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ABSTRACT

In this paper we point out an Ostrowski type inequality for convex functions
which complement in a sense the recent results for functions of bounded varia-
tion and absolutely continuous functions. Applications in connection with the
Hermite-Hadamard inequality are also considered.
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1. Introduction

In 1938, A. Ostrowski [9] proved the following integral inequality

1 _agp)?
< 4+<xb_;> (b—a) | f'll (1.1)

b
|f(r)b_1a/ 7 (e

provided f is differentiable and ||f'|| = sup |f’(t)| < oc.
t€(a,b)

The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.

In the last 5 years, many authors have concentrated their efforts in generalising
(1.1) and have applied the obtained results in different fields, including Numerical
Integration, Probability Theory and Statistics, Information Theory, etc. For a com-
prehensive approach in the field, see the recent book [5] where many other references
may be found.
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One direction of generalising (1.1) was pointed out by the author in [2] — [4]. Let
us recall here a couple of the main results obtained in the above papers.

Theorem 1. Let I :a =29 < x1 < -+ < xp_1 < T = b be a division of the interval
[a,b] and «; (i=0,...,k+1) be k + 2 points such that ag = a, o; € [x;—1,;]
(i=1,...,k) and agy1 = b. If f : [a,b] — R is of bounded variation on [a,b], then
we have the inequality:

b k
f@yde = (i —ai) f () (1.2)
@ i=0
b
< {2V(h)+max{ Qi1 — w , i—O,...,le \a/(f)

where v (h) := max{h;|i =0,...,k— 1}, h; :==2;01—2; (i=0,...,k—1) and\/z (f)
is the total variation of f on [a,b].

The constant % 18 sharp in the sense that it cannot be replaced by a smaller con-
stant.

If one would assume more for the function f, for example, absolute continuity, then
the following result holds.

Theorem 2. Under the assumptions of Theorem 1 for I and o; (i =0,...,k+1)
and if f : [a,b] — R is absolutely continuous on [a,b], then

x)dr — Z (qiv1 — aq) f (i)

(1.3)
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|:%I/ (h) + max {

Tit+Tit1
2

ci= 0 k=1L

where [|||,, (p € [1,00]) are the Lebesgue norms, i.e.,

[hlloe = =ess sup [h(E)],

t€la,b]

Inl, (/ ht |pdt> . pe o).
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The constants %7 L

(¢+1)4

In this paper, the case of convex functions f : [a,b] — R is examined. Some

particular cases in connection with the well known Hermite-Hadamard inequality for
convex functions are also considered.

and % are best in the sense mentioned above.

2. The Results

The following result holds.

Theorem 3. Let I, :a=x¢9 <z < -+ < xp_1 < xp = b be a division of the interval
[a,b] and «; (i=0,...,k+1) be k + 2 points such that ag = a, o; € [x;-1,;]
(i=1,...,k) and ars1 = b. If f : [a,b] — R is a convex function on [a,b], then we
have the inequality:

>
|
—

[(177:+1 —aip1)” i (i) — (ipr — 2:) f (%+1)} (2.1)

N =
Il
o

%

b
(ais1 — ) f (i) — / £ (t)dt

M=

<

> o
|
—

< [(Ii+1 — 1)’ fL(@ir1) — (i1 — 23)? f, (xi)} :

DN | =
o

1=
The constant % 18 sharp in both inequalities.

Proof. Using the integration by parts formula, we may prove the equality (see for
example [3]):

k b k—1
Y (@ipr =) f(wita) */ f(t)di = Z/

i=0 i=0 Y%

%iﬂ (t —aiy1) [/ () dt (2.2)

for any locally absolutely continuous function f : (a,b) — R.
Since f is convex, then it is locally Lipschitzian on (a,b) and thus the above
equality holