waves for reaction di�usion sys-
tems is well-studied. We use below the following existence result [28]:

Let F (�+) = F (��) = 0, where �+ < �� and the inequality between two vectors
is understood componentwise. Suppose that there exists a �nite number of zeros �(1),
..., �(s), of the function F in the interval �+ < � < ��, that the matrices F 0(��) have
all eigenvalues in the left half-plane, and each of the matrices F 0(�(i)), i = 1; � � � s,
has at least one eigenvalue in the right half-plane. Then there exists a monotone
travelling wave solution of (21), i.e. a solution

�(x; t) = �(x2 � ct);

where �(�1) = ��, and all the components of the vector-valued function �(x2)
are monotonically decreasing. Since this solution does not depend on the horizontal
variable x1, we call it a \one-dimensional wave". It is a non-convective wave, in the
sense that the velocity �eld is zero.

We note that the inequality (22) may be nonstrict if we suppose that the matrices
F 0(��) are irreducible.

Throughout this section, we also make the following assumptions:

1. F 2 C2+�; F (��) = 0:

2. All eigenvalues of the matrices F 0(��) have a negative real part.

3. Equation (21) has a monotonically decreasing travelling wave solution �(x2).
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A travelling wave solution of the system (21) is at the same time a solution with
v = 0 of the elliptic problem

�c
@�

@x2
+ v � r� = D�� + F (�) (23)

�c
@v

@x2
+ (v � r)v = �rp+ P�v + PR(�0 � ��0)� (24)

div v = 0 (25)

x1 = 0; l :
@�

@x1
= 0; v1 = 0;

@v2

@x1
= 0; (26)

where ��0 is constant and corresponds to the characteristic temperature T �. The
Navier-Stokes equations are written in the dimensionless form with P being the
Prandtl number and R the Rayleigh number. As customary, R will be used as a
bifurcation parameter.

We introduce the stream function

v1 =
@ 

@x2
; v2 = �

@ 

@x1

and the vorticity

! = �� :

Then we can write the problem (23)-(26) in the form

D�� �
@ 

@x2

@�

@x1
+

�
c+

@ 

@x1

�
@�

@x2
+ F (�) = 0 (27)

P�! �
@ 

@x2

@!

@x1
+

�
c+

@ 

@x1

�
@!

@x2
+ PR

@�0

@x1
= 0 (28)

� + ! = 0 (29)

x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0: (210)

Solutions of (27)-(210) with ! 6� 0,  6� 0 will be called \convective waves".

In the case of no-slip boundary conditions for the velocity we cannot write the
boundary condition in terms of vorticity. This is an advantage of the free surface
boundary condition, which simpli�es the analysis of the RDC operators.

In the remaining part of Section 2, we consider the case where � is a scalar variable.
We linearize the problem (27)-(210) about �(x2), ! = 0,  = 0, and we consider the
eigenvalue problem
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D�� + c
@�

@x2
+ F 0(�(x2))� +�0(x2)

@ 

@x1
= �� (211)

P�! + c
@!

@x2
+ PR

@�

@x1
= �! (212)

� + ! = � (213)

x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0: (214)

Since its coeÆcients do not depend on the variable x2, it is convenient to study
the Fourier modes,

�(x1; x2) = �k(x2) cos(kx1);
!(x1; x2) = !k(x2) sin(kx1);
 (x1; x2) =  k(x2) sin(kx1):

Here we assume that l = �. Thus we obtain the one-dimensional eigenvalue problem

D�
00

k + c �0k + (F 0(�(x2))�Dk2)�k + k�0(x2) k = ��k

P!
00

k + c !0k � Pk2!k � PRk�k = �!k (215)

 
00

k � k2 k + !k = � k :

The main results of the work are given by Theorems 2.1 and 2.2. More detailed
statements and proofs of these theorems will be found in Sections 7 and 8.

Theorem 2.1. For each k = �1;�2; � � � there exists a unique critical value Rc(k)
such that the principal eigenvalue of the problem (215) is negative for R < Rc(k) and
positive for R > Rc(k). All critical values Rc(k) are positive, and when k varies in

(�N� ) there exists a minimal value Rc(k0). If Rc(k) 6= Rc(k0) for all k 6= k0, then

Rc(k0) is a bifurcation point, i.e. in each its neighbourhood there exists a value R such

that the problem (27)-(210) admits a solution (�; !;  ) with ( ; !) 6� 0 (convective

solution).

De�nition 2.1. We will call the solutions arising in Theorem 2.1 \bifurcating

waves".

Remarks.

1. As usual in the problems describing travelling wave solutions, the constant c in
(27)-(210) is not given. It should be found together with the solution (�; !;  ).
For the bifurcating waves c = c(R) also changes. When we consider an operator
formulation of the problem, we introduce a functionalization of the parameter
c. This means that instead of the unknown constant c we consider a given
functional c(�; !;  ). It removes the zero eigenvalue of the linearized operator
and allows the construction of the topological degree.
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2. The second remark concerns the stability of the one-dimensional solution. It is
determined by the eigenvalue problem

D�� + c
@�

@x2
+ F 0(�(x2))� +�0(x2)

@ 

@x1
= �� (216)

P�! + c
@!

@x2
+ PR

@�

@x1
= �! (217)

� + ! = 0 (218)

x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0: (219)

which di�ers from (211)-(214). In Section 7 we show that at R = Rc(k0) a
simple eigenvalue of this problem passes from the left half-plane to the right
half-plane through zero. We also prove that for R � Rc(k0) there are no real
eigenvalues greater than this one. However we cannot prove that there are no
complex conjugate eigenvalues with a greater real part.

3. The physically important eigenvalue problem is the problem (216)-(219), with
no � in the last equation. However the problem (211)-(214) is interesting for two
reasons: �rst, it arises naturally in the bifurcation analysis when we compute
the index of the one-dimensional solution. The second reason is that we use its
properties to study the problem (216)-(219).

For the stability of the bifurcating solutions, we have the same restriction as in
the second remark. We show in Section 8 the following result:

Theorem 2.2. If convective solutions exist only for R > Rc(k0) (supercritical bifur-
cation), then among them there are solutions (�2; !2;  2) for which the problem

D�� +

�
c+

@ 2

@x1

�
@�

@x2
+ F 0(�2(x2))� + �02(x2)

@ 

@x1
= ��

P�! +

�
c+

@ 2

@x1

�
@!

@x2
+
@!2

@x2

@ 

@x1
+ PR

@�

@x1
= �!

� + ! = 0

x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0:

has no positive eigenvalue, for R suÆciently close to Rc(k0) (see �g. 1b). If convective
solutions exist only for R < Rc(k0) (subcritical bifurcation), then among them there

are solutions for which this problem has a nonnegative eigenvalue, for R suÆciently

close to Rc(k0) (see �g. 1a).

Remark. This result is not exhaustive, for example we can have a convective solution
for R < Rc and another one for R > Rc, as described in �g. 1c. Note that the degree
arguments do not allow us to single out the type of the bifurcating wave.
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Figure 1: Di�erent types of bifurcations

3. Operators and spaces

For the sake of generality we consider in this section reaction-di�usion-convection
problems in unbounded cylinders in Rn , n � 2. The problem (27)-(210) is a particular
case of the problem

a(x)�w +

nX
i=1

bi(x)
@w

@xi
+B(x;rw) +G(x;w) = 0; (31)

x 2 @
 : wi = 0; i = 1; :::; k;
@wi

@n
= 0; i = k + 1; :::; p: (32)

Here x = (x1; :::; xn) = (x0; xn), w = (w1; :::; wp), G = (G1; :::; Gp), 
 = 
0 � R is
an unbounded cylinder with bounded section 
0 � R

n�1 and with the axis along the
direction xn, @=@n is the normal derivative, a and bi are p� p matrices, B(x;rw) is
a vector with the components

Bk(x;rw) =

nX
i;j=1

�
b
(k)
ij (x)

@w

@xi
;
@w

@xj

�
; k = 1; :::; p;
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where b
(k)
ij (x) are p� p matrices, and ( ; ) denotes the scalar product in Rp .

We suppose that a is a symmetric positive-de�nite matrix,

a 2 C2+�(�
); bi 2 C
1+�(�
); b

(k)
ij 2 C�(�
); 0 < � < 1;

G(x;w) 2 C2+�(�
� R
p );

and that the boundary @
 is of the class C2+�. We assume moreover that there exist
the limits

a�(x0) = lim
xn!�1

a(x); b�i (x
0) = lim

xn!�1
bi(x); b

(k)�
ij (x0) = lim

xn!�1
b
(k)
ij (x);

G�(x0; w) = lim
xn!�1

G(x;w):

Here x0 = (x1; :::; xn�1).
Consider the limiting problems

a�(x0)�0w +

n�1X
i=1

b�i (x
0)
@w

@xi
+B�(x0;rw) +G�(x0; w) = 0; (33)

x0 2 @
0 : wi = 0; i = 1; :::; k;
@wi

@n
= 0; i = k + 1; :::; p (34)

in the section 
0 of the cylinder. Suppose that they have solutions w+(x0) and w�(x0)
in C2+�(�
0). We look for solutions of the problem (31), (32) having the limits at
in�nity

w�(x0) = lim
xn!�1

w(x): (35)

Let
�(x) = s(xn)w

+(x0) + (1� s(xn))w
�(x0); (36)

where s(xn) is a suÆciently smooth function equal to 1 for xn � 1 and to 0 for xn � 0.
We represent w(x) in the form w(x) = �(x) + u(x), where u(x) is a solution of the
problem

a(x)�(u + �) +

nX
i=1

bi(x)
@(u+ �)

@xi
+B(x;r(u+ �)) +G(x; u+ �) = 0; (37)

x 2 @
 : ui = 0; i = 1; :::; k;
@ui

@n
= 0; i = k + 1; :::; p: (38)

We introduce weighted H�older spaces Cj+�
� (�
) = fu : u� 2 Cj+�(�
)g. As a

weight function we take �(xn) = 1+x2n. We note that functions decreasing exponen-
tially at in�nity belong to the weighted space and that

�0(xn)

�(xn)
! 0;

�
00

(xn)

�(xn)
! 0; xn ! �1: (39)
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This property will be used below. Finally, multiplication by the weight function does
not change the boundary conditions.

