An Ostrowski like inequality for convex functions and applications

Sever S. DRAGOMIR

School of Computer Science and Mathematics Victoria University of Technology PO Box 14428, Melbourne City MC Victoria 8001, Australia. sever@matilda.vu.edu.au

Recibido: 23 de Julio de 2002 Aceptado: 17 de Febrero de 2003

ABSTRACT

In this paper we point out an Ostrowski type inequality for convex functions which complement in a sense the recent results for functions of bounded variation and absolutely continuous functions. Applications in connection with the Hermite-Hadamard inequality are also considered.

 $2000\ Mathematics\ Subject\ Classification:$ Primary 26D15, 26D10. Key words: Ostrowski type inequalities, Convex functions, Hermite-Hadamard type inequalities

1. Introduction

In 1938, A. Ostrowski [9] proved the following integral inequality

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) \|f'\|_{\infty}$$
 (1.1)

provided f is differentiable and $\left\Vert f'\right\Vert _{\infty}=\sup_{t\in\left(a,b\right)}\left|f'\left(t\right)\right|<\infty.$

The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller constant.

In the last 5 years, many authors have concentrated their efforts in generalising (1.1) and have applied the obtained results in different fields, including Numerical Integration, Probability Theory and Statistics, Information Theory, etc. For a comprehensive approach in the field, see the recent book [5] where many other references may be found.

ISSN: 1139-1138

One direction of generalising (1.1) was pointed out by the author in [2] - [4]. Let us recall here a couple of the main results obtained in the above papers.

Theorem 1. Let $I_k: a = x_0 < x_1 < \cdots < x_{k-1} < x_k = b$ be a division of the interval [a,b] and α_i $(i=0,\ldots,k+1)$ be k+2 points such that $\alpha_0=a, \ \alpha_i \in [x_{i-1},x_i]$ $(i=1,\ldots,k)$ and $\alpha_{k+1}=b$. If $f:[a,b]\to\mathbb{R}$ is of bounded variation on [a,b], then we have the inequality:

$$\left| \int_{a}^{b} f(x) dx - \sum_{i=0}^{k} (\alpha_{i+1} - \alpha_{i}) f(x_{i}) \right|$$

$$\leq \left[\frac{1}{2} \nu(h) + \max \left\{ \left| \alpha_{i+1} - \frac{x_{i} + x_{i+1}}{2} \right|, i = 0, \dots, k-1 \right\} \right] \bigvee_{a=0}^{b} (f),$$
(1.2)

where $\nu(h) := \max\{h_i|i=0,\ldots,k-1\}$, $h_i := x_{i+1} - x_i$ $(i=0,\ldots,k-1)$ and $\bigvee_a^b(f)$ is the total variation of f on [a,b].

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller constant.

If one would assume more for the function f, for example, absolute continuity, then the following result holds.

Theorem 2. Under the assumptions of Theorem 1 for I_k and α_i (i = 0, ..., k + 1) and if $f : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b], then

$$\left| \int_{a}^{b} f(x) dx - \sum_{i=0}^{k} (\alpha_{i+1} - \alpha_{i}) f(x_{i}) \right|$$
 (1.3)

$$\begin{cases}
\left[\frac{1}{4}\sum_{i=0}^{k-1}h_i^2 + \sum_{i=0}^{k-1}\left(\alpha_{i+1} - \frac{x_i + x_{i+1}}{2}\right)^2\right] \|f'\|_{\infty} & if \ f' \in L_{\infty}\left[a, b\right]; \\
\frac{1}{(q+1)^{\frac{1}{q}}}\left[\sum_{i=0}^{k-1}\left[\left(\alpha_{i+1} - x_i\right)^{q+1} + \left(x_{i+1} - \alpha_{i+1}\right)^{q+1}\right]\right]^{\frac{1}{q}} \|f'\|_{p} & if \ f' \in L_{p}\left[a, b\right], \\
p > 1, \ \frac{1}{p} + \frac{1}{q} = 1; \\
\left[\frac{1}{2}\nu\left(h\right) + \max\left\{\left|\alpha_{i+1} - \frac{x_i + x_{i+1}}{2}\right|, \ i = 0, \dots, k-1\right\}\right] \|f'\|_{1},
\end{cases}$$

where $\|\cdot\|_p$ $(p \in [1, \infty])$ are the Lebesgue norms, i.e.,

$$\begin{split} \left\|h\right\|_{\infty} & : & = ess \sup_{t \in [a,b]} \left|h\left(t\right)\right|, \\ \left\|h\right\|_{p} & : & = \left(\int_{a}^{b} \left|h\left(t\right)\right|^{p} dt\right)^{\frac{1}{p}}, \quad p \in [1,\infty). \end{split}$$

