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ABSTRACT

Wavelets originated in 1980's for the analysis of (seismic) signals and have

seen an explosion of applications. However, almost all the material is based

on wavelets over Euclidean spaces. This paper deals with an approach to the

theory and algorithmic aspects of wavelets in a general separable Hilbert space

framework. As examples Legendre wavelets on the interval [�1;+1] and scalar

and vector spherical wavelets on the unit sphere 
 are discussed in more detail.
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1. Introduction

Wavelets form \building blocks" that enable fast decorrelation of data. In other
words, three features are incorporated in this way of thinking about wavelets, namely
basis property, decorrelation, and fast computation. In the �rst part of the paper
we discuss these aspects in a separable (functional) Hilbert space setup. As an es-
sential tool we assume an orthonormal Hilbert basis to be known. The de�nitions of
scaling function and wavelet are based on the concept of product kernels in terms of
the prescribed orthonormal Hilbert basis. By virtue of the basis property each sig-
nal, i.e. each member of the Hilbert space, can be expressed in stable way as linear

combination of dilated and shifted copies of a \mother kernel" with vanishing zeroth
moment. The wavelet transform maps members of the Hilbert space into an asso-
ciated two-parameter class of space and scale dependent elements. Wavelets show
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the power of decorrelation. As a consequence the representation of the data in terms
of wavelets is somehow \more compact" than the original representation, that is to
say, we search for an accurate approximation by only using a small fraction of the
original information of an element of the Hilbert space. Typically, in the jargon of
information theory, scaling functions provide lowpass �ltering, while the decorrelation
is achieved by building wavelets which decay towards low and high frequencies, i.e.
by bandpass �ltering. Finally, the main question in wavelet approximation is how to
decompose a function into wavelet coeÆcients, and how to reconstruct eÆciently the
function under consideration from the wavelet coeÆcients. There is a tree algorithm,
i.e. a pyramid scheme, that makes these steps simple and fast. The fast decorrela-
tion power of wavelets is the key to applications such as data compression, fast data
transmission, noise cancellation, etc.

2. H{Fourier expansions

Let H be a separable real functional Hilbert space over a certain domain � � R
n

equipped with the inner product (�; �)H, i.e. (H; (�; �)H) is a Hilbert space consisting
of functions F : � ! R. Furthermore, let fU�

ngn=0;1;::: be a (known) complete
orthonormal system in (H; (�; �)H).

In a separable real functional Hilbert space (H; (�; �)H) any function F 2 H can be
represented as a Fourier expansion relative to the orthonormal system fU�

ngn=0;1;:::

(in the sense of k � kH) by

F =

1X
n=0

F^(n)U�
n (1)

with \Fourier transforms" (coeÆcients)

F^(n) = (F;U�
n)H; n = 0; 1; 2; : : : : (2)

Fourier expansions (1) are very successful at picking out \frequencies" n from a signal
(function) F 2 H, but the use of non{space localizing functions U�

n is incapable of
dealing properly with data changing on small spatial scales. Usually a signal (func-
tion) refers to a certain combination of frequencies, and the frequencies themselves
are spatially changing. This space evolution of the frequencies is not reected in a
Fourier series (1) of non{space localizing (for example, polynomial) trial functions
U�
n on �. With wavelets, as we are going to show in the next chapters, the amount

of localization in space and in frequency is automatically adapted. The basic frame-
work of this idea is based on convolving the signal (function) against \dilated" and
\shifted" versions of the \mother (wavelet) kernel". Essential tools are the concepts
of H{product{kernels and H{convolutions (cf. [12]).
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3. H{Product kernels

Any function � : ��� ! R of the form

�(x; y) =

1X
n=0

�^(n)U�
n(x)U�

n(y); x; y 2 �; (3)

with �^(n) 2 R, n 2 N0 , is called an H-product kernel (briey called H-kernel). The
sequence f�^(n)gn=0;1;::: is called the symbol of the H-kernel (3).

De�nition 1. A symbol f�^(n)gn=0;1;::: of an H-product kernel (3) is said to be

H-admissible if it satis�es the following conditions:

(i)

1X
n=0

(�^(n))
2
<1; (ii)

1X
n=0

(�^(n)U�
n(x))

2
<1 (4)

for all x 2 �.

4. H{Convolutions

H-convolutions will be introduced in the following way.

De�nition 2. Let F be of class H. Suppose that � is an H-kernel of the form (3) with

H-admissible symbol f�^(n)gn=0;1;:::, then the convolution of � against F is de�ned

by

(� �H F )(x) = (�(x; �); F )H =

1X
n=0

�^(n)F^(n)U�
n(x): (5)

From (5) we immediately see that

(� �H F )^(n) = �^(n)F^(n); n 2 N0 : (6)

The convolution of two H-product kernels with H-admissible symbols leads to the
following result.

Theorem 1. Let �1 and �2 be H-kernels with H-admissible symbols

f�^1 (n)gn=0;1;::: and f�
^
2 (n)gn=0;1;:::, respectively. Then

(�1 �H �2)(x; y) = (�1 �H �2(�; y))(x)

= (�1(x; �);�2(�; y))H

=

1X
n=0

�^1 (n)�^2 (n)U�
n(x)U�

n(y)

holds for all x; y 2 �, and the sequence f(�1 �H �2)^(n)gn=0;1;::: given by

(�1 �H �2)
^(n) = �^1 (n)�^2 (n) (7)

constitutes an H-admissible symbol of the H-kernel �1 �H �2.

279 Revista Matem�atica Complutense

2003, 16; N�um. 1, 277-310



W. Freeden, T. Maier, S. Zimmermann A survey on wavelet methods. . .

5. H-Scaling functions

After having explained the convolution between two H-kernels with
H-admissible symbols we are now interested in developing countable
families f�Jg, J 2 Z, of H-product kernels �J which may be understood as scal-
ing functions in our general Hilbert H-wavelet concept.

As preparation we introduce a dilation operator acting on these families in the fol-
lowing way: Let �J be a member of the family of product kernels.
Then the dilation operator Dk, k 2 Z, is de�ned by Dk�J = �J+k. In particu-
lar, we have �J = DJ�0. Thus we refer to �0 as the \mother kernel". Moreover,
we de�ne a shifting operator Sx, x 2 �, J 2 Z, by Sx�J = �J(x; �). In doing so we
consequently get by composition the operator �J (x; �) = SxDJ�0 for all x 2 � and all
J 2 Z. Note that all kernels �J are symmetric, so that �J(x; y) = �J (y; x), x; y 2 �,
for all J 2 Z.

We are now in position to introduce scaling functions.