We put

E1 =

�
u 2 C2+�

� (�
); uij@
 = 0; i = 1; :::; k;
@ui

@n j@

= 0; i = k + 1; :::; p

�
;

E0
1 =

�
u 2 C2+�

�0
(�
); uij@
 = 0; i = 1; :::; k;

@ui

@n j@

= 0; i = k + 1; :::; p

�
;

E2 = C�
� (

�
); E0
2 = C�

�0
(�
);

where �0(xn) is identically equal to 1, and we consider the operator

A(u) = a(x)�(u+ �) +

nX
i=1

bi(x)
@(u+ �)

@xi
+B(x;r(u + �)) +G(x; u+ �) (310)

acting from E1 to E2 or from E0
1 to E0

2 . The choice of function spaces is important
for what follows. In spaces without weight, the operators are not proper and the
topological degree cannot be de�ned [3].

Let u0 2 E1. We consider the linearized operator

Lu = a(x)�u+

nX
i=1

bi(x)
@u

@xi
+ c(x)u+ Bu;

acting from E1 to E2 or from E0
1 to E0

2 . Here

c(x) = G0u(x; u0(x) + �(x));

where G0u denotes the derivative of G with respect to the second argument, and Bu
is a linear operator, with the components

(Bu)k =

nX
i;j=1

�
b
(k)
ij (x)

@(u0 + �)

@xi
;
@u

@xj

�
+

nX
i;j=1

�
b
(k)
ij (x)

@u

@xi
;
@(u0 + �)

@xj

�
;

k = 1; :::; p:

Denote

c�(x0) = lim
xn!�1

c(x) = G�
0

u(x
0; w�(x0)):

In the next section we study the Fredholm property of the operator L, in Section 5
the properness of the operator A, and in Section 6 the topological degree. In Section
7 we apply these results to study the bifurcations, and in Section 8 we analyze the
spectrum of the operator linearized about the bifurcating solutions.

Revista Matem�atica Complutense

2003, 16; N�um. 1, 233-276
242



Rozenn Texier-Picard, Vitaly A. Volpert Reaction-di�usion-convection problems. . .

4. Fredholm property and index

Consider the operator L : E1 ! E2 introduced in the previous section. L is said to
be normally solvable if its range is closed. It is said to be Fredholm if its kernel has
�nite dimension �, if its range is closed and has �nite co-dimension �. In this case,
its index � is de�ned by the equality � = � � �.

All the following results concerning the Fredholm property can be obtained in
spaces without weight, but the weight is important for the construction of the topo-
logical degree in Section 6. We de�ne the limiting operators L� : E0

1 ! E0
2 by

L�u = a�(x0)�u+

nX
i=1

b�i (x
0)
@u

@xi
+ c�(x0)u+ B�u;

where

(B�u)k =

nX
i;j=1

�
b
(k)�
ij (x0)

@w�(x0)

@xi
;
@u

@xj

�
+

nX
i;j=1

�
b
(k)�
ij (x0)

@u

@xi
;
@w�(x0)

@xj

�
;

k = 1; :::; p:

Condition 1. Equations
L�u = 0

do not have nonzero solutions in E0
1 .

Condition 2. Equations
L�u� �u = 0

do not have nonzero solutions in E0
1 for any � � 0.

Theorem 4.1. The operator L is normally solvable with a �nite dimensional kernel

if and only if Condition 1 is satis�ed. If Condition 2 is satis�ed, the operator L is

Fredholm with index 0.

The proof of this theorem is given in [33], in the case of the boundary conditions
of the Dirichlet or of the Neumann type. In this work we consider the case where
some components satisfy the Dirichlet boundary condition and the others satisfy
the Neumann condition. The theorem remains valid. We recall that the index is a
homotopy invariant in the class of Fredholm operators [13]. If L is normally solvable
with a �nite dimensional kernel, and if its range has in�nite co-dimension, then L

is said to be semi-Fredholm. If we consider a homotopy L� , such that all operators
L� satisfy Condition 1, and one of them is semi-Fredholm, then they are all semi-
Fredholm. These properties are used implicitly below.

Suppose that the solutions w�(x0) of the limiting problems (33), (34) are constant
vectors, w�(x0) � w�. Then the limiting operators B�u vanish.
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Lemma 4.2. Assume that Condition 1 is satis�ed. Suppose that w�(x0) are constant
vectors and that the codimension of the image of the operator

L(0)u = a(x)�u+

nX
i=1

bi(x)
@u

@xi
+ c(x)u

is �nite. Then L and L(0) are Fredholm, and the index of the operator L equals the

index of the operator L(0).

Proof. The proof of the lemma directly follows from the homotopy invariance of the
index in the class of Fredholm operators [13]. Indeed, the homotopy

L� = �L+ (1� �)L(0)

preserves Condition 1. The lemma is proved.

We apply now this lemma for the problem (27)-(210). In this section, we need not
assume that D is a scalar matrix, and that the system can be reduced to a monotone
system. Hence � will be considered here as a vector. We look for solutions having the
limits at in�nity

�� = lim
x2!�1

�(x); lim
x2!�1

!(x) = 0; lim
x2!�1

 (x) = 0;

where �� are constants. Hence we de�ne the function � by (36) where w� = (��; 0; 0)
and write the unknown as w = u+ �, where u = (�; !;  ) 2 E1.

We consider the operator AR corresponding to the system (27)-(210) and denote
the operator linearized about some (��(x); �!(x); � (x)) by LR. As above, LR is con-
sidered as acting from E1 to E2. The limiting problems L�Ru = 0; u 2 E0

1 ; have the
form

D�� + c
@�

@x2
+ F 0(��)� = 0 (41)

P�! + c
@!

@x2
+ PR

@�0

@x1
= 0 (42)

� + ! = 0 (43)

x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0: (44)

Condition 3. The problems

D�� + c
@�

@x2
+ F 0(��)� = 0;

@�

@x1
j@
 = 0 (45)

do not have nonzero solutions in C2+�(�
).
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Lemma 4.3. If Condition 3 is satis�ed, then the operator LR is normally solvable

with a �nite dimensional kernel.

Proof. To prove the lemma it is suÆcient to note that the problem (42)-(44) with
� � 0 has only the zero solution in C2+�(�
). Hence Condition 1 is satis�ed, and one
can use Theorem 4.1 to complete the proof.

Consider the operator

L1� = D�� + c
@�

@x2
+ F 0(��)�

acting from the space F1 to the space F2 = C�
� (

�
), where

F1 =

�
� 2 C2+�

� (�
);
@�

@x1
j@
 = 0

�

Theorem 4.4. Suppose that

��(x)! ��; � (x)! 0; �!(x)! 0; x2 ! �1:

If Condition 3 is satis�ed and the co-dimension of the image of the operator L1 :
F1 ! F2 is �nite, then the operator LR : E1 ! E2 is Fredholm and has the same

index.

Proof. The result is clearly true for R = 0, because the operator

(!;  ) 7!

�
P�! + c

@!

@x2
; � + !

�
;

acting from the space f(!;  ) 2 (C2+�
� (�
))2; !j@
 =  j@
 = 0g into the space

(C�
� (

�
))2 is invertible. For R 6= 0 the homotopy L�R; � 2 [0; 1] proves that LR
is Fredholm. The homotopy invariance of index in the class of Fredholm operators
completes the proof.

This theorem shows that the index of the RDC operators is the same as the index
of the reaction-di�usion operators. The Navier-Stokes equations do not change it.
The index of the reaction-di�usion operators is computed in [6].

We will see in Section 6 that the construction of the topological degree requires
Condition 2. The similar condition for the operator L1 is as follows.

Condition 4. The problems

D�� + c
@�

@x2
+ F 0(��)� = ��;

@�

@x1
j@
 = 0 (46)

do not have nonzero solutions in C2+�(�
) for any � � 0.
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Remark. This condition is satis�ed if all eigenvalues of F 0(��) have negative real
part.

Thus we have the theorem:

Theorem 4.5. If Condition 4 is satis�ed, then the operator LR is Fredholm with zero

index.

Proof. It is suÆcient to show that Condition 2 is satis�ed for LR, and to use Theorem
4.1. To prove Condition 2, we �x � � 0, and we consider a solution u = (�; !;  ) 2 E0

1

of the equation
L+Ru� �u = 0:

Then � is a solution of (46), and Condition 4 implies that � = 0. Besides (!;  )
satis�es the problem 8><

>:
P�! + c

@!

@x2
= �!

� = � 

x1 = 0; l : ! = 0;  = 0:

We �rst note that ! = 0, hence  is a solution of the problem

� = � ;  j@
 = 0:

This problem has no nontrivial solution in C2+�(�
) if � � 0. Condition 2 is proved,
and the theorem follows.

The problems (46) have constant coeÆcients and they can be reduced to algebraic
problems. Applying formally the Fourier transform with respect to the x2-variable,
we obtain the eigenvalue problems on the interval 0 � x1 � l:

D�
00

+ (�D�2 + ci�Ep + F 0(��))� = ��; �0(0) = �0(l) = 0: (47)

Here prime denotes the derivative with respect to x1.
It is shown in [33] that Condition 4 is equivalent to the condition that the problems

(47) do not have nonzero solutions for any real � and nonnegative �.
Without loss of generality we can put l = �. Then the eigenvalues of the problems

(47) can be found from the equalities

det(�(k2 + �2)D + ci�Ep + F 0(��)� �Ep) = 0 (48)

for all real � and all integer k. Here Ep is the identity matrix.
If the matrix F 0(��) has a real positive eigenvalue, then obviously (48) has a

solution for a positive �, and Condition 4 is not satis�ed.
Suppose now that all eigenvalues of the matrix F 0(��) are in the left half-plane.

In Section 2 we have made the assumption that the matrix D is scalar, i.e., D = dEp
where d is a constant. Hence all eigenvalues of the matrix

T (�; k) = �(k2 + �2)D + ci� + F 0(��)
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are also in the left half-plane, and Condition 4 is satis�ed. Note however that if D
is not scalar, Condition 4 may be not satis�ed. If the di�usion coeÆcients strongly
di�er from each other, eigenvalues of the matrix T (�; k) can be in the right half-plane.
This is similar to the Turing instability where a homogeneous state is stable without
di�usion, and it may become unstable with di�usion.

5. Properness

Consider the operator A(u) : E1 ! E2 de�ned in Section 3. It is known that elliptic
operators in unbounded domains may be not proper in spaces without weight [3].
Properness of the operators corresponding to reaction-di�usion problems is proved in
[33]. Here we consider the RDC operators.

This property is essentially used for the construction of the topological degree.
Moreover we need to prove the properness of operators depending on parameters. We
consider the operator A(u; �) : E1 ! E2 depending on a parameter � 2 [0; 1]:

A(u; �) = a(x; �)�(u + �) +

nX
i=1

bi(x; �)
@(u + �)

@xi
+

B(x;r(u+ �); �) +G(x; u+ �; �);

where

Bk(x;rw; �) =

nX
i;j=1

�
b
(k)
ij (x; �)

@w

@xi
;
@w

@xj

�
; k = 1; :::; p;

a(x; �); bi(x; �); b
(k)
ij (x; �) 2 C�(�
), G(x; u+ �; �) 2 C2(�
� R

p ) for each � .

We assume that the following conditions are satis�ed:

1. For each � there exist the limits

a�(x0; �) = lim
xn!�1

a(x; �); b�i (x
0; �) = lim

xn!�1
bi(x; �);

b
(k)�
ij (x0; �) = lim

xn!�1
b
(k)
ij (x; �);

c�(x0; �) = lim
xn!�1;w!w�

G0u(x;w; �); (51)

2. The following convergence takes place

ka(x; �) � a(x; �0)kC�(�
) ! 0; kbi(x; �) � bi(x; �0)kC�(�
) ! 0;

b(k)ij (x; �) � b
(k)
ij (x; �0)


C�(�
)

! 0

247 Revista Matem�atica Complutense

2003, 16; N�um. 1, 233-276



Rozenn Texier-Picard, Vitaly A. Volpert Reaction-di�usion-convection problems. . .

as � ! �0, and

k (G(x; u(x) + �(x); �) �G(x; u(x) + �(x); �0)) �kC�(�
) ! 0

uniformly in u(x) from any bounded set in E1.

To simplify the presentation we assume that the limiting functions w�(x0) and
�(x) are independent of � .

Theorem 5.1. If Condition 1 is satis�ed for each � 2 [0; 1], then the operator A(u; �):
E1 � [0; 1]! E2 is proper.

Proof. Let (um) be a bounded sequence in E1 and (�m) be a bounded sequence in
R such that the following convergence takes place in E2:

A(um; �m) = fm ! f0; m! +1: (52)

We should show that we can choose a converging subsequence from the sequence (um).
Without loss of generality we can assume that �m ! �0. Since (um) is bounded in
C2+�(�
) we can assume (to within a subsequence (umk

)) that it converges to some
limiting function u0 2 C2+�(�
) in C2 uniformly on every bounded subset of �
 [33].
From the boundedness of um; u0 in the weighted space, it follows that the convergence
um ! u0 is uniform in C2(�
). We should show that this is a convergence in the norm
of E1.

Passing to the limit in (52), we obtain

A(u0; �0) = f0: (53)

Denote
vm = �um; v0 = �u0; wm = vm � v0; gm = �fm; g0 = �f0:

Taking the di�erence between (52) and (53) and multiplying it by �, we obtain

(A(um; �m)�A(um; �0))�+ (A(um; �0)�A(u0; �0))� = gm � g0: (54)

We denote
rm = (A(um; �m)�A(um; �0))�

and note that
krmkC�(�
) ! 0; m!1:

We can represent (54) in the form

a(x; �0)�wm � bn(x; �0)wm
�0

�
+

nX
j=1

bj(x; �0)
@wm

@xj
�

a(x; �0)

 
�wm

�
00

�
� 2

@wm

@xn

�0

�
+ wm

�
�0

�

�2!
+

(B(x;r(um + �); �0)�B(x;r(u0 + �); �0))�+

(G(x; um + �; �0)�G(x; u0 + �; �0))� = gm � g0 � rm: (55)
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We have

(G(x; um + �; �0)�G(x; u0 + �; �0))� =

Z 1

0

G0u(x; u0 + �+ t(um � u0); �0)dt wm;

Put

�ijk � ��

�
b
(k)
ij (x; �0)

@(um + �)

@xi
;
@(um + �)

@xj

�

� ��

�
b
(k)
ij (x; �0)

@(u0 + �)

@xi
;
@(u0 + �)

@xj

�
:

Then for i; j 6= n we have

�ijk =

�
b
(k)
ij (x; �0)

@wm

@xi
;
@(um + �)

@xj

�
+

�
b
(k)
ij (x; �0)

@(um + �)

@xi
;
@wm

@xj

�
;

and

�ink =

�
b
(k)
ij (x; �0)

@wm

@xi
;
@(um + �)

@xn

�

+

�
b
(k)
ij (x; �0)

@(um + �)

@xi
;
@wm

@xn
� wm

�0

�

�
;

�njk =

�
b
(k)
ij (x; �0)

@wm

@xn
� wm

�0

�
;
@(um + �)

@xj

�

+

�
b
(k)
ij (x; �0)

@(um + �)

@xn
;
@wm

@xj

�
:

We show �rst of all that the sequence (wm) converges to zero uniformly in C(�
).
Suppose that it is not so. Then there exists a sequence x(m) such that jwm(x

(m))j �

� > 0. Moreover the coordinate x
(m)
n of the points x(m) is unbounded. Without loss

of generality we can assume that x
(m)
n ! �1. Let us introduce the shifted functions

~wm(x) = wm(x+ x(m)):

Since

k ~wmkC2+�(�
) �M;

where the constant M is independent of m, then from the sequence ~wm(x) we can
choose a subsequence ~wmk

(x) converging to some limiting function ~w0 2 C
2+�(�
) in

C2 uniformly on every bounded set in �
. We have j ~w0(0)j � � > 0.
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The functions ~wmk
(x) satisfy the equation (55) with the shifted coeÆcients. Since

�0

�
! 0;

�
00

�
! 0;

as xn !1, and ����@(um + �)

@xi
(x+ x(m))

���� � M

�(xn + x
(m)
n )

;

then the terms �ijk(x+ x(m)) tend to zero as m tends to in�nity, for any i; j = 1; :::n
and k = 1; :::p. Besides the termZ 1

0

G0u(x+ x(m); u0 + �+ t(um � u0); �0)dt

tends to c�(x0) thanks to the condition (51) and the inequalities

j(um + �)(x + x(m))� w�j �
M

�(xn + x
(m)
n )

;

j(u0 + �)(x + x(m))� w�j �
M

�(xn + x
(m)
n )

:

Hence
L� ~w0 = 0:

This contradicts Condition 1.
Thus we have proved that the convergence wm ! 0 is uniform in C(�
). Since the

functions wm are uniformly bounded in C2+�(�
), then this convergence is in C2(�
).
From this convergence and from the Schauder estimates it follows that wm ! w0 in
C2+�(�
). The theorem is proved.

6. Topological degree

6.1. Elliptic operators in unbounded domains

If we consider elliptic operators in unbounded domains, then the Leray-Schauder
degree cannot be applied, because we cannot write the operators as compact per-
turbations of identity. However the degree can be de�ned. One of the approaches
to construct it is based on the theory of Fredholm operators. In [10] the degree is
constructed for bounded Fredholm and proper operators acting in a Banach space. In
[33] these results are used to construct the degree for elliptic operators in unbounded
domains. In this work we generalize the results of [33] for the RDC operators.

We de�ne the class � of operators A(u) : E1 ! E2 in the form (310) such that
1. Operator A(u) has second-order Fr�echet derivatives. The functions a�(x0),

b�i (x
0), b

(k)�
ij (x0), c�(x0), and @a�(x0)=@xi, i = 1; :::; n are continuous,
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2. Condition 2 of Section 4 is satis�ed.

We de�ne also the class H of operators A(u; �) : E1 � [0; 1]! E2 such that
3. A(u; �) has second-order Fr�echet derivatives with respect to u and � . The

functions a�(x0; �), b�i (x
0; �), bk�ij (x0; �), c�(x0; �), and @a�(x0; �)=@xi, i = 1; :::; n are

continuous in x and � ,
4. Condition 2 of Section 4 is satis�ed, for any � 2 [0; 1].

Theorem 6.1. There exists a unique topological degree for the classes � and H.

The proof of this theorem is given in [33] for reaction-di�usion operators. It can
be easily generalized to the RDC operators.

We recall that if Condition 2 is satis�ed, then the index of the linearized operator
is 0. An interesting and still open question is whether the degree can be constructed
in the case of a nonzero index. In the end of this section we consider an example
which shows how the degree and index are related.

One more remark concerns the index of a stationary point equal, by de�nition, to
the topological degree taken with respect to a small neighbourhood containing this
point. As usual, its value is (�1)� , where � is the number of positive eigenvalues of
the linearized operator taken with their multiplicities.

6.2. Travelling waves

When we look for travelling wave solutions, we obtain a particular case of the problem
(31), (32) where the coeÆcients do not depend on the variable xn along the axis of the
cylinder. The appearance of an xn-derivative of w takes into account the displacement
of the front at constant velocity c:

a(x0)�w + c
@w

@xn
+

nX
i=1

bi(x
0)
@w

@xi
+B(x0;rw) +G(x0; w) = 0; (61)

w(x0;�1) = w�(x0) (62)

x 2 @
 : wi = 0; i = 1; :::; k;
@wi

@n
= 0; i = k + 1; :::; p; (63)

We recall that c here is an unknown constant that should be found along with the
function w(x).

Solutions of the problem (61) - (63) are invariant with respect to translation
in the direction xn. It means that if there exists a solution w(x) of this problem,
then there exists also the whole family of solutions w(x0; xn + h) for h 2 R. The
topological degree is constructed in the previous section in the weighted H�older space
and, generically, it cannot be constructed in spaces without weight [3]. The weighted

norm kw(x0; xn+h)�(xn)k tends to in�nity as h! �1. Therefore, a bounded domain
D in the function space E1 does not contain solutions or the branch of solutions
intersects its boundary. So the degree cannot be used.
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To avoid this problem and to apply the topological degree in the neighbourhood
of a particular travelling wave w1 we get rid of the invariance of this solution with
respect to translations. One of the ways to do it is to introduce a functionalization
of the parameter [28], [29], [33]. It means that instead of the unknown constant c we
introduce a functional c(w) = c(u+ �) which satis�es the following properties:

1. c(u + �) satis�es a Lipschitz condition on every bounded set in E1 and has a
Fr�echet derivative c0(u+ �), which is continuous with respect to u;

2. The function ~c(h) = c(w1(x
0; xn + h)) is a decreasing function of h, ~c(�1) =

+1; ~c(+1) = �1;

3. The solution w1 of the problem (61) - (63) satis�es�
c0(w1);

@w1

@xn

�
6= 0;

where h; i denotes the duality between E1 and E
�
1 .

There are various ways to construct a functional satisfying these conditions. Fol-
lowing [28] we can take it in the form

c(w) = ln

Z



jw(x) � w+(x0)j2�(xn)dx;

where �(xn) is an increasing function, �(�1) = 0; �(+1) = 1;

Z 0

�1

�(xn)dxn <1:

We note that

~c(h) = ln

Z



jw1(x) � w+(x0)j2�(xn � h)dx:

Di�erentiation with respect to h shows that it is a decreasing function.

The properties 2 and 3 are satis�ed if, for example, the solution w1(x) is monotone
with respect to xn. The �rst condition on the functional can be easily veri�ed.

Thus instead of the equation (61) we have the equation

a(x0)�w + c(w)
@w

@xn
+

nX
i=1

bi(x
0)
@w

@xi
+B(x0;rw) +G(x0; w) = 0: (64)

If the problem (62) - (64) has a solution w(x), then the problem (61) - (63) has a
solution with the value c = c(w).

Linearizing the equation (64) about the solution w1(x), we obtain

L1u = �
@w1

@xn
hc0(w1); ui; (65)
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Here L1u � Lu+ c(w1)
@u

@xn
, where L is the operator de�ned in Section 3.

From the invariance of solutions with respect to translation it follows that if w1 is
in C3+� the operator L1 has the zero eigenvalue and the corresponding eigenfunction
is u0 = @w1=@xn. We will show that, if this zero eigenvalue is simple, then the
functionalization of the parameter removes it (cf. [28]), and that the other eigenvalues
remain unchanged.

Lemma 6.2. Let us assume that zero is a simple eigenvalue of L1, and consider the

operator L2 de�ned by:

L2u = L1u+ < c0(w1); u >
@w1

@xn
:

Then

1. L2 has no zero eigenvalue, but it has a negative eigenvalue

� =< c0(w1); u0) >

with the eigenfunction u0.

2. All other eigenvalues of L2 are also eigenvalues of L1.

Proof. First we prove 1. It is clear that � is an eigenvalue of L2. It is negative,
because of the second and third conditions in the de�nition of the functional c.

To show that zero is not an eigenvalue of L2, we �rst make the following observa-
tion. If the coeÆcients a and b are suÆciently regular, e.g.

a 2 C2+�(�
); bi 2 C
1+�(�
);

the formally adjoint operator L�1 can be de�ned. Applying the formal Fourier trans-
form it can be shown that it satis�es Condition 2, hence it is also Fredholm with
index 0.

Suppose that L2 has a zero eigenvalue. In other terms, there exists a nonzero
solution u of (65) with the corresponding boundary conditions. Denote v the eigen-
function corresponding to the zero eigenvalue of the formally adjoint operator L�1. We
multiply (65) by v and integrate over 
. Then we obtain

hc0(w1); ui

Z



(u0; v)dx = 0:

Since the zero eigenvalue is simple, then the integral in the last equality is di�erent
from zero. Hence hc0(w1); ui = 0, and from (65) we conclude that u and u0 are
proportional. The equality hc0(w1); u0i = 0 contradicts the last condition imposed on
the functional c(w).
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We now turn to the proof of the second point. Let � be an eigenvalue of L2, and
v an eigenfunction of L�2 corresponding to the eigenvalue

��. Then

L�2v = L�1v + c0(w1) < v; u0 >= ��v: (66)

We multiply by u0 and integrate:

< c0(w1); u0 >< v; u0 >= �� < v; u0 > :

If the product < v; u0 > equals zero then from (66) we �nd that �� is an eigenvalue of
L�1, hence � is an eigenvalue of L1. If it is not zero then � =< c0(w1); u0 >. Hence
all eigenvalues of L2 are eigenvalues of L1 except the eigenvalue < c0(w1); u0 > which
replaces the zero eigenvalue of L1.

The construction of the topological degree for the operators with the functional-
ization of the parameter remains practically the same (see [33]).

6.3. Example

Consider the scalar one-dimensional reaction-di�usion problem

w
00

+ cw0 + F (w) = 0; w(�1) = w�; w+ < w�: (67)

where F (w+) = F (w�) = 0 and w 2 C2+�(R). The corresponding operator linearized
about a solution w0, considered from C2+�

� (R) to C�
� (R), is

Lu = u
00

+ cu0 + F 0(w0(x))u:

As well as in Section 4, it is Fredholm if the curves

�(�) = ��2 + ci� + F 0(w�);

which determine the continuous spectrum, do not pass through zero when � changes
from �1 to 1. This condition is, obviously, satis�ed if F 0(w�) 6= 0 and c 6= 0.

Let us now replace the constant c by the functional c(w):

w
00

+ c(w)w0 + F (w) = 0; w(�1) = w�: (68)

The linearized operator becomes

L1u = u
00

+ c(w0)u
0 + F 0(w0(x))u+ hc0(w0); uiw

0
0:

Since w00(x)! 0 as x! �1, then the continuous spectrum and the conditions for the
operator to be Fredholm remain the same. Moreover, the linear homotopy between

the operators L and L1 shows that they have the same index.
If F 0(w+) < 0 and F 0(w�) < 0, then the continuous spectrum of the linearized

operator lies in the left half-plane, and Condition 2 is satis�ed. The topological degree
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can be de�ned. We note that the scalar equation is a particular case of monotone
systems for which existence of waves is studied by the Leray-Schauder method [28],
[29]. Existence of waves for the scalar equation can be proved by a much simpler
phase plane analysis. If for example there exists only one zero of the function F (w)
in the interval (w+; w�), then the wave exists for a unique value of c.

If F 0(w+) > 0 and F 0(w�) < 0, then a part of the continuous spectrum lies in
the right half-plane, and Condition 2 is not satis�ed. The index of the linearized
operator equals 1 for c > 0 and �1 for c < 0 [6]. The construction of the degree is
not applicable in this case.

Suppose for simplicity that F (w) > 0 for w+ < w < w� and that F (w) is negative
outside of this interval. Using the phase plane analysis, we can easily prove existence
of waves for all values of c > 0. We emphasize that the waves exist for all positive
velocities and not for all velocities greater or equal to some minimal velocity c0 > 0
as it is usually presented. In the last case only monotone in x waves are considered.

If we introduce the functionalization of the parameter to remove the zero eigen-
value, then there exists a one-parameter family of solutions with all c > 0. The
dimension of the manifold of solutions equals the index of the linearized operator
[24]. This family of solutions is not bounded in the weighted norm. Therefore, any
bounded domain in the space E1 does not have solutions inside or the family of solu-
tions intersects its boundary. This situation recalls the situation discussed in Section
6.2 where the one-parameter family of solutions was determined by the invariance of
solutions with respect to translation in space. To get rid of it we have introduced
the functionalization of parameter. Here the existence of the one-parameter family of
solutions is connected with the positive index of the linearized operator. We can in-
troduce an exponential weight to move the continuous spectrum in the left half-plane.
This approach is well known in the analysis of stability of travelling waves [23]. If it
can be done, then Condition 2 will be satis�ed in the weighted space, and the degree
can be de�ned. As for the family of solutions, all of them except a �nite number do
not belong to the space. So we have a usual situation with a discrete set of solutions
and the zero index of the linearized operator.

The case F 0(w+) < 0 and F 0(w�) > 0 can be reduced to the previous one by a
change of variable which changes also the sign of the velocity.

Consider �nally the case F 0(w+) > 0 and F 0(w�) > 0. Condition 2 is not satis�ed,
and the degree construction is not applicable. The index of the linearized operator
equals zero [6]. It is not clear whether the degree can be de�ned in this case. The
phase plane analysis shows that solutions of the problem (67) do not exist for any c.

7. Spectrum and bifurcations

In this section we consider the problem (27)-(210) in the case where � is a scalar
variable, with the conditions at in�nity

�(�1) = ��; �+ < ��; !(�1) = 0;  (�1) = 0:
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All results remain valid for the monotone systems of equations characterized by the
additional condition

@Fi

@�j
� 0; i 6= j

describing chemical waves with complex kinetics in the case of equality of transport
coeÆcients [29], [30], [31].

If  = ! = 0, we obtain, up to notations, the problem (67) for the unknown �.
We assume that F 0(��) < 0 , so that Condition 4 of Section 4 is satis�ed, and we also
assume that there exists a monotonically decreasing solution �(x2). We linearize (27)-
(210) about the solution � = �(x2);  = ! = 0 and obtain the following eigenvalue
problem (which is identical to (211)-(214)):

D�� + c
@�

@x2
+ F 0(�(x2))� +�0(x2)

@ 

@x1
= �� (71)

P�! + c
@!

@x2
+ PR

@�

@x1
= �! (72)

� + ! = � (73)

x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0: (74)

Without loss of generality we assume that l = �. We look for the solution of this
problem in the form

�(x) = ~�(x2) cos kx1;  (x) = ~ (x2) sin kx1; !(x) = ~!(x2) sin kx1; (75)

where k is an integer. We obtain

D~�
00

+ c ~�0 + (F 0(�(x2))�Dk2)~� + k�0(x2) ~ = �~� (76)

P ~!
00

+ c ~!0 � Pk2~! � PRk~� = �~! (77)

~ 
00

� k2 ~ + ~! = � ~ ; (78)

which is the same system as (215). Since �0(x2) < 0, we take k � 0. Then we obtain
the system

au
00

+ bu0 + c(x2)u = �u;

where u = (~�; ~!; ~ ), a is a constant diagonal matrix with positive diagonal elements
a1 = D; a2 = P; a3 = 1, b is a constant diagonal matrix with the diagonal elements
b1 = b2 = c; b3 = 0, and c(x2) is a matrix with nonnegative o�-diagonal elements

c13 = k�0(x2); c21 = �PRk; c32 = 1:

Hence (76)-(78) is a so-called monotone system of equations, and its principal
eigenvalue satis�es properties which we will describe below [34].
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For k = 0 the eigenvalues are independent of R, and they have negative real part,
except the eigenvalue � = 0. Consider now a negative integer k. The continuous
spectrum of the problem (76)-(78) lies in the left half-plane. More precisely all points
� 2 C of the continuous spectrum satisfy

Re � � min(F 0(��)�Dk2;�Pk2;�k2) = m < 0:

Suppose that the real part of the principal eigenvalue �0(R; k) is greater than the
upper bound m of the continuous spectrum. Then it is real, simple, the corresponding
eigenfunction is positive, and the following minimax representation holds [34]:

�0(R; k) = sup
�

inf
i;x2

ai�
00

i + bi�
0
i +
P3

j=1 cij(x2)�j

�i

= inf
�
sup
i;x2

ai�
00

i + bi�
0
i +
P3

j=1 cij(x2)�j

�i
:

Here � = (�1; �2; �3) is an arbitrary vector-function with positive components bounded
and continuous together with their second derivatives.

The principal eigenvalue �0 is an increasing function of the parameter R. There
exists a critical value R = Rc(k) such that

�0(R; k) < 0; R < Rc(k); �0(R; k) > 0; R > Rc(k):

It can be shown by estimating the principal eigenvalue by the principal eigenvalue of
a problem with constant coeÆcients considered on a bounded interval.

We call a critical value R = Rc(k0) simple if Rc(k0) 6= Rc(k) for any k di�erent
from k0.

Lemma 7.1. (i) Denote by Vk the set of eigenvalues of the problem (76)-(78) for

each integer k < 0 �xed and by V0 the set of nonzero eigenvalues of (76)-(78) for

k = 0. Put

V =
[
k�0

Vk:

Then V [ f0g is the set of eigenvalues of the problem (71)-(74).

(ii) Let �0(R) (respectively �0(R; k)) be the eigenvalue with the maximal real part

in V (respectively Vk, for all integer k � 0). Then �0(R) = maxk<0 �0(R; k), it is
real and the corresponding eigenfunction is positive.

Remark. In V0 we do not consider the simple zero eigenvalue arising for k = 0,
because we have shown that it is removed by the functionalization of the parameter.
Here we are interested only in the eigenvalue with maximal real part among the other
eigenvalues. Note however that for k < 0, zero can be an eigenvalue of (76)-(78), and
in this case it must be taken into account.
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Proof. Consider a nonzero eigenvalue � of the problem (71)-(74), and the corre-
sponding eigenfunction (�; !;  ). We multiply the �rst equation by cos kx1, two other
equations by sin kx1 and integrate with respect to x1. The functions

~�k(x2) =

Z �

0

�(x) cos kx1dx1; ~!k(x2) =

Z �

0

!(x) sin kx1dx1;

~ k(x2) =

Z �

0

 (x) sin kx1dx1 (79)

satisfy the problem (76)-(78) and there exists at least one value of k for which one
of the functions ~�k; ~!k; ~ k is not identically zero. Indeed, for each x2 �xed we can
consider these functions as coeÆcients of the Fourier series. If for all x2 and all k
these coeÆcients equal zero, then the functions �(x); !(x);  (x) indentically equal
zero. Thus � 2 Vk .

Conversely if � 2 Vk; k < 0 and (~�; ~!; ~ ) is a corresponding eigenfunction of (76)-
(78) then (75) is an eigenfunction of the problem (71)-(74) for the eigenvalue �. This
is also true for � 2 V0 because the corresponding eigenfunction has the form (�; 0; 0)
where � 6� 0. (i) is proved. (ii) follows directly from (i) and from the properties of
monotone problems [34].

Consider Rc(k) for all negative k. Let Rc(k0) be the minimal value. We will
show below that this minimum exists. Then the principal eigenvalue of the problem
(71)-(74) equals zero at R = Rc(k0) and becomes positive for R > Rc(k0).

We note that the sign of the principal eigenvalue of the problem (71)-(74) does not
allow us to make a direct conclusion about the stability of solutions of the problem
(27)-(210) with respect to the problem

@�

@t
= D�� �

@ 

@x2

@�

@x1
+

�
c+

@ 

@x1

�
@�

@x2
+ F (�) (710)

@!

@t
= P�! �

@ 

@x2

@!

@x1
+

�
c+

@ 

@x1

�
@!

@x2
+ PR

@�

@x1
(711)

0 = � + ! (712)

x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0; (713)

which we obtain introducing the stream function and the vorticity in the parabolic
problem. The corresponding eigenvalue problem is

D�� + c
@�

@x2
+ F 0(�(x2))� +�0(x2)

@ 

@x1
= �� (714)

P�! + c
@!

@x2
+ PR

@�

@x1
= �! (715)

� + ! = 0 (716)
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x1 = 0; l :
@�

@x1
= 0;  = 0; ! = 0: (717)

This system is the same as (216)-(219). The di�erence with (71)-(74) is in the equation
(716) where there is no � in the right-hand side. In the following we call a complex
number � eigenvalue of (714)-(717) if the problem (714)-(717) has a nonzero solution.
As above, these eigenvalues can be found as eigenvalues of the problem

D~�
00

+ c ~�0 + (F 0(�(x2))�Dk2)~� + k�0(x2) ~ = �~� (718)

P ~!
00

+ c ~!0 � Pk2~! � PRk~� = �~! (719)

~ 
00

� k2 ~ + ~! = 0: (720)

We will analyze the principal eigenvalues of the problems (714)-(717) and (718)-
(720). Before that we prove the following lemma:

Lemma 7.2. There is a positive, continuous, and monotonically increasing function

M(R) > 0 independent of the integer k < 0 such that for Re � > M(R) the problems

(718)-(720) have no nonzero solution.

Proof. Consider � 2 C with a positive real part such that the problem (718)-(720)
has a nonzero complex solution (�; !;  ). (For simplicity we omit the tildas). De�ne

M1 = sup
x22R

jF 0(�(x2))j; M2 = sup
x22R

j�0(x2)j:

We multiply (718) by ��, (719) by �! and (720) by � and we integrate with respect to
x2 2 R. Here the bars denote the complex conjugate functions. Using the limits at
in�nity

�(x); !(x);  (x); �0(x); !0(x);  0(x) �! 0; as x2 ! �1

and taking the real part of the sum of the integrated equations we obtain

Z
F 0(�)j�j2 + k

Z
Re (�0 ��)� PRk

Z
Re(��!) +

Z
Re(! � )

= (Re �+Dk2)

Z
j�j2 +D

Z
j�0j

2

+ (Re �+ Pk2)

Z
j!j2 + P

Z
j!0j

2
+ k2

Z
j j2 +

Z
j j0

2
:

ThereforeZ
F 0(�)j�j2 + k

Z
Re (�0 ��)� PRk

Z
Re(��!) +

Z
Re(! � )

� (Re �+ Pk2)

Z
j!j2 + (Re �+Dk2)

Z
j�j2 + k2

Z
j j2:
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For any � > 0 the integrals from the left-hand side can be estimated by����
Z

F 0(�)j�j2
���� �M1

Z
j�j2;

����
Z
Re(�0 ��)

���� �M2

Z �� ���� �M2

�
�

Z
j j2 +

1

4�

Z
j�j2
�
;

����
Z
Re (!��)

���� � �

Z
j!j2 +

1

4�

Z
j�j2;

����
Z
Re ( �!)

���� � �

Z
j j2 +

1

4�

Z
j!j2:

Hence

(k2 � � (1� kM2))

Z
j j2 �

�
M1 �

kM2

4�
�
PRk

4�
�Dk2 �Re �

�Z
j�j2

+

�
1

4�
� PRk�� Pk2 �Re �

�Z
j!j2:

Choose � such that �(1� kM2) < k2. It can be chosen independently of k < 0. Since
(�; !;  ) is nonzero and k < 0 we obtain that

Re � �M(R; k) := max

�
1

4�
� PRk�� Pk2;M1 �

kM2

4�
�
PRk

4�
�Dk2

�
:

Both expressions are bounded from above with respect to k < 0, k 2 Z. The lemma
is proved.

Let �1(R; k) be the eigenvalue with the maximal real part of the problem (718)-
(720) and �1(R) be an eigenvalue with the maximal real part among the �1(R; k). By
virtue of the preceding lemma they are well-de�ned, but we do not know if they are
real.

Lemma 7.3. If �0(R; k) < 0, then the problem (718)-(720) does not have nonzero

solutions for any real nonnegative �.

Proof. Suppose that the problem (718)-(720) has a nonzero solution for a nonnegative
�. Then � = 0 is an eigenvalue of the monotone problem

D~�
00

+ c ~�0 + (F 0(�(x2))�Dk2)~� + k�0(x2) ~ � �~� = �~�

P ~!
00

+ c ~!0 � Pk2~! � PRk~� � �~! = �~!

~ 
00

� k2 ~ + ~! = � ~ 

and its principal eigenvalue �0(�) is nonnegative. Since � � 0 the continuous spectrum
of this problem lies in the left half-plane, and the results about monotone systems can
be applied. Therefore �0(0) � �0(�) � 0. On the other hand, �0(0) = �0(R; k) < 0.
This contradiction proves the lemma.
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It is shown in [32] that if the problem (718)-(720) has a positive solution u for
some �, then � is the principal eigenvalue of this problem. This result will be used
repeatedly in the proofs of Lemmas 7.4, 7.5, and 8.7.

Lemma 7.4. If �0(R; k) = 0, then �1(R; k) = 0.

Proof. The problems (76)-(78) and (718)-(720) coincide if � = 0. The solution of
the problem (76)-(78) is positive. Hence there exists a positive solution of (718)-(720)
with � = 0. Therefore all other eigenvalues of the problem (718)-(720) lie in the left
half-plane [32]. The lemma is proved.

Lemma 7.5. The following assertions hold:

(i) If �0(R) = 0, then �1(R) = 0 ;

(ii) if �0(R) > 0, then �1(R) > 0 ;

Proof. First we prove assertion (i). Suppose that �0(R) = 0. Then according to
Lemma 7.1, for all k < 0, �0(R; k) � 0 and �0(R; k0) = 0 for some k0. By virtue of
Lemma 7.4, �1(R; k0) = 0, hence �1(R) is nonnegative. Besides there exists k1 such
that �1(R) = �1(R; k1) � 0. By virtue of Lemma 7.3, �0(R; k1) cannot be negative, so
�0(R; k1) = 0. Applying Lemma 7.4 once more we obtain that �1(R; k1) = �1(R) = 0.

Now we prove (ii). Consider k < 0 such that �0(R; k) > 0: We put R� = Rc(k).
Then �0(R

�; k) = 0, hence �1(R
�; k) = 0. We want to prove that �1(R; k) > 0.

Let � 2 R and consider the problem

D�
00

+ c �0 + (F 0(�(y))�Dk2)� + k�0(y) = ��

P!
00

+ c !0 � Pk2! � PRk� = �!

 
00

� k2 + ! + � = � :

Denote by �R(�) its principal eigenvalue. Then �R is an increasing and continuous
function of R and �, and we have �R�(0) = 0.

We prove that for any � > 0, �R�(�) < �. Suppose that it is not true. Then for
some � > 0 we have �R�(�) � �. By virtue of the de�nition of �R�(�) there exists a
nonzero solution of the problem

D�
00

+ c �0 + (F 0(�(x2))�Dk2)� + k�0(x2) � �R�(�)� = 0

P!
00

+ c !0 � Pk2! � PR�k� � �R�(�)! = 0

 
00

� k2 + ! + (�� �R�(�)) = 0:

But zero is the principal eigenvalue of the problem

D�
00

+ c �0 + (F 0(�(x2))�Dk2)� + k�0(x2) = 0

P!
00

+ c !0 � Pk2! � PR�k� = 0

 
00

� k2 + ! = 0:
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This contradicts the fact that the principal eigenvalue is an increasing function of
the coeÆcients. We note that this result is applicable here, because for every � � 0,
the condition that �R(�) > 0 ensures that the continuous spectrum lies in the left
half-plane.

Then for R > R�, with R � R� suÆciently small, �R(0) > 0, �R(�) < � for
� suÆciently large. Since �R(�) is a continuous function of � then the equation
�R(�) = �; � > 0 has a solution. We show that this is true for any R > R�. Suppose
that it is not the case and put

R0 = inffR > R�;8� > 0; �R(�) 6= �g:

If R < R0 there is � > 0 such that �R(�) = �. Then � is an eigenvalue of
(718)-(720). Hence � �M(R) �M(R0), where M(R) is like in Lemma 7.2. Thus for
� > M(R0) and R < R0 we have �R(�) 6= �. As well as previously we can show that
�R(�) < � (see Figure 2).

We �x �0 > M(R0) and we pass to the limit in the previous inequality as R tends
to R0. We obtain that �R0

(�0) � �0. Besides there is a decreasing sequence (Rn)
with the limit R0 such that the equations �Rn(�) = � have no positive solution. Since
�Rn(0) > �R�(0) = 0 we have �Rn(�) > � for any positive �. Passing to the limit
as n ! +1 we obtain �R0

(�) � �. Hence �R0
(�0) = �0, and �0 is an eigenvalue

of (718)-(720). But this contradicts the fact that �0 > M(R0). We have shown that
for any R > R� the equation �R(�) = � has a positive solution �. This solution is
an eigenvalue of the problem (718)-(720) and the associated eigenfunction is positive.
Indeed it corresponds to the principal eigenvalue of the problem

D�
00

+ c �0 + (F 0(�(x2))�Dk2)� + k�0(x2) = �R(�)�

P!
00

+ c !0 � Pk2! � PRk� = �R(�)!

 
00

� k2 + ! + � = �R(�) :

Therefore � is the principal eigenvalue of the problem (718)-(720).
We have proved that �1(R; k) > 0. Hence �1(R) � �1(R; k) > 0, and (ii) is

proved.

Lemma 7.6. �1(R) = 0 if and only if �0(R) = 0, and �1(R) > 0 if and only if

�0(R) > 0.

Proof. It is clear that if �1(R) = 0 then �0(R) � 0. Indeed if �1(R; k1) = 0 then the
problem (718)-(720) has a solution for k = k1 and � = 0. But this problem coincides
with (76)-(78). Hence

�0(R) � �0(R; k1) � 0:

Together with Lemma 7.5 it proves the �rst equivalence. It remains to show that
if �1(R) > 0 then �0(R) > 0, which is a consequence of Lemmas 7.3 and 7.5. The
lemma is proved.

Theorem 7.7.
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Figure 2: Graphical resolution of �R(�) = �

1. For each negative integer k there exists a critical value R = Rc(k) such that the

problem (71)-(74) has a zero eigenvalue.

2. There exists k0 such that Rc(k0) � Rc(k); 8k 2 (�N� ):

3. If the inequality is strict for all k 6= k0, then Rc(k0) is a bifurcation point, i.e.,

in each its neighbourhood there exist values of R such that the problem (27)-

(210) has solutions (�; !;  ) in a neighbourhood of the one-dimensional wave,

with (!;  ) 6� 0.

Proof. The �rst assertion follows directly from the above lemmas.

In order to prove the second assertion, we �rst note that for all k < 0, Rc(k) � 0.
Indeed for R = 0 the problem (76)-(78) does not have nonnegative eigenvalues. Now
we show that Rc(k)! +1 as k ! �1. It is equivalent to prove that for �xed R, and
for jkj suÆciently large, �0(R; k) is negative. The estimate of Lemma 7.2 proves that
Re �1(R; k) is negative. But we have just shown that if �0(R; k) were nonnegative,
so would be �1(R; k).

It remains to prove the bifurcation result. When R passes through the value
Rc(k0), an eigenvalue of the problem (71)-(74) passes through zero. It is simple

263 Revista Matem�atica Complutense

2003, 16; N�um. 1, 233-276



Rozenn Texier-Picard, Vitaly A. Volpert Reaction-di�usion-convection problems. . .

with respect to the problem (76)-(78). We show �rst of all that it is also simple as
eigenvalue of the problem (71)-(74).

Suppose that there exists a nonzero solution �(x); !(x);  (x) of the problem (71)-
(74). Rc(k0) is simple and is the minimal value, hence for k 6= k0 we have Rc(k) >
Rc(k0), and �0(R; k) < 0. Thus ~�k; ~!k, and ~ k de�ned by (79) are identically zero.

If we suppose that there exists another eigenfunction corresponding to the same
eigenvalue, then for some x2 its Fourier expansion contains also terms with k 6= k0.
In this case the problem (76)-(78) would have a zero eigenvalue with a di�erent value
of k, which contradicts the fact that �0(R; k) < 0 for k 6= k0.

Suppose �nally that there exists v 6= 0, m � 2 such that LmRv = 0, Lm�1R v 6= 0,
where LR is the operator acting from E1 to E2 corresponding to the linearization
of the system (27)-(210). Put w = Lm�2R v, then up to a nonzero factor LRw = u.
Multiplying the �rst components by cos k0x1, the second and third components by
sin k0x1 and integrating with respect to x1 we obtain a contradiction with the fact
that zero is a simple eigenvalue of (76)-(78) for k = k0. This contradiction proves that
the zero eigenvalue of the problem (71)-(74) is simple. Hence the functionalization of
the front velocity removes it and does not change the other eigenvalues.

Now by virtue of Condition 4, and of Theorems 4.4, 5.1 and 6.1, the topological
degree can be de�ned, and we can use its properties. The index of the stationary point
� = �; ! =  = 0 equals (�1)� where � is the number of positive eigenvalues of the
problem (71)-(74). As R passes through Rc(k), � changes by one. The index changes
from 1 to �1 or vice versa. Since the topological degree is a homotopy invariant,
and it is equal to the sum of indices of all stationary points, then at least two other
solutions appear for the problem with functionalization. They are also solutions of
(27)-(210) with adequate velocity c.