The constants $\frac{1}{4}$, $\frac{1}{(a+1)^{\frac{1}{q}}}$ and $\frac{1}{2}$ are best in the sense mentioned above.

In this paper, the case of convex functions $f:[a,b]\to\mathbb{R}$ is examined. Some particular cases in connection with the well known Hermite-Hadamard inequality for convex functions are also considered.

2. The Results

The following result holds.

Theorem 3. Let $I_k: a = x_0 < x_1 < \cdots < x_{k-1} < x_k = b$ be a division of the interval [a,b] and α_i $(i=0,\ldots,k+1)$ be k+2 points such that $\alpha_0=a, \ \alpha_i \in [x_{i-1},x_i]$ $(i=1,\ldots,k)$ and $\alpha_{k+1}=b$. If $f:[a,b] \to \mathbb{R}$ is a convex function on [a,b], then we have the inequality:

$$\frac{1}{2} \sum_{i=0}^{k-1} \left[(x_{i+1} - \alpha_{i+1})^2 f'_{+} (\alpha_{i+1}) - (\alpha_{i+1} - x_i)^2 f'_{-} (\alpha_{i+1}) \right]$$

$$\leq \sum_{i=0}^{k} (\alpha_{i+1} - \alpha_i) f(x_{i+1}) - \int_a^b f(t) dt$$

$$\leq \frac{1}{2} \sum_{i=0}^{k-1} \left[(x_{i+1} - \alpha_{i+1})^2 f'_{-} (x_{i+1}) - (\alpha_{i+1} - x_i)^2 f'_{+} (x_i) \right].$$
(2.1)

The constant $\frac{1}{2}$ is sharp in both inequalities.

Proof. Using the integration by parts formula, we may prove the equality (see for example [3]):

$$\sum_{i=0}^{k} (\alpha_{i+1} - \alpha_i) f(x_{i+1}) - \int_a^b f(t) dt = \sum_{i=0}^{k-1} \int_{x_i}^{x_{i+1}} (t - \alpha_{i+1}) f'(t) dt$$
 (2.2)

for any locally absolutely continuous function $f:(a,b)\to\mathbb{R}$.

Since f is convex, then it is locally Lipschitzian on (a,b) and thus the above equality holds. Also, we have

$$f'_{+}(x_i) \le f'(t) \le f'_{-}(\alpha_{i+1})$$
 for a.e. $t \in [x_i, \alpha_{i+1}]$ (2.3)

and

$$f'_{+}(\alpha_{i+1}) \le f'(t) \le f'_{-}(x_{i+1})$$
 for a.e. $t \in [\alpha_{i+1}, x_{i+1}]$. (2.4)

Using (2.3) and (2.4), we may write that

$$f'_{-}(\alpha_{i+1}) \int_{x_{i}}^{\alpha_{i+1}} (t - \alpha_{i+1}) dt \leq \int_{x_{i}}^{\alpha_{i+1}} f'(t) (t - \alpha_{i+1}) dt$$

$$\leq f'_{+}(x_{i}) \int_{x_{i}}^{\alpha_{i+1}} (t - \alpha_{i+1}) dt$$
(2.5)

and

$$f'_{+}(\alpha_{i+1}) \int_{\alpha_{i+1}}^{x_{i+1}} (t - \alpha_{i+1}) dt \leq \int_{\alpha_{i+1}}^{x_{i+1}} f'(t) (t - \alpha_{i+1}) dt$$

$$\leq f'_{-}(x_{i+1}) \int_{\alpha_{i+1}}^{x_{i+1}} (t - \alpha_{i+1}) dt.$$
(2.6)