De�nition 3. Let f(�J)^(n)gn=0;1;:::, J 2 Z, de�ne an H-admissible symbol of a

family of H-kernels satisfying additionally the following properties:

(i) lim
J!1

�
(�J )

^
(n)
�2

= 1 ; n 2 N;

(ii)
�
(�J)

^
(n)
�2
�
�
(�J�1)

^
(n)
�2

; J 2 Z; n 2 N ;

(iii) lim
J!�1

�
(�J )

^
(n)
�2

= 0; n 2 N ;

(iv) ((�J )
^

(0))2 = 1 ; J 2 Z :

Then
�

(�J)
^

(n)
	
n=0;1;:::

is called the generating symbol of an H-scaling function.

The family of H-kernels f�Jg, J 2 Z, given by

�J(x; y) =

1X
n=0

(�J )^(n)U�
n(x)U�

n(y); x; y 2 � ; (8)

is called H-scaling function.

The H{scaling functions constructed in this way, therefore, satisfy the essential condi-
tions of the classical wavelet concept (see e.g. [5, 11]). From the results of the previous
chapter it follows immediately that �J(x; �), x 2 �, J 2 Z, is a member of H. It can

be easily seen that �
(2)
J = �J �H�J , J 2 Z, is an H-kernel with H-admissible symbol�

((�J )
^

(n))2
	

, n = 0; 1; ::: .
This leads us to the following central result in the theory of H{scaling functions.

Theorem 2. Let f(�J )^(n)gn=0;1;:::, J 2 Z, be the generating symbol of a scaling

function f�Jg. Then

lim
J!1

kFJ � FkH = 0 (9)
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holds for all F 2 H, where FJ given by

FJ = �
(2)
J �H F = (�J �H �J) �H F ; F 2 H (10)

is said to be the J-level approximation of F .

Proof. We introduce the operator TJ : H ! H, J 2 Z, by

FJ = TJF = (�J �H �J) �H F: (11)

From the de�nition of the convolution and the fact that �
(2)
J = �J �H �J is an

H-kernel with H-admissible symbol it follows that TJF can be written as follows:

TJF =

1X
n=0

((�J )^(n))2F^(n)U�
n : (12)

But this implies that

kTJk = sup
G2H

kGk
H
=1

kTJGkH (13)

=

 
1X
n=0

((�J )^(n))4(G^(n))2

! 1

2

� sup
n2N0

((�J )^(n))2

 
1X
n=0

(G^(n))2

! 1

2

� sup
n2N0

((�J )^(n))2 <1

for every J 2 Z, since f(�J )^(n)gn=0;1;::: ; J 2 Z, is H-admissible.

Now, from Parseval's identity, we obtain

lim
J!1

kTJF � Fk
2
H = lim

J!1

1X
n=0

(1� ((�J)^(n))2)2(F^(n))2: (14)

From the conditions (i), (ii) and (iv) of De�nition 3 we are able to deduce that
((�J )^(n))2 � 1 for n 2 N0 . But this shows us that

0 � (1� ((�J )^(n))2)2 � 1 (15)

is valid for all n 2 N0 . Therefore, the limit and the in�nite sum in (14) may be
interchanged. By applying (i) and (iv) we �nally arrive at the desired result.
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6. H{Multiresolution analysis

Note that condition (iii) of De�nition 3 has not been used yet. This condition, how-
ever, is needed as assumption for de�ning H-wavelets and establishing a multiresolu-
tion analysis as will be explained now.

According to our construction, for any F 2 H, each TJF de�ned by (11) provides

an approximation of F at scale J . In terms of �ltering the product kernels �
(2)
J =

�J �H�J may be interpreted as low-pass �lter. TJ is the convolution operator of this
low-pass �lter. Accordingly we understand the scale space VJ to be the image of H
under the operator TJ :

VJ = TJ(H) = f(�J �H �J) �H F j F 2 Hg : (16)

As an immediate consequence we obtain the following result.

Theorem 3. The scale spaces satisfy the following properties:

(i) fU�
0 g � VJ � VJ0 � H ; J � J

0

; (17)

(ii)

1\
J=�1

VJ = fU�
0 g ; (18)

(iii)

1[
J=�1

k�k
H

= H; (19)

(iv) if FJ 2 VJ then D�1FJ 2 VJ�1; J 2 Z: (20)

Proof. From the conditions (ii) and (iv) of De�nition 3 we easily get the validity
of the �rst assertion (17) of Theorem 3. The identity (18) follows directly from the
conditions (iii) and (iv) of De�nition 3. The formula (19) is a consequence of Theorem
2, while (20) follows immediately from the de�nition of the shifting operator DJ .

If a collection of subspaces of H satis�es the conditions of Theorem 3, it is called
a H{multiresolution analysis (MRA).

7. H-wavelets

The de�nition of the scaling functions now allows us to introduce H-wavelets. Basic
tool again is the concept ofH-product kernels. We start with the de�nition of wavelets
by aid of a \re�nement (scaling) equation".

De�nition 4. Let f(�J)^(n)gn=0;1;:::, J 2 Z, be the generating symbol of an H-

scaling function as de�ned by De�nition 3. Then the generating symbol f(	j)
^(n)g

n=0;1;:::
,

j 2 Z, of the associated H-wavelet is de�ned via the \re�nement equation"

(	j)
^(n) = (((�j+1)^(n))2 � ((�j)

^(n))2)
1

2 : (21)
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The family f	jg, j 2 Z, of H{product kernels given by

	j(x; y) =

1X
n=0

(	j)
^(n)U�

n(x)U�
n(y); x; y 2 �; (22)

is called H-wavelet associated to the H-scaling function f�Jg, J 2 Z. The corre-

sponding \mother wavelet" is denoted by 	0.

Note that the de�ning properties of anH{wavelet presume the zero{mean property
(	j)

^
(0) = 0, j 2 Z, i.e. the vanishing of the symbol element at 0. The wavelets con-

structed in this way, therefore, satisfy a substantial condition of the classical wavelet
theory (see e.g. [5, 11]).

A dilation and a shifting operator can be understood in the same way as we did
before. In other words, any wavelet can be interpreted as a dilated and shifted copy of
the corresponding mother wavelet like 	j(x; �) = SxDj	0(�; �). We can easily derive
from the telescoping character of (21) that

((�J+1)^(n))2 =

JX
j=�1

((	j)
^(n))2 (23)

= ((�0)^(n))2 +

JX
j=0

((	j)
^(n))2 :

Similar to the de�nition of the operator Tj , j 2 Z, we are now led to the convolution
operators Rj : H ! H given by

RjF = 	
(2)
j �H F = (	j �H 	j) �H F; F 2 H: (24)

Thus the identity

�J+1 �H �J+1 =

JX
j=�1

(	j �H 	j) = �0 �H �0 +

JX
j=0

(	j �H 	j) (25)

can be written in operator formulation as follows:

TJ+1 =

JX
j=�1

Rj = T0 +

JX
j=0

Rj : (26)

The convolution operators Rj describe the \detail information" of F at scale j. In

terms of �ltering, 	
(2)
j = 	j �H 	j , j 2 Z, may be interpreted as a band-pass �lter.