It remains to note that (!;  ) 6� 0 for the bifurcating solutions, because the solu-
tion with ! � 0;  � 0 is unique. The theorem is proved.

Remarks.

1. The question of the linear stability of the one-dimensional wave in the neigh-
bourhood of the bifurcation point Rc(k0) is not completely solved. Indeed we
have not shown that the principal eigenvalue of the problem (714)-(717) is real.
For R > Rc(k0) we know that this problem has a positive eigenvalue, hence
the one-dimensional wave can be said to be unstable. But for R < Rc(k0) we
only know that this problem has no real positive eigenvalues. However, it might
have nonreal eigenvalues with positive real part, so an oscillatory instability
may exist.

2. In Section 6 we have shown that the topological degree cannot be used directly
for travelling waves, and we have introduced the functionalization of the param-
eter c to solve this diÆculty. The results concerning the spectrum are valid with
the functionalization of c, because all eigenvalues remain unchanged, except for
the zero eigenvalue (see Lemma 6.2).
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8. Further results about the spectrum

In the previous section we analyzed the spectrum of the operator linearized about
the one-dimensional solution to �nd conditions for its stability. The stability of the
convective solutions can be studied with the same arguments. Throughout this section
we suppose that the conditions of Section 7 are satis�ed, and that the minimum critical
Rayleigh number Rc(k0) is simple.

For convenience we introduce the following notations:

� Rc = Rc(k0);

� AR denotes the operator corresponding to the problem (27)-(29), acting from
E1 to E2;

� u1 2 E1 denotes the one-dimensional wave, AR(u1) = 0; 8R;

� u2 2 E1 denotes a two-dimensional wave in the neighbourhood of u1, such that
AR(u2) = 0 for some R in the neighbourhood of Rc. (For simplicity we omit
the dependance of u2 with respect to R);

� L1R = A0R(u1), L
2
R = A0R(u2);

� C is the matrix C = diag(1; 1; 0),

�  is the topological degree constructed in Section 6.

We will denote by �0(L
i
R), i = 1; 2, the principal eigenvalue of LiRu = �u, which

we will call the classical eigenvalue problem, and �C(L
i
R) the principal eigenvalue of

LiRu = �Cu. We will call this last problem the C-eigenvalue problem for LiR.
The results about the spectrum of the operators L2R are based on two remarks:

�rst, the homotopy invariance of the degree gives informations about the index of
two-dimensional waves, and hence about the number of positive eigenvalues of the
linearized operator. The second remark is that if the solutions u1 and u2 are close,
the eigenvalues of the linearized operators are also close, in a sense that will be made
clearer below. As well as in Section 7, the method of the topological degree makes it
necessary to functionalize the velocity c. In the case of the one-dimensional wave we
have shown that the functionalization does not change the eigenvalues of the linearized
operator, except the zero eigenvalue which is replaced by�

c0(w1);
@w1

@xn

�
< 0; w1 = u1 + �:

The same is true for the two-dimensional wave, except that the new eigenvalue�
c0(w2);

@w2

@xn

�
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can be zero if the wave w2 is not monotone with respect to xn. However it is clear that
for ku1� u2kC2+� suÆciently small, this eigenvalue is negative. Hence to analyze ex-
istence of eigenvalues with nonnegative real part it is suÆcient to study the spectrum
of the operators without functionalization. This is what we do in the following.

First we recall the result that was proved in Section 7 regarding local bifurcations:

Lemma 8.1. For any � > 0 there is R > 0, jR � Rcj < � such that the equation

AR(u) = 0 has a solution u2 6= u1, with ku1 � u2kC2+� < �.

8.1. The classical eigenvalue problem

To study the stability of the bifurcating solutions we have to compare the eigenvalues
of L1Rc and of L2R. This comparison is based on the properties of Fredholm operators
[13]. In the following we consider the operators L1R and L2R as acting from C� to
C�, with domain E1. Throughout this subsection we use the notation k:k instead
of k:kC� . Note that these operators are now unbounded. Hence to compare their
eigenvalues we have to establish the following estimate:

Lemma 8.2. For any k > 0 there exists � > 0 such that, for any R, jR � Rcj < �,

for any u2 2 E1, ku1 � u2kC2+� < �, and for any u 2 E1, u 6= 0,

kL1Rcu� L2Ruk < k
�
kuk+ kL1Rcuk

�
:

Proof. The operator in the left-hand side has the form

L1Rcu� L2Ru = b1
@u

@x1
+ b2

@u

@x2
+ cu;

where b1, b2 and c are matrices such that

kbik � kru1 �ru2k+ P jR�Rcj; i = 1; 2; kck � kF 0(u1)� F 0(u2)k:

Since F 2 C2 there is a constant K > 0 such that if ku1 � u2kC2+� < �, then
kF 0(u1)� F 0(u2)k < K�. If we also have jR �Rcj < � then

kL1Rcu� L2Ruk < K�(kuk+ kruk):

By virtue of the Schauder estimate,

kruk � kukC2+� �M(kL1Rcuk+ kuk):

The lemma is proved.

In the following lemma we say that a complex number � is a regular point for an
operator L if L� �I is continuously invertible, i.e. there exists a bounded operator
R�, de�ned on all of C�, such that

R�(L� �I) = (L� �I)R� = I:
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Lemma 8.3. Consider � > 0 such that each complex number �, with 0 < j�j � �, is a

regular point for L1Rc. There exists � > 0 such that for jR�Rcj < �, ku1�u2kC2+� < �,

the operator L2R has exactly one simple eigenvalue �0 2 B(0; �), and all other points

of �D [ �B(0; �) are regular for L2R, where

D = f� 2 C ; Re� > 0; j�j > �g:

Proof. The proof consists of three steps:

1. L2R has a simple eigenvalue in the open ball, and all other points of the closed
ball are regular;

2. L2R has only regular points outside of an angle CM;�;

3. L2R has only regular points in �CM;� \ �D.

Step 1. It is based on a remark of [13]: the sum of multiplicities of eigenvalues inside
a given contour is preserved under a small change of the operator. More precisely,
there exists a positive constant k1 such that for any operator A : C� ! C� satisfying
the estimate

kAuk < k1(kuk+ kL1Rcuk); u 2 E1; u 6= 0;

L1Rc +A has a single simple eigenvalue in the ball B(0; �), and all other points of the
closed ball are regular. Lemma 8.2 completes this �rst step.

Step 2. For any � 2 (0; �=2) we can �ndM depending only on 
, �, on the principal
coeÆcients of L2R and on the boundary conditions such that all points outside of the
angle CM;� are regular. We note that M neither depends on R nor on u2.

Step 3. It is identical to Step 1, but here we consider the contour delimiting the
region CM;� \ D (see Figure 3), where L1Rc only has regular points. The lemma is
proved.

It is easy to obtain the following corollary:

Corollary 8.4. If �, �, u2 and R are like in Lemma 8.3, then L2R has at most one

eigenvalue with nonnegative real part. Moreover this eigenvalue is real.

Indeed, if it were nonreal, then its conjugate would also be an eigenvalue, which
contradicts the uniqueness.

With this corollary it is easy to prove the following theorem:

Theorem 8.5. If convective solutions exist only for R > Rc (supercritical bifurca-

tion), then among them there are solutions u2 for which �0(L
2
R) � 0, for R suÆciently

close to Rc (see �g. 1b).

267 Revista Matem�atica Complutense

2003, 16; N�um. 1, 233-276



Rozenn Texier-Picard, Vitaly A. Volpert Reaction-di�usion-convection problems. . .

Figure 3: The contour in Lemma 8.3, Step 3.

If convective solutions exist only for R < Rc (subcritical bifurcation), then among

them there are solutions for which �0(L
2
R) � 0, for R suÆciently close to Rc (see �g.

1a).

Proof. Consider the �rst case. The proof of the second case is similar. Suppose
that there is no convective solution for R � Rc. Let � and � be like in Lemma 8.3,
and let V be the ball of center u1 and of radius � in E1. Then ARc has no zero
on the boundary of V . Since this operator is proper and continuous, we can choose
R0 2 (Rc � �;Rc), R1 2 (Rc; Rc + �) such that

8R 2 [R0; R1]; 8u 2 @V; kAR(u)k 6= 0:

Indeed suppose the countrary. Then for all suÆciently large integer n,

9Rn 2

�
Rc �

1

n
;Rc +

1

n

�
; 9un 2 @V;ARn(un) = 0:

The sequence (Rn; un) lies in the compact set A�1(0) \ ([R0; R1] � @V ). Hence we
can choose a converging subsequence, with the limit (Rc; u), u 2 @V . By virtue of
the continuity of A with respect to R and u, we �nd that ARc(u) = 0, u 2 @V , which
contradicts the hypothesis.

Then we can apply the homotopy invariance of the degree on V , and we have:
(AR0

; V ) = (AR1
; V ). For R = R0 there is only the one-dimensional solution, and

its index equals 1. Hence (AR0
; V ) = 1.

On the other hand, suppose that all convective solutions u2 are such that �0(L
2
R) >

0. Then by virtue of Corollary 8.4, the positive eigenvalue is simple, and all other

eigenvalues of L2R have negative real part. Hence the index of u2 equals -1, and
(AR1

; V ) � �1. Note that the indices can be used because none of the possible
solutions has a zero eigenvalue. This contradiction proves the theorem.
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Remark. As mentioned in Section 2, this result is not exhaustive. Other situations
are possible, for example the situation of �g. 1c, where

(AR0
; V ) = (AR1

; V ) = 0:

8.2. The C-eigenvalue problem

The question of the stability of a bifurcating solution u2 with respect to the nonsta-
tionary problem (710)-(713) leads to the C-eigenvalue problem

L2Ru = �Cu: (81)

As in Section 7 we introduce the auxiliary problem

L2Ru+ �Pu = �u; (82)

where P = E3�C and � is a real parameter. We recall that E3 is the identity matrix.
For � = � both problems are equivalent.