Adding (2.5) and (2.6) and taking into account that

$$\int_{x_{i}}^{\alpha_{i+1}} (t - \alpha_{i+1}) dt = -\frac{1}{2} (\alpha_{i+1} - x_{i})^{2}$$

and

$$\int_{\alpha_{i+1}}^{x_{i+1}} (t - \alpha_{i+1}) dt = \frac{1}{2} (x_{i+1} - \alpha_{i+1})^2,$$

we get

$$\frac{1}{2} \left[(x_{i+1} - \alpha_{i+1})^2 f'_{+} (\alpha_{i+1}) - (\alpha_{i+1} - x_i)^2 f'_{-} (\alpha_{i+1}) \right]$$

$$\leq \int_{x_i}^{x_{i+1}} (t - \alpha_{i+1}) f'(t) dt$$

$$\leq \frac{1}{2} \left[(x_{i+1} - \alpha_{i+1})^2 f'_{-} (x_{i+1}) - (\alpha_{i+1} - x_i)^2 f'_{+} (x_i) \right]$$
(2.7)

for any i = 0, ..., k - 1.

If we sum (2.7) over i from 0 to k-1 and use the identity (2.2), we deduce the desired result (2.1).

The sharpness will be proved in what follows for a particular case.

It is natural to consider the following particular case.

Corollary 1. Let L_k and f be as in the above theorem. Then we have the inequality

$$0 \leq \frac{1}{8} \sum_{i=0}^{k-1} \left[f'_{+} \left(\frac{x_{i} + x_{i+1}}{2} \right) - f'_{-} \left(\frac{x_{i} + x_{i+1}}{2} \right) \right] (x_{i+1} - x_{i})^{2}$$

$$\leq \frac{1}{2} \left[(x_{1} - a) f(a) + \sum_{i=1}^{k-1} (x_{i+1} - x_{i-1}) f(x_{i}) + (b - x_{k-1}) f(b) \right]$$

$$- \int_{a}^{b} f(t) dt$$

$$\leq \frac{1}{8} \sum_{i=0}^{k-1} \left[f'_{-} (x_{i+1}) - f'_{+} (x_{i}) \right] (x_{i+1} - x_{i})^{2} .$$

$$(2.8)$$

The constant $\frac{1}{8}$ in both inequalities is sharp.

The proof follows by the above theorem choosing $\alpha_i = \frac{x_{i-1} + x_i}{2}$, $i = 1, \dots, k$ and taking into account that (see also [2])

$$\sum_{i=0}^{k} (\alpha_{i+1} - \alpha_i) f(x_i)$$

$$= \frac{1}{2} \left[(x_1 - a) f(a) + \sum_{i=1}^{k-1} (x_{i+1} - x_{i-1}) f(x_i) + (b - x_{k-1}) f(b) \right].$$
(2.9)

The following corollary for equidistant partitioning also holds.

Corollary 2. Let

$$I_k : x_i := a + (b - a) \cdot \frac{i}{k} \qquad (i = 0, \dots, k)$$

be an equidistant partitioning of [a,b]. If $f:[a,b]\to\mathbb{R}$ is convex on [a,b], then we have the inequalities

$$0 \leq \frac{(b-a)^2}{8n^2} \sum_{i=0}^{k-1} \left\{ f'_+ \left[a + \left(i + \frac{1}{2} \right) \frac{b-a}{n} \right] - f'_- \left[a + \left(i + \frac{1}{2} \right) \frac{b-a}{n} \right] \right\}$$

$$\leq \frac{1}{k} \cdot \frac{f(a) + f(b)}{2} (b-a) + \frac{b-a}{k} \sum_{i=1}^{k-1} f\left[\frac{(k-i)a + ib}{k} \right] - \int_a^b f(t) dt$$

$$\leq \frac{(b-a)^2}{8n^2} \sum_{i=0}^{k-1} \left\{ f'_- \left[a + (i+1) \cdot \frac{b-a}{n} \right] - f'_+ \left[a + i \cdot \frac{b-a}{n} \right] \right\}.$$
(2.10)

The following particular cases which hold when we assume differentiability conditions may be stated.

Corollary 3. If $\alpha_i \in (a,b)$ for $i=1,\ldots,k$ are points of differentiability for f, then we have the inequality

$$\sum_{i=0}^{k-1} (x_{i+1} - x_i) \left(\frac{x_i + x_{i+1}}{2} - \alpha_{i+1} \right) f'(\alpha_{i+1})$$

$$\leq \sum_{i=0}^{k} (\alpha_{i+1} - \alpha_i) f(x_{i+1}) - \int_a^b f(t) dt.$$
(2.11)

If we denote by $\nu(I_n) := \max\{x_{i+1} - x_i | i = 0, \dots, k-1\}$, then the following corollary also holds.

Corollary 4. If x_i (i = 1, ..., k - 1) are points of differentiability for f then

$$\frac{1}{2} \left[(x_1 - a) f(a) + \sum_{i=0}^{k-1} (x_{i+1} - x_{i-1}) f(x_i) + (b - x_{k-1}) f(b) \right] - \int_a^b f(t) dt$$

$$\leq \frac{1}{8} \left[\nu (I_n) \right]^2 \left[f'_-(b) - f'_+(a) \right]. \tag{2.12}$$

3. Some Particular Inequalities

(1) If we choose $x_0 = a$, $x_1 = b$, $\alpha_0 = a$, $\alpha_1 = x \in (a, b)$, $\alpha_2 = b$, then from (2.1) we deduce (see also [6])

$$\frac{1}{2} \left[(b-x)^2 f'_{+}(x) - (x-a)^2 f'_{-}(x) \right]$$

$$\leq (x-a) f(a) + (b-x) f(b) - \int_a^b f(t) dt$$

$$\leq \frac{1}{2} \left[(b-x)^2 f'_{-}(b) - (x-a)^2 f'_{-}(a) \right].$$
(3.1)

The constant $\frac{1}{2}$ is sharp in both inequalities (see for example [6]).

If $x = \frac{a+b}{2}$, then by (3.1) one deduces (see also [6])

$$0 \leq \frac{1}{8} (b-a)^{2} \left[f'_{+} \left(\frac{a+b}{2} \right) - f'_{-} \left(\frac{a+b}{2} \right) \right]$$

$$\leq \frac{f(a) + f(b)}{2} \cdot (b-a) - \int_{a}^{b} f(t) dt$$

$$\leq \frac{1}{8} (b-a)^{2} \left[f'_{-} (b) - f'_{+} (a) \right]$$
(3.2)

and the constant $\frac{1}{8}$ in both inequalities is sharp (see for example [6]).

If one would assume that $x \in (a, b)$ is a point of differentiability, then

$$(b-a)\left(\frac{a+b}{2}-x\right)f'(x) \le (x-a)f(a) + (b-x)f(b) - \int_a^b f(t) dt.$$
 (3.3)

(2) If we choose $a = x_0 < x < x_2 = b$ and the numbers $\alpha_0 = a$, $\alpha \in (a, x]$, $\beta \in [x, b)$ and $\alpha_3 = b$, then by Theorem 3, we deduce

$$\frac{1}{2} \left[(x - \alpha)^2 f'_{+}(\alpha) - (\alpha - a)^2 f'_{-}(\alpha) + (b - \beta)^2 f'_{+}(\beta) - (\beta - x)^2 f'_{-}(\beta) \right]
\leq (\alpha - a) f(a) + (\beta - \alpha) f(x) + (b - \beta) f(b) - \int_a^b f(t) dt$$

$$\leq \frac{1}{2} \left[(x - \alpha)^2 f'_{-}(x) - (\alpha - a)^2 f'_{+}(a) + (b - \beta)^2 f'_{-}(b) - (\beta - x)^2 f'_{+}(x) \right].$$
(3.4)

The constant $\frac{1}{2}$ is sharp in both inequalities.

(a) Note that if we let $\alpha \to a+$ and $\beta \to b-$, then from (3.4), by taking into account firstly that $(x-\alpha)^2 f'_+(a) \leq (x-\alpha)^2 f'_+(\alpha)$ and $-(\beta-x)^2 f'_-(b) \leq$ $-(\beta-x)^2 f'_{-}(\beta)$, we may deduce the inequality obtained in [7]:

$$\frac{1}{2} \left[(b-x)^2 f'_{+}(x) - (x-a)^2 f'_{-}(x) \right]$$

$$\leq \int_a^b f(t) dt - (b-a) f(x)$$

$$\leq \frac{1}{2} \left[(\beta - x)^2 f'_{-}(b) + (x-a)^2 f'_{+}(a) \right].$$
(3.5)

The constant $\frac{1}{2}$ is sharp in both inequalities (see for example [7]).