This fact immediately gives rise to introduce the detail spaces as follows:

Wj = Rj(H) = f(	j �H 	j) �H F j F 2 Hg : (27)
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WJ contains the \detail information" needed to go from an approximation at level J
to an approximation at level J + 1. Hence we get

JX
j=�1

Wj = V0 +

JX
j=0

Wj = VJ+1; VJ +WJ = VJ+1; J 2 Z : (28)

It should be noted that, in general, the sum in (28) is neither direct nor orthogonal.
But there exist examples leading to an orthogonal multiresolution which should be
discussed later on.

In conclusion, any F 2 H can be approximated as follows: Starting with T0F

we �nd in connection to (26) by adding successively R0F; : : : ; RJF the (J + 1){
level approximation TJ+1F of F 2 H. Obviously, the partial \reconstruction" RjF

is nothing else than the \di�erence of two smoothings" at two consecutive scales
RjF = Tj+1F � TjF .

De�nition 5. The wavelet transform WT at scale j 2 Z and position x 2 � is given

by

WT (F )(j;x) = (	j(x; �); F )H; F 2 H: (29)

Combining (29) and (25) we can formulate the main result of our wavelet theory
as follows.

Theorem 4. Let f(�J )^(n)gn=0;1;:::, J 2 Z, be the generating symbol of an H-

scaling function. Suppose that f(	j)
^(n)g

n=0;1;:::, j 2 Z, is the generating symbol of

the corresponding H-wavelet. Furthermore, let F be of class H. Then

FJ = (�0 �H �0) �H F +

J�1X
j=0

	j �H (WT (F )(j; �)) (30)

is the J-level approximation of F satisfying

lim
J!1

kFJ � FkH = 0: (31)

The limit relation (31) shows the essential characteristic of wavelets. We change
the approximated solution from FJ to FJ+1 by adding the so-called detail information
of level J as the di�erence of two smoothings of two consecutive scales J and J + 1
and, what is more important, we are able to guarantee limJ!1 FJ = F in the sense
of the k�kH-topology provided that F 2 H.

The following scheme briey summarizes the essential steps of our wavelet ap-
proach in the framework of product kernels introduced for a separable functional
Hilbert space H.
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T0F T1F : : : TjF Tj+1F : : :
j!1

!
F

V0 � V1 : : : � Vj � Vj+1 : : : = H

V0 + W0 + : : :+ Wj�1 + Wj + : : : = H

T0F +R0F + : : :+Rj�1F + RjF + : : : = F .

8. H{Bandlimited wavelets

For simplicity, we assume that f�jgj2Z is a family of bandlimited kernels such that
((�j)

^(n))2 > 0 for n = 0; : : : ; Nj = 2j � 1 and ((�j)
^(n))2 = 0 for n � Nj + 1 = 2j .

Then it follows that

�j(x; �) 2 H0;:::;2j�1 = spanfU�
0 ; : : : ; U

�
2j�1g (32)

and
	j(x; �) 2 H0;:::;2j+1�1 = spanfU�

0 ; : : : ; U
�
2j+1�1g (33)

holds for all x 2 �, (\span" means, as usual, the set of all �nite linear combinations).
More explicitly,

�j(x; y) =

2j�1X
n=0

(�j)
^(n)U�

n(x)U�
n(y); (34)

	j(x; y) =

2j+1�1X
n=0

(	j)
^(n)U�

n(x)U�
n(y) (35)

for (x; y) 2 ���. Consequently, the scale spaces and the detail spaces, respectively,
ful�ll the relations Vj = H0;:::;2j�1; Wj � H0;:::;2j+1�1.

Simple examples are given below:

(a) orthogonal (Shannon) scaling function

(�j)
^(n) =

�
1 for n = 0; : : : ; Nj

0 for n � Nj + 1
; (36)

(b) non-orthogonal (smoothed Shannon) scaling function

(�j)
^(n) =

8<
:

1 for n = 0; : : : ; 2jh
1�2�jn
1�h for n = 2jh; : : : ; Nj

0 for n � Nj + 1

(37)

for �xed h 2 [0; 1),
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(c) non-orthogonal cubic polynomial (CP-) scaling function

(�j)
^(n) =

�
(1� 2�jn)2(1 + 2�j+1n) for n = 0; : : : ; Nj

0 for n � Nj + 1
(38)

with

Nj =

�
0 for j 2 Z; j < 0

2j � 1 for j 2 Z; j � 0
: (39)

Note that the case (a) leads to an orthogonal multiresolution analysis, i.e. the detail
and the scale spaces satisfy Vj+1 = Vj �Wj , Wj ? Wk, k 6= j; j � 0. In the cases
(b) and (c) the scale and detail spaces are still �nite-dimensional, but the detail spaces
are no longer orthogonal.

It should be noted that each scale space Vj , j 2 N0 , can be understood as a
�nite dimensional reproducing Hilbert space with the inner product (�; �)H and the
(Shannon) reproducing kernel (SH)Nj

being canonically de�ned by

(F;G)H =

NjX
n=0

F^(n)G^(n); F;G 2 H0;:::;Nj
(40)

and

(SH)Nj
(x; y) =

NjX
n=0

U�
n(x)U�

n(y); x; y 2 �; (41)

respectively.

The reproducing property enabled [10, 11, 12] to develop di�erent variants of tree
algorithms (even for the non{bandlimited case [11]).

9. A tree algorithm

Until now e�orts have been made to establish the basis property and the ability of
bandpass �ltering in terms of wavelets. Next we come to the third feature of wavelet
approximation, viz. fast computation, which will be realized in form of a pyramid
scheme for bandlimited wavelets.

Let the assumptions of Chapter 8 be satis�ed, i.e. Vj = H0;:::;Nj
, Wj � H0;:::;Nj+1

.
The key ideas of our fast evaluation method are based on the following observations:

(1) For some suitably large J , the scale space VJ is \suÆciently close" to H.

Consequently, for each F 2 H, the error between F and �
(2)
J �H F (understood in

the k � kH{topology) may be assumed to be negligible. This is the reason why F is
supposed to be of class VJ for the remainder of this chapter.
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(2) For j = 0; : : : ; J , consider sequences YLj = fy
Lj
1 ; : : : ; y

Lj
Lj
g of Lj points y

Lj
i 2 �,

i = 1; : : : ; Lj , such that

Vj = H0;:::;Nj
= span

�
�
(2)
j (�; y

Lj
1 ); : : : ;�

(2)
j (�; y

Lj
Lj

)
�

(42)

(the existence of pointsets YLj � � ful�lling the desired property is well-known from
interpolation theory (see, for example, [6])).