Lemma 8.6. There exists some constant � > 0 such that for jR�Rcj < �, ju2�u1j <
�, if �0(L

2
R) � 0 then �C(L

2
R) � 0.

Proof. Suppose that the problem L2Ru = �u has an eigenvalue with nonnegative
real part. By virtue of Corollary 8.4 it is real. Besides it is also an eigenvalue of the
problem (82) with � = 0. In other words, �2R(0) � 0, where �2R(�) is the principal
eigenvalue of the problem (82). If �1R(�) denotes the principal eigenvalue of the
problem

L1Ru+ �Pu = �u; (83)

then for any nonnegative �, �1Rc(�) = �2Rc(�). Indeed for R = Rc, u1 and u2 coincide.
�2R(�) is continuous with respect to � and R. Hence

�2R(�)! �1Rc(�); R! Rc: (84)

We have seen in the proof of Lemma 7.5 that

8� > 0; �1Rc(�) < �: (85)

Fix � > 0. By virtue of (84) and (85) there exists � > 0 such that

jR�Rcj < � ) �2R(�) < �:

Hence for jR�Rcj < � the equation �2R(�) = � has at least one solution � � 0. This
solution is an eigenvalue of (81). The lemma is proved.

The same argument can be used to prove that if �0(L
2
R) < 0, then the problem

(81) has a negative eigenvalue (this result is established in Lemma 8.7). But of
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course this is not suÆcient to prove that �C(L
2
R) < 0. We need to show that all

eigenvalues of (81) have negative real part. This can be done by comparing (81) with
the similar problem for L1Rc , as was done in Subsection 8.1. This comparison yields
Lemma 8.8 which, together with Lemma 8.7, establishes the link between the classical
eigenvalue problem and the C-eigenvalue problem for bifurcating solutions, if jR�Rcj
and ku1 � u2kC2+� are small.

Lemma 8.7. For any � > 0, there exists some constant � > 0 such that for jR�Rcj <
�, ku2 � u1kC2+� < �, if �0(L

2
R) < 0 then the problem (81) has a real eigenvalue �,

�� < � < 0.

Proof. The proof is similar to the proof of Lemma 8.6. All we have to establish here
is that there exists � > 0 such that

8�; �� < � < 0; �1Rc(�) > �:

First we take � such that the essential spectrum lies in the half-plane fRe� < ��g.
Hence the methods of Section 7 can be applied.

We know that all eigenvalues of (83) are also eigenvalues of

D~�
00

+ c ~�0 + (F 0(�(x2))�Dk2)~� + k�0(x2) ~ = �~�

P ~!
00

+ c ~!0 � Pk2~! � PRk~� = �~!

~ 
00

� k2 ~ + ~! + � ~ = � ~ 

for some negative integer k. Call �1R;k(�) the principal eigenvalue of this problem.
Then it is real and

�1R(�) = sup
k2Z;k<0

�1R;k(�) � �1Rc;k0(�):

Hence it is suÆcient to prove that

8�; �� < � < 0; �1Rc;k0(�) > �: (86)

Before establishing (86), we remark that for any R and k, the equation �1R;k(�) = �

cannot have more than one real solution �. Indeed such a solution is the principal
eigenvalue of the monotone problem

D�00 + c�0 + (F 0(�(x2))�Dk2)� + k�0(x2) = �1R;k(�)�

P!00 + c!0 � Pk2! � PRk� = �1R;k(�)!

 00 � k2 + ! + � = �1R;k(�) :

Hence the corresponding eigenfunction is positive. But � is also an eigenvalue of the
problem (718)-(720), with the same positive eigenfunction. Therefore � must be the
principal eigenvalue of this problem [32], and the uniqueness follows.
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Now we prove (86). At �rst we know that �1Rc;k0(0) = 0. From the preceding
observation we can deduce that

8�; �� < � < 0; �1Rc;k0(�) 6= �:

But �1R;k(�) is continuous with respect to �. Hence if (86) does not hold, then

8�; �� < � < 0; �1Rc;k0(�) < �:

We use a result of strict monotonicity of the principal eigenvalue of a monotone
problem with respect to the coeÆcients [35]. For R > Rc and for any �; �� < � <

0; �1R;k0 (�) > �1Rc;k0(�):

Take R suÆciently close to Rc in order that the following inequalities are satis�ed,
as in Figure 4:

�1R;k0(��) < ��; �1R;k0(1) < 1:

We also have �1R;k0(0) > 0: Hence the equation �1R;k0 (�) = � has at least two real
solutions, which gives a contradiction. (86) is proved, and the end of the proof of
Lemma 8.7 is identical to the proof of Lemma 8.6.

Figure 4: Graphical resolution of �1R;k0(�) = �

It remains to prove that the problem (81) has no eigenvalue with positive real part.
We will show that there is � > 0 such that it has only one eigenvalue in �D [ �B(0; �).

Lemma 8.8. There exists � > 0 such that the problems (87), i = 1; 2, have exactly

one simple eigenvalue in B(0; �), and all other points of the closed ball are regular.
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Proof. The idea of the proof is the same as for Lemma 8.3. The diÆculty here is
that there is no � for the third component. Therefore we cannot use directly the
result that multiplicity of eigenvalues is preserved under a small perturbation of the
operator.

We change the problem to a usual eigenvalue problem. We write ui = (�i; !i;  i),
i = 1; 2, (!1 =  1 = 0) and we note that for i = 1; 2, the problem

LiRu = �Cu; u 2 E1 (87)

is equivalent to the problem

D�� + b( i; �i;  ; �) + F 0(�i)� = ��

�P�� + b( i;�� i;  ;�� ) + PR
@�

@x1
= ��� ;

@�

@x1
= 0;  = � = 0; x 2 @
;

where

b(wi; vi; w; v) = �
@wi

@x2

@v

@x1
�
@w

@x2

@vi

@x1
+

�
c+

@wi

@x1

�
@v

@x2
+
@w

@x1

@vi

@x2
:

Consider the operator ��1 : C� ! fu 2 C2+�; uj@
 = 0g, which associates to a given
function f 2 C� the unique function  2 C2+�;  j@
 = 0;� = f . It is well de�ned
and continuous.

De�ne the spaces

F1 =

�
� 2 C2+�(�
);

@�

@x1
= 0; x 2 @


�
;

F2 = f 2 C4+�(�
);  = � = 0; x 2 @
g;

F3 = C�(�
);

F4 = fg 2 C2+�(�
); g = 0; x 2 @
g;

and the operators L1;L2 : F1 � F2 ! F3 � F4 by L
i(�;  ) = (fi; gi), where

fi = D�� + b( i; �i;  ; �) + F 0(�i)�;

gi = ���1

�
P�� + b( i;�� i;  ;�� ) + PR

@�

@x1

�
; i = 1; 2:

With these notations, the problems (87) are equivalent to

�u = (�;  ) 2 F1 � F2; Li�u = ��u:

It remains to show that
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1. for any � � 0, Li � �I are Fredholm with zero index, i = 1; 2;

2. if jR�Rcj < �, ku1 � u2kC2+� < �, then

8�u 2 F = F1 � F2; kL
1�u�L2�ukE < k(kL1�ukE + k�ukE);

where E = F3 � F4.

The �rst point is clear, because Condition 2 for Li is equivalent to the fact that
the problem

LiR
�
u = �Cu

has no nontrivial solution for � � 0. This is ensured by the assumption F 0(��) < 0.
As a consequence, we know that the eigenvalues of Li are isolated. For R = Rc, L

1

has a zero simple eigenvalue, thus there exists � > 0 such that all complex numbers
� with 0 < j�j < � are regular for L1, hence they are also regular for the problem
L1Rcu = �Cu; u 2 E1.

To prove the second point we use the Schauder estimates and the continuity of
��1 as operator acting from F4 to F2, and we �rst conclude that

8�u 2 F; k�ukF � K(kL1�ukE + k�ukE): (88)

Now for �u = (�;  ) 2 F ,

(L2 �L1)�u = (b( 2 �  1; �2 � �1;  ; �); b( 2 �  1;� 2 �� 1;  ;� ))

We can �nd � > 0 such that if ku1 � u2kC2+� < �, then

kb( 2 �  1; �2 � �1;  ; �)kC� � �

and
kb( 2 �  1;� 2 �� 1;  ;� )kC� � �:

Hence

8�u 2 F1 � F2; kL
1�u�L2�ukE � �K (k�kC1+� + k kC3+�) � �Kk�ukF : (89)

The conclusion follows from (88) and (89). The end of the proof is the same as the
�rst step of Lemma 8.3.

Corollary 8.9. There exists some constant � > 0 such that for jR � Rcj < �,

ku2 � u1kC2+� < �, if �0(L
2
R) � 0 and if �C(L

2
R) is real then �C(L

2
R) � 0. If the

problem L1Ru = �Cu has eigenvalues with positive real part, then the sum of their

multiplicities equals the sum of the multiplicities of eigenvalues with positive real part

of the problem L2Ru = �Cu.

Proof. Consider a solution u2 with �0(L
2
R) � 0. From Lemma 8.7 we know that the

problem (81) has a real eigenvalue � 2 (��; 0). By virtue of Lemma 8.8, it has no
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eigenvalue with positive real part in the ball �B(0; �). It remains to show that the sum
of multiplicities of all eigenvalues in the domain �D de�ned in Subsection 8.1 is the
same as for the problem L1Ru = �Cu. This follows exactly from the same arguments
as in the proof of Lemma 8.3.

Hence we have proved the following theorem, which is the counterpart to Theorem
8.5.

Theorem 8.10. If convective solutions exist only for R > Rc (supercritical bifurca-

tion), then among them there are solutions u2 for which the problem (81) has no real

positive eigenvalue, for R suÆciently close to Rc.

If convective solutions exist only for R < Rc (subcritical bifurcation), then among

them there are solutions for which the problem (81) has a nonnegative eigenvalue, for

R suÆciently close to Rc.
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