If in (3.5) we choose $x = \frac{a+b}{2}$, then (see also [7])

$$0 \leq \frac{1}{8} (b-a)^{2} \left[f'_{+} \left(\frac{a+b}{2} \right) - f'_{-} \left(\frac{a+b}{2} \right) \right]$$

$$\leq \int_{a}^{b} f(t) dt - (b-a) f\left(\frac{a+b}{2} \right)$$

$$\leq \frac{1}{8} (b-a)^{2} \left[f'_{-} (b) - f'_{+} (a) \right]$$
(3.6)

and the constant $\frac{1}{8}$ is sharp in both inequalities.

We may state now the following result for convex functions improving Hermite-Hadamard integral inequalities.

Proposition 1. Let $f:[a,b] \to \mathbb{R}$ be a convex function on [a,b]. Then

$$0 \leq \frac{1}{8} (b-a) \left[f'_{+} \left(\frac{a+b}{2} \right) - f'_{-} \left(\frac{a+b}{2} \right) \right]$$

$$\leq \frac{1}{b-a} \int_{a}^{b} f(t) dt - f\left(\frac{a+b}{2} \right)$$

$$\leq \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t) dt$$

$$\leq \frac{1}{8} (b-a) \left[f'_{-} (b) - f'_{+} (a) \right].$$
(3.7)

The constant $\frac{1}{8}$ is sharp in both parts.

If one would assume that $x \in (a, b)$ is a differentiability point for f, then we have the inequality [7]

$$(b-a)\left(\frac{a+b}{2} - x\right)f'(x) \le \int_{a}^{b} f(t) dt - (b-a)f(x). \tag{3.8}$$

(b) If we choose $\alpha = \frac{a+x}{2}$ and $\beta = \frac{x+b}{2}$, then by (3.4) we have the three point inequality:

$$0 \leq \frac{1}{8} \left\{ (x-a)^2 \left[f'_+ \left(\frac{a+x}{2} \right) - f'_- \left(\frac{a+x}{2} \right) \right] + (b-x)^2 \left[f'_+ \left(\frac{x+b}{2} \right) - f'_- \left(\frac{x+b}{2} \right) \right] \right\}$$

$$\leq \frac{1}{2} \left[(x-a) f(a) + f(x) (b-a) + (b-x) f(b) \right] - \int_a^b f(t) dt$$

$$\leq \frac{1}{8} \left\{ (x-a)^2 \left[f'_+ (x) - f'_- (a) \right] + (b-x)^2 \left[f'_- (b) - f'_+ (x) \right] \right\}$$
(3.9)

for any $x \in (a,b)$. The constant $\frac{1}{8}$ is sharp in both parts.

If in (3.9) we choose $x = \frac{a+b}{2}$, then we get

$$0 \leq \frac{1}{32} (b-a)^{2} \left[f'_{+} \left(\frac{3a+b}{4} \right) - f'_{-} \left(\frac{3a+b}{4} \right) + f'_{+} \left(\frac{a+3b}{4} \right) - f'_{-} \left(\frac{a+3b}{4} \right) \right]$$

$$\leq \frac{1}{2} \cdot \left[\frac{f(a)+f(b)}{2} + f\left(\frac{a+b}{2} \right) \right] (b-a) - \int_{a}^{b} f(t) dt$$

$$\leq \frac{1}{32} (b-a)^{2} \left[f'_{-} (b) - f'_{+} \left(\frac{a+b}{2} \right) + f'_{-} \left(\frac{a+b}{2} \right) - f'_{+} (a) \right]$$
(3.10)

If one would assume that f is differentiable in $\frac{a+b}{2}$, then we get the following reverse of Bullen's inequality

$$0 \leq \frac{1}{2} \cdot \left[\frac{f(a) + f(b)}{2} + f\left(\frac{a+b}{2}\right) \right] (b-a) - \int_{a}^{b} f(t) dt \qquad (3.11)$$

$$\leq \frac{1}{32} (b-a)^{2} \left[f'_{-}(b) - f'_{+}(a) \right].$$

The constant $\frac{1}{32}$ is sharp.