(3) The (Shannon) kernel functions (SH)Nj
: � � � ! R introduced by (41)

satisfy the properties

�
(2)
j = �

(2)
j �H (SH)Nj

; j = 0; : : : ; J; (43)

and

(SH)Nj
= (SH)NJ

�H (SH)Nj
; j = 0; : : : ; J: (44)

In conclusion, for F 2 VJ , it follows that

�
(2)
j �H F = �

(2)
j �H

�
(SH)Nj

�H F
�
; (45)

j = 0; : : : ; J . Hence, from (42) it is clear that there exist real coeÆcients a
Lj
l such

that

�
(2)
j �H F = �

(2)
j �H

�
(SH)Nj

�H F
�

=

LjX
l=1

a
Lj
l �

(2)
j (�y

Lj
l ) (46)

j = 0; : : : ; J . There remains the question if we need to calculate the coeÆcients

a
Lj
l for all j = 0; : : : ; J or if there exist pyramid schemes such that it suÆces to

�nd the coeÆcients for the largest scale J since the lower scale coeÆcients can be
calculated recursively. Starting point for our considerations are discretizations of

the convolutions, i.e. we assume that a table of coeÆcients fw
Lj
l g, l = 1; : : : ; Lj ,

j = 0; : : : ; J , is known (see the example in Chapter 10) such that

�
(2)
j �H

�
(SH)Nj

�H F
�

=

LjX
l=1

w
Lj
l

�
(SH)Nj

(�; y
Lj
l ) �H F

�
�
(2)
j (�; y

Lj
l ); (47)

i.e.:

a
Lj
l = w

Lj
l (SH)Nj

(�; y
Lj
l ) �H F; l = 1; : : : ; Lj : (48)

The coeÆcients w
Lj
l , l = 1; : : : ; Lj , are stored elsewhere for j = 0; : : : ; J . It is worth

mentioning that discretizing the convolutions usually can be done by means of so-
called integration formulas; prominent examples are equidistributions or equiangular
longitude-latitude grids on spherical surfaces (see e.g. [11] and the references therein.)
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What we are going to realize is a tree algorithm (pyramid scheme) with the following
ingredients: Starting from a suÆciently large J such that

�
(2)
J (�; yLJl ) �H F =

LJX
l=1

aLJl �
(2)
J (�; yLJl ) (49)

with
aLJl = wLJ

l (SH)NJ
(�; yLJl ) �H F = wLJ

l F (yLJl ); l = 1; : : : ; LJ ; (50)

our aim is to show that the coeÆcient vectors aLj = (a
Lj
1 ; : : : ; a

Lj
Lj

)T 2 R
Lj , j =

0; : : : ; J � 1, given by (48) (and being, of course, dependent on the function F 2 VJ
under consideration) can be calculated such that the following properties are true:

(i) The vectors aLj , j = 0; : : : ; J � 1, are obtainable by recursion from the values
aLJ .

(ii) For j = 0; : : : ; J

�
(2)
j �H F =

LjX
l=1

a
Lj
l �

(2)
j (�; y

Lj
l ) (51)

and for j = 1; : : : ; J

	
(2)
j�1 �H F =

LjX
l=1

a
Lj
l 	

(2)
j�1(�; y

Lj
l ): (52)

Note that, if we can ful�ll the second condition, we are able to calculate the convolu-
tions with scaling functions as well as with wavelets from the same set of coeÆcients
and, therefore, have found a recursion for the determination of the complete multires-
olution analysis.

Our considerations are divided into two parts, viz. the initial step concerning the
scale J and the pyramid step establishing the recursion relation:

The Initial Step. For suitably large J the formula (49) holds true with (50):

aLJl = wLJ
l F (yLJl ); l = 1; : : : ; LJ : (53)

The Pyramid Step. From (46) it follows immediately that

�
�
(2)
j

�^
(n)F^(n) =

LjX
l=1

a
Lj
l (�

(2)
j )^(n)U�

n(y
Lj
l ) (54)

i.e.:

F^(n) =

LjX
l=1

a
Lj
l U�

n(y
Lj
l ) (55)

Revista Matem�atica Complutense

2003, 16; N�um. 1, 277-310
288



W. Freeden, T. Maier, S. Zimmermann A survey on wavelet methods. . .

for n = 0; : : : ; Nj , i.e. the Fourier coeÆcient of the function under consideration is
independent of the kernel functions involved. But this shows us that

Kj �H F = Kj �H

�
(SH)Nj

�H F
�

=

LjX
l=1

a
Lj
l Kj(�; y

Lj
l ) (56)

holds for all H{product kernels Kj : ��� ! R of the form

Kj(x; y) =

NjX
n=0

K^
j (n)U�

n(x)U�
n(y); (x; y) 2 ��� (57)

with arbitrary (real) coeÆcients K^
j (0); : : : ;K^

j (Nj). In particular, we have

	j�1 �H F = 	j�1 �H
�
(SH)Nj

�H F
�

=

LjX
l=1

a
Lj
l 	j�1

�
�; y

Lj
l

�
(58)

and

	
(2)
j�1 �H F = 	

(2)
j�1 �H

�
(SH)Nj

�H F
�

=

LjX
l=1

a
Lj
l 	

(2)
j�1

�
�; y

Lj
l

�
: (59)

Moreover, we �nd for j = 1; : : : ; J

(SH)Nj�1
�H F = (SH)Nj�1

�H
�
(SH)Nj

�H F
�

=

LjX
l=1

a
Lj
l (SH)Nj�1

(�; y
Lj
l ): (60)

Now we obtain from (48) in connection with (60) the recursion relation

a
Lj�1
i = w

Lj�1
i (SH)Nj�1

(�; y
Lj�1
i ) �H F (61)

= w
Lj�1
i

LjX
l=1

a
Lj
l (SH)Nj�1

(y
Lj�1
i ; y

Lj
l );

j = 1; : : : ; J .

In other words, the coeÆcients a
LJ�1
l can be calculated recursively starting from

aLJl for the initial level J , a
LJ�2
l can be deduced recursively from a

LJ�1
l etc. Moreover

it is worth mentioning that the coeÆcients are independent of the special choice of
the wavelet. This �nally leads us to the formulae

�
(2)
j �H F =

LjX
l=1

a
Lj
l �

(2)
j (�; y

Lj
l ); j = 0; : : : ; J (62)
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and

	
(2)
j�1 � F =

LjX
l=1

a
Lj
l 	

(2)
j�1(�; y

Lj
l ); j = 0; : : : ; J (63)

with coeÆcients given by (50) and (61). Furthermore, the coeÆcients a
Lj
l can be used

to calculate the wavelet transform 	j�1 �H F for j = 0; : : : ; J � 1.
The recursion procedure leads us to the following decomposition scheme:

F ! aLJ ! aLJ�1 ! : : : ! aL1 ! aL0

# # # #

	
(2)

J�1 �H F 	
(2)

J�2 �H F 	
(2)

0 �H F �
(2)

0 � F:

(64)

The coeÆcient vectors aL0 ; aL1 ; : : : allow the following reconstruction scheme:

aL0 aL1 aL2
# # #

�
(2)

0 �H F ! + ! 	
(2)

0 �H F ! + ! 	
(2)

1 � F ! : : :

# #

�
(2)

1 �H F �
(2)

2 �H F

: (65)

In the previous chapters we described wavelets as intimately related to a multires-
olution analysis. Moreover, any bandlimited signal (function) is reconstructable by
using bandlimited wavelets.

We saw that the multiresolution analysis \looks" at the signal through a micro-
scope, whose resolution gets �ner and �ner. Thus it associates to the signal a sequence
of smoothed versions, labelled by the scale parameter. The wavelets provide a pow-
erful tool in interpreting and constructing lowpass and bandpass �lters. This makes
wavelets particularly useful for data compression. In fact, compression techniques
aim at reducing storage requirements for the signal and at speeding up read or write
operations. In case of compression we are ready to accept an error, for example, by
using a threshold for the wavelet coeÆcients (see e.g. [7, 8, 14, 17]) as long as the
quality after compression is acceptable.

10. Noise cancellation

Thus far only a deterministic function model has been used. If a comparison of a
measured function with the actual value were done, a discrepancy would be observed.
A mathematical description of this discrepancy has to follow the laws of probability
theory in a stochastic model. Usually the observations are not looked upon as a time
series but rather as a function ~F ('~' for stochastic) for which it is canonical to assume
that

~F = F + ~";

Revista Matem�atica Complutense

2003, 16; N�um. 1, 277-310
290



W. Freeden, T. Maier, S. Zimmermann A survey on wavelet methods. . .

where ~" is the observation noise. Moreover, in our approach, we suppose the covariance
to be known in the form

Cov[ ~F (x); ~F (y)] = E[~"(x); ~"(y)] = K(x; y); (x; y) 2 ���;

where K : ��� ! R is an H-kernel

K(x; y) =

1X
n=0

K^(n)U�
n(x)U�

n(y); (x; y) 2 ���;

with H-admissible symbol fK^(n)gn=0;1;::::

Since the large \true" coeÆcients are the ones that should be included in a selective
reconstruction, in estimating an unknown function F 2 H, it is natural to include
only coeÆcients larger than some speci�ed threshold value. In our context a 'larger'
coeÆcient is taken to mean one that satis�es for j = 0; : : : ; J and l = 1; : : : ; Lj�

~a
Lj
l

�2
=

�
w
Lj
l (SH)Nj

(�; y
Nj

l ) �H ~F
�2

=
�
w
Lj
l

�2 ��
~F (�) ~F (�); (SH)Nj

(�; y
Nj

l )
�
H
; (SH)Nj

(�; yNj
l )
�
H

�
�
w
Lj
l

�2 ��
K(�; �); (SH)Nj

(�; y
Nj

l )
�
H
; (SH)Nj

(�; y
Nj

l )
�
H

=
�
k
Lj
l

�2
:

In spectral language the last estimate reads as follows

�
~a
Lj
l

�2
=

�
w
Lj
l

�2 NjX
n=0

�
U�
n(y

Lj
l )
�2 �

~F^(n)
�2

�
�
w
Lj
l

�2 NjX
n=0

�
U�
n(y

Lj
l )
�2

K^(n)

=
�
k
Lj
l

�2
:

For the given threshold values k
Lj
l a multiscale estimator ('^' for estimated) can be

written in the form:

F̂J =

L0X
i=1

I
f(~a

L0
i

)2�(k0
i
)2g

(�0 �H �0) (yL0i )~aL0i

+

J�1X
j=0

LjX
i=1

I
f(~a

Lj

i
)2�(kj

i
)2g

(	j �H 	j) (yLii )~aLii :

291 Revista Matem�atica Complutense

2003, 16; N�um. 1, 277-310



W. Freeden, T. Maier, S. Zimmermann A survey on wavelet methods. . .

In other words, the large coeÆcients (relative to the threshold k
Lj
i ; i = 1; : : : ; Lj ;

j = 0; : : : ; J � 1) are kept intact and the small coeÆcients are set to zero. The
estimator F̂J can be reformulated in the following way

F̂J =

L0X
i=1

Æhard(k0
i
)

�
(~aL0i )2

�
(�0 �H �0) (yL0i )~aL0i

+

J�1X
j=0

LjX
i=1

Æhard
(kj
i
)

�
(~a

Lj
i )2

�
(	j �H 	j) (yLii )~aLii ;

where the function Æhard� is the hard thresholding function

Æhard� (�) =

�
1 if j�j � �

0 otherwise
:

The \keep or kill" hard thresholding operation is not the only reasonable way of
estimating the coeÆcients. Recognizing that each wavelet coeÆcient consists of both
a signal portion and a noise portion, it might be desirable to attempt to isolate the
signal contribution by removing the noisy part. This idea leads to the soft thresholding
function (see the considerations by [7, 8])

Æhard� (�) =

�
maxf0; 1� �

j�j
g if � 6= 0

0 if � = 0
;

which can also be used in the estimators stated above. When soft thresholding is
applied to a set of empirical coeÆcients, only coeÆcients greater than the threshold
(in absolute value) are included, but their values are 'shrunk' toward zero by an
amount equal to the threshold �.

Summarizing all our results we �nally obtain the following thresholding multiscale

estimator F̂J for a function F 2 H known from error-a�ected ~F :

F̂J =

L0X
i=1

Æhard(k0
i
)

�
(~aL0i )2

�
�
(2)
0 (�; yLoi )~aL0i

+

J�1X
j=0

LjX
i=1

Æhard
(kj
i
)

�
(~a

Lj
i )2

�
	
(2)
j (�; y

Lj
i )~a

Lj
i ;

where the coeÆcients ~a
Lj
i are given recursively (see (53),(61)) by the formulae

~a
Lj
i = w

Lj
i

Lj+1X
l=1

~a
Lj+1
i (SH)Nj

(y
Lj
i ; y

Lj+1
i ); i = 1; : : : ; Lj ; j = 0; : : : ; J � 1

and
~aLJi = wLJ

i
~F (yLJl ); i = 1; : : : ; LJ :
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In conclusion, F̂J is �rst approximated by a thresholded F̂0: Then the coeÆcients of
higher resolutions are thresholded.

11. Legendre wavelets

As a �rst example we consider the space  L2[�1;+1] of square{integrable functions
F : [�1;+1] ! R, i.e. � = [�1;+1] and H =  L2[�1;+1]. The kernels resulting
from this choice, i.e. Legendre scaling functions and wavelets, can be used for one{
dimensional time-series analysis or, in combination with scalar or vectorial spherical
wavelets, for the analysis and approximation of time dependent scalar or vector �elds
on the sphere. Since this subject is beyond the scope of this survey, we do not present
an example and therefore keep the treatise brief.