(c) Now, if we choose $\alpha = \frac{5a+b}{6}$, $\beta = \frac{a+5b}{6}$ and $x \in \left[\frac{5a+b}{6}, \frac{a+5b}{6}\right]$ in (3.4), then we have the inequalities

$$\frac{1}{2} \left[\left(x - \frac{5a+b}{6} \right)^2 f'_+ \left(\frac{5a+b}{6} \right) - \frac{(b-a)^2}{36} f'_- \left(\frac{5a+b}{6} \right) \right]$$

$$+ \frac{(b-a)^2}{36} f'_+ \left(\frac{a+5b}{6} \right) - \left(\frac{a+5b}{6} - x \right)^2 f'_- \left(\frac{a+5b}{6} \right) \right]$$

$$\leq \frac{b-a}{3} \left[\frac{f(a)+f(b)}{2} + 2f(x) \right] - \int_a^b f(t) dt$$

$$\leq \frac{1}{2} \left[\left(x - \frac{5a+b}{6} \right)^2 f'_- (x) - \frac{(b-a)^2}{36} f'_+ (a) \right]$$

$$+ \frac{(b-a)^2}{36} f'_- (b) - \left(\frac{a+5b}{6} - x \right)^2 f'_+ (x) \right].$$

If in (3.12) we choose $x = \frac{a+b}{2}$, then we get the Simpson's inequality

$$\frac{1}{18}(b-a)^{2}\left[f'_{+}\left(\frac{5a+b}{6}\right) - \frac{1}{4}f'_{-}\left(\frac{5a+b}{6}\right) + \frac{1}{4}f'_{+}\left(\frac{a+5b}{6}\right) - f'_{-}\left(\frac{a+5b}{6}\right)\right] \\
\leq \frac{b-a}{3}\left[\frac{f(a)+f(b)}{2} + 2f\left(\frac{a+b}{2}\right)\right] - \int_{a}^{b}f(t)\,dt \\
\leq \frac{1}{18}(b-a)^{2}\left[f'_{-}\left(\frac{a+b}{2}\right) - \frac{1}{4}f'_{+}(a) + \frac{1}{4}f'_{-}(b) - f'_{+}\left(\frac{a+b}{2}\right)\right].$$
(3.13)

If the function is differentiable on (a, b), then we get

$$-\frac{1}{24} (b-a)^{2} \left[f'\left(\frac{a+5b}{6}\right) - f'\left(\frac{5a+b}{6}\right) \right]$$

$$\leq \frac{b-a}{3} \left[\frac{f(a)+f(b)}{2} + 2f\left(\frac{a+b}{2}\right) \right] - \int_{a}^{b} f(t) dt$$

$$\leq \frac{1}{72} (b-a)^{2} \left[f'_{-}(b) - f'_{+}(a) \right].$$
(3.14)

References

- G. Anastassiou, Ostrowski type inequalities, Proc. Amer. Math. Soc., 123(12) (1995), 3775-3781.
- [2] S.S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60 (1999), 495-508.
- [3] S.S. Dragomir, A generalisation of Ostrowski integral inequality for mappings whose derivatives belong to $L_p[a,b]$, 1 and applications in numerical integration, <math>J. Math. Anal. Appl., **225** (2001), 605-626.
- [4] S.S. Dragomir, A generalisation of Ostrowski integral inequality for mappings whose derivatives belong to $L_1[a, b]$, and applications in numerical integration, J. Computational Analysis and Appl., **3**(4) (2001), 343-360.
- [5] S.S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
- [6] S.S. Dragomir, A generalised trapezoid type inequality for convex functions, (Preprint) RGMIA Res. Rep. Coll., 5(1) (2002), Article 9. [ONLINE] http://rgmia.vu.edu.au/v5n1.html
- [7] S.S. Dragomir, An Ostrowski type inequality for convex functions, (Preprint) RGMIA Res. Rep. Coll., 5(1) (2002), Article 5. [ONLINE] http://rgmia.vu.edu.au/v5n1.html
- [8] A.M. Fink, Bounds on the derivation of a function from its averages, Czech. Math. J., 42 (1992), 289-310.
- [9] A. Ostrowski, Über die Absolutabweichung einer differentiienbaren Funcktion von ihren Integralwittelwert, Comment. Math. Helv., 10 (1938), 220-227.