On the space  L2[�1;+1] we are able to introduce, as usual, the inner product

(F;G) L2

[�1;+1]
=

Z +1

�1

F (t)G(t) dt; F;G 2  L2[�1;+1]: (66)

The  L2[�1;+1]{orthonormal Legendre polynomials P �
n : [�1;+1] ! R given by

P �
n =

r
2n+ 1

2
Pn; n = 0; 1; : : : (67)

with

Pn(t) =

[n=2]X
s=0

(�1)s
(2n� 2s)!

2n(n� 2s)!(n� s)!s!
tn�2s; t 2 [�1;+1] (68)

form a Hilbert basis in  L2[�1;+1]. In other words, every F 2  L2[�1;+1] admits a
Fourier expansion F =

P1
n=0 F

^(n)P �
n , where the Fourier coeÆcients read as follows:

F^(n) = (F; P �
n ) L2

[�1;+1]
=

Z +1

�1

F (t)P �
n (t) dt; n = 0; 1; : : : : (69)

The  L2[�1;+1]{admissible product kernels (cf. [3]) are given by

�(x; t) =

1X
n=0

�^(n)P �
n (x)P �

n (t); x; t 2 [�1;+1] (70)

with �^(n) 2 R, n 2 N0 , where the symbol of the  L2[�1; 1]{kernel has to satisfy the
estimates

(i)

1X
n=0

(�^(n))2 <1; (ii)

1X
n=0

(�^(n)P �
n(t))2 <1 (71)
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for all t 2 [�1;+1]. A suÆcient condition for the validity of the conditions (i) and
(ii) in (71) is given by

1X
n=0

(�^(n))2
2n + 1

4�
<1 (72)

(note that jPn(t)j � 1 for all t 2 [�1;+1]).

Let f(�j)
^(n)gn=0;1;:::, j 2 Z, be the generating symbol of a scaling function f�jg.

Then limJ!1 kFJ � Fk L2

[�1;+1]
= 0 holds for all F 2  L2[�1;+1], where the J{level

approximation FJ is given by

FJ =

Z +1

�1

�J(�; x)

Z +1

�1

�J(x; t)F (t) dt dx =

Z +1

�1

�
(2)
J (�; t)F (t) dt: (73)

The scale spaces Vj are given by

Vj =

�Z +1

�1

�
(2)
j (�; t)F (t) dt

��F 2  L2[�1;+1]

�
; (74)

while the detail spaces are of the form

Wj =

�Z +1

�1

	
(2)
j (�; t)F (t) dt

��F 2  L2[�1;+1]

�
: (75)

The wavelet transform WT at scale j and position x 2 [�1;+1] reads as follows:

(WT )(F )(j;x) =

Z +1

�1

	j(x; t)F (t) dt; F 2  L2[�1;+1]: (76)

Finally, the reconstruction formula of F 2  L2[�1;+1] allows the (bilinear) represen-
tation

F =

Z +1

�1

�0(�; x)

Z +1

�1

�0(x; t)F (t) dt dx

+

1X
j=0

Z +1

�1

	j(�; x)(WT )(F )(j;x) dx :

12. Spherical wavelets

As reference space we now use the space L2(
) of square{integrable functions F : 
 !

R on the unit sphere 
 in three{dimensional Euclidean space R3 (i.e.: � = 
 � R
3

and H = L2). We consider L2 to be equipped with the inner product (F;G)L2 =R


F (�)G(�)d!(�); F;G 2 L2 (d! is the surface element). As L2{orthonormal system
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we choose the system fYn;kg n=0;1;:::;

k=1;:::;2n+1

of spherical harmonics Yn;k of degree n and

order k (see e.g. [10, 11] for more details). From the addition theorem we know that

2n+1X
k=1

Yn;k(�)Yn;k(�) =
2n + 1

4�
Pn(� � �); �; � 2 
; (77)

where Pn is the Legendre polynomial (67) of degree n.

Clearly, every function F 2 L2 can be represented in the form F =
P1

n=0

P2n+1
k=1 F^(n; k)Yn;k,

where the Fourier coeÆcients are given by F^(n; k) = (F; Yn;k)L2 =
R


F (�)Yn;k(�)d!(�).

The L2{product kernels (cf. [10, 11])are of the form

�(�; �) =

1X
n=0

2n+1X
k=1

�^(n; k)Yn;k(�)Yn;k(�) (78)

with �^(n; k) 2 R for n = 0; 1; : : : ; k = 1; : : : ; 2n + 1, where

1X
n=0

2n+1X
k=1

(�^(n; k))2
2n + 1

4�
<1 (79)

is a suÆcient condition for the admissibility (i) and (ii) (note that jYn;k(�)j �p
(2n + 1)=4� for all � 2 
). In case of rotational invariance, i.e. �^(n; k) = �^(n)

for n = 0; 1; : : :; k = 1; : : : ; 2n + 1, the conditions (i) and (ii) reduce to

1X
n=0

(�^(n))2
2n+ 1

4�
<1 : (80)

The convolution of � against F is canonically understood by

(� �L2 F ) (�) = (�(�; �); F )L2 (81)

=

Z



�(�; �)F (�)d!(�)

=

1X
n=0

2n+1X
k=1

�^(n; k)F^(n; k)Yn;k(�); � 2 
 :

Let f(�J)^(n; k)g n=0;1;:::

k=1;:::;2n+1
, J 2 Z, be the generating symbol of a scaling function

f�Jg. Then we have limJ!1 kFJ � FkL2 = 0 for all F 2 L2, where FJ is given by

FJ =
R



�
(2)
J (�; �)F (�) d!(�). The scale and detail spaces and the wavelet transform

WT are given in canonical way.
The reconstruction formula recovering a function F 2 L2 now reads

F =

Z



�
(2)
0 (�; �)F (�) d!(�) +

1X
j=0

Z



	
(2)
j (�; �)F (�)d!(�) : (82)
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Again, the Shannon kernel (SH)2j�1 admits an explicit representation. The space Vj
is equivalent to the spaceH0;:::;2j�1 = Pol2j�1(
) of restrictions to 
 of (homogeneous
harmonic) polynomials in R3 of degree � 2j�1. The dimension of Pol2j�1(
) is equal

to
P2j�1

n=0 (2n + 1) = (2j)2 = 22j .

For j = 0; : : : ; J , the generating coeÆcients w
Lj
l 2 R and nodal points �

Lj
l 2 
,

l = 1; : : : ; Lj , of polynomial exact integration formulae of degree Lj � 2(2j � 1) are
calculable from the linear systems

Z



(SH)Lj (�; �
Lj
i )d!(�) =

LjX
l=1

w
Lj
l (SH)Lj (�

Lj
i ; �

Lj
l ) (83)

i = 1; : : : ; Lj (note that the matrix ((SH)2j�1(�
Lj
i :�

Lj
l ))i;l=1;:::; is assumed to be

of maximal rank). Again we are able to make pro�t of the fact that �
(2)
j (�; �) 2

Pol 2j�1(
) and
R



(SH)2j�1(�; �)F (�)d!(�) 2 Pol2j�1(
), hence, (as a function of �)

�
(2)
j (�; �)

R



(SH)2j�1(� ��)F (�) d!(�) 2 Pol2j+1�2(
) (for more details on polynomial
exact integration the reader is e.g. referred to [10, 11, 16]). In conclusion, we getZ




(�
(2)
j )(�; �)

Z



(SH)2j�1(�; �)F (�)d!(�) (84)

=

LjX
l=1

w
Lj
l �

(2)
j (�; �

Lj
l )

Z



(SH)2j (�
Lj
l ; �)F (�)d!(�) :

j = 0; : : : ; J . The J{level approximation FJ can be obtained in recursive way via the
tree algorithm (pyramid scheme) as indicated in this paper.

For illustrational purposes we present some results obtained by using spherical
wavelets for noise cancellation. Using the well known NASA, GSFC and NIMA
EGM96 model (see http://cddisa.gsfc.nasa.gov/926/egm96/egm96.html) for the gravi-
tational potential we calculated a potential function including contributions of spher-
ical harmonic degrees 3 up to 127. This function was evaluated on the 66564 nodal
points of a point system suitable for numerical integration (see [9] for details on the
point system and the integration technique used). We then 'contaminated' this data
set with bandlimited white noise of variance �2 ' 14:4 and bandwidth nK ' 257.
This resulted in noise of the order of magnitude 102 [Gal m] in a �eld of the order
of magnitude 104 [Gal m]. Note that bandlimited white noise is characterized by the
following symbol of the covariance kernel function:

K^(n) =

(
�2

(nK+1)2
; n � nK ;

0 ; n > nK ; :

It should be remarked that, when looking at the pictures, the noise is not constant at
the poles as one should expect it to be. This is due to our routine of adding the noise

Revista Matem�atica Complutense

2003, 16; N�um. 1, 277-310
296



W. Freeden, T. Maier, S. Zimmermann A survey on wavelet methods. . .

to the synthetic data. However, our results are not inuenced by this, since during
the process of decomposition and reconstruction each data point of the rectangular
domain is weighted by corresponding integration weights which are constructed such
that the poles do not contribute to the whole integration. The denoising process has
been carried out using Shannon wavelets from scales j=0 to 6 and the hard threshold-
ing criterion. Figure 1 shows the gravitational potential after the denoising process,
Figures 2 and 3 show the noise in the data before and after the noise cancellation,
respectively. The rms error of the noisy data-set w.r.t. the clean data has been im-
proved by 51 per cent. Because of the space localizing properties of the wavelets, local
calculations become possible. Figure 4 shows the result of a locally denoised data set,
i.e. from the global data distribution we have extracted a local data set over South
America and applied our algorithms to this spatially restricted area. This resulted in
an improvement of the rms error of 31 per cent.

Figure 1: Denoised graviational potential [100 Gal m]
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Figure 2: Noise before the denoising process [100 Gal m]

Figure 3: Noise after the denoising process [100 Gal m]
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Figure 4: Denoised graviational potential over South America [100 Gal m]

Last but not least we present a computational example illustrating the concept of
multiresolution analysis. The multiresolution analysis 'looks at' the given data (in this
case the EGM96 model potential up to degree and order 360) through a magnifying-
glass, the resolution of which gets �ner and �ner. Thus it associates to the potential
a sequence of smoothed versions, labelled by the scale parameter j. These aspects are
illustrated in the Figures 6 to 11. The computations have been accomplished using
CP scaling functions and wavelets. The nodal points and the corresponding weights
needed for the numerical integration are chosen as described in [16].
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-500.0 0.0 500.0

Figure 5: raw data set [100 Gal]

-100.0 0.0 100.0 200.0 -200.0 0.0 200.0

Figure 6: T3(F ) (left) and R3(F ) (right) in [100 Gal]
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-200.0 0.0 200.0 400.0 -100.0 0.0 100.0

Figure 7: T4(F ) (left) and R4(F ) (right) in [100 Gal]

-500.0 0.0 500.0 0.0 100.0

Figure 8: T5(F ) (left) and R5(F ) (right) in [100 Gal]
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-500.0 0.0 500.0 -50.0 0.0 50.0

Figure 9: T6(F ) (left) and R6(F ) (right) in [100 Gal]

-500.0 0.0 500.0 -50.0 0.0 50.0

Figure 10: T7(F ) (left) and R7(F ) (right) in [100 Gal]
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-500.0 0.0 500.0

Figure 11: T8(F ) [100 Gal]

13. Spherical vectorial wavelets

Now we consider the space l2(
) of square-integrable vectorial functions f : 
 ! R
3

on the unit sphere (i.e. � = 
 � R
3 , H = l2(
)). Equipped with the inner product

(f; g)l2(
) =
R


f(�) � g(�) d!(�), f; g 2 l2(
), l2(
) is a Hilbert space. Using the

L2-orthonormal system fYn;kg n=0;1;:::;
k=1;:::;2n+1

of spherical harmonics (see Section 12) we

are able to introduce an l2(
)-orthonormal system fy
(i)
n;kg

i=1;2;3
n=0i;1:::;

k=1;:::;2n+1

via

y
(1)
n;k(�) = �Yn;k(�); (85)

y
(2)
n;k(�) =

1p
(n(n + 1))

r�
�Yn;k(�); (86)

y
(3)
n;k(�) =

1p
(n(n + 1))

L��Yn;k(�); (87)

where � 2 
, r�
� is the surface gradient and L�� = �^r�

� is the surface curl gradient (see

[11] for more details), 0i = 0 for i = 1 and 0i = 1 for i = 2; 3. Using fy
(i)
n;kg

i=1;2;3
n=0i;1;:::;

k=1;:::;2n+1

every function f 2 l2(
) can be represented by its orthogonal expansion, i.e.

f =

3X
i=1

1X
n=0i

2n�1X
k=1

(f (i))^(n; k)y
(i)
n;k (88)
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with coeÆcients (f (i))^(n; k) =
R


f(�) � y

(i)
n;k(�) d!(�). The vectorial l2(
) kernel

functions of type i are of the form

�(i)(�; �) =

1X
n=0i

2n+1X
k=1

(�(i))^(n)y
(i)
n;k(�)Yn;k(�); (89)

and the vectorial l2(
) kernel functions are then derived by

�(�; �) =

3X
i=1

�(i)(�; �); (90)

with (�(i))^(n) 2 R for i = 1; 2; 3, n = 0; 1; : : : (see [1]). Admissibility is guaranteed
provided that

1X
n=0i

�
(�(i))^(n)

�2 2n + 1

4�
<1 (91)

is assumed. It should be observed that, if Pn denotes the Legendre polynomial of
degree n, r�

�Pn(� ��) = (��(� ��)�)P 0
n(� ��) and L��Pn(� ��) = �^�P 0

n(� ��), such that
singularities at the poles are completely avoided by use of the kernel representations
(89). In connection with the addition theorem (77) of scalar spherical harmonics this
leads to the following, numerically very useful, representations of the vectorial kernel
functions of type i:

�(1)(�; �) = �

1X
n=0i

2n+1X
k=1

2n + 1

4�
(�(1))^(n)Pn(� � �) (92)

�(2)(�; �) = (� � (� � �)�)

1X
n=0i

2n+1X
k=1

2n + 1

4�
p
n(n + 1)

(�(2))^(n)P 0
n(� � �) (93)

�(3)(�; �) = (� ^ �)

1X
n=0i

2n+1X
k=1

2n + 1

4�
p
n(n + 1)

(�(3))^(n)P 0
n(� � �) (94)

The following concept of convolutions is not totally reected by the general Hilbert
space approach discussed in the previous chapters, but it is still in quite analogy to
the presented wavelet idea:
Using the kernels (92),(93) and (94), two kinds of convolutions will be introduced
(cf. [1]), i.e. a convolution of vectorial kernels against vectorial functions - resulting
in scalar coeÆcients - and a convolution of vectorial kernels against scalar valued
functions - enabling us to reconstruct a vectorial function from scalar coeÆcients.
The corresponding convolutions are given by

(� � f)(�) =

Z



�(�; �) � f(�) d!(�)
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=

3X
i=1

1X
n=0i

2n+1X
k=1

(f (i))^(n; k)Yn;k(�); � 2 
;

mapping vector �elds onto scalar �elds and

(� ? F )(�) =

Z



�(�; �)F (�) d!(�)

=

3X
i=1

1X
n=0i

2n+1X
k=1

F^(n; k)y
(i)
n;k(�); � 2 
;

mapping scalar functions onto vectorial functions. Applying both convolutions con-
secutively to a function f 2 l2 results in

(� ? � � f)(�) =

3X
i=1

1X
n=0i

2n+1X
k=1

((�(i))^(n))2(f (i))^(n; k)y
(i)
n;k(�) � 2 
: (95)

Hence, the reconstruction formula recovering a function f 2 l2 now reads

f = �0 ? �0 � f +

1X
j=0

	j ? 	j � f (96)

with �0 =
P3

i=1 �
(i)
0 and 	j =

P3
i=1 	

(i)
j . Again, as in the scalar case one can make

use of discretizations of integrals and use eÆcient pyramid schemes.

Once again, strictly spoken, this approach is a slight extension to the general con-
cept since here two di�erent types of convolutions are de�ned. This, however, is based
on the fact that the direct application of the general approach to vector �elds would
involve tensorial kernel functions. Though being the canonical approach in the sense
of this review, the tensorial kernel functions hold some disadvantages for numerical
applications and will be omitted here (for more details see [1] and [11]).

Similar to the scalar case, we present here an illustrative application of vectorial
spherical wavelets for the denoising of spherical vector �elds. From a bandlimited geo-
magnetic potential up to degree 13 (see [4]) we calculated the corresponding gradient
�eld w.r.t. a local moving triad of unit vectors f"t; "'; "rg, where t 2 [�1; 1] is the
polar distance, ' 2 [��; �) is the spherical longitude and r is the radius of the sphere
of interest (e.g. a satellite orbit in spherical approximation). For details on notation
the reader is referred to [11]. In similarity to the scalar example given above, we
computed the gradient �eld on 3600 nodal points of a suitable integration point system

(cf. [9]) (note that, due to the lower degree of the geomagnetic potential we need less
integration points). In a second step each vectorial component was \contaminated"
with bandlimited white noise of bandlimit nK and variance �2 of approximately 60
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and 0.9, respectively (see the remarks in Section 12). This resulted in noise of the
order of magnitude 100 [nT] in �eld components of the order of magnitude 104 [nT].
The denoising process has been accomplished using vectorial Shannon wavelets of
type 1 and 2 and of scales j = 1 to 3 and applying the hard thresholding criterion.
Figure 12 show the denoised negative radial component (i.e. the �"r-component) and
the denoised tangential "'-component of the gradient �eld (the results for the "t are
similar and are therefore omitted). Figure 13 shows the noise that has been added
to the �eld components (see the remarks in Section 12) while Figure 14 shows the
remaining noise after the noise cancellation. The rms error w.r.t. the unnoised data
has been improved by 87 per cent for the �"r-component and by 89 per cent for the
"'-component.

Figure 12: Denoised �"r-component (left) and "'-component in 10000 [nT]

Figure 13: Absolute value of noise [nT]
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Figure 14: Error of denoised �"r (left) and "' (right) component w.r.t. clear data
[nT]

Finally we close with an example of spherical vectorial wavelets applied to CHAMP
Fluxgate-magnetometer data. CHAMP is a geoscienti�c satellite run by the Geo-
ForschungsZentrum (GFZ) in Potsdam, Germany (see http://www.gfz-potsdam.de
and www.gfz-potsdam.de/champ/ for more information on the GFZ or the CHAMP
satellite mission). In addition to gravitational �eld and ionospheric measurements,
CHAMP is designed to map the geomagnetic �eld with high accuracy using a scalar
Overhauser-magnetometer and two vector Fluxgate-magnetometers. In the follow-
ing example we have applied spherical vectorial wavelets to vector data from August
2001 to November 2001 (10:00 - 16:00 local time). In a �rst step the data have
been corrected for so-called main �eld distributions by using the spherical harmonic
model Oersted-10b-01 (cf. [15]) and have then been gridded to a regular grid using an
inverse-distance method. We then have performed a vectorial multiresolution analysis
using type i = 3 Shannon wavelets. This procedure leads to a multiresolution analysis
of the so-called toroidal magnetic �eld at satellite height. The toroidal �eld is purely
tangential and can be shown to be due to radial electric current distributions crossing
the satellite's track (see e.g. [2]). Figures 15 up to 17 present the absolute value of
the toroidal �eld at di�erent scales. It can clearly be seen that in higher scales we
get large contributions in the vicinity of the north- and southpole. These are due to
strong current systems owing onto and away from the Earth in the polar areas (�eld
aligned currents).
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Figure 15: Toroidal Intensity at scales 0 (left) and 1 (right); [nT]

Figure 16: Toroidal Intensity at scales 2 (left) and 3 (right); [nT]
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Figure 17: Toroidal Intensity at scale 4 (left) and Reconstruction (right); [nT]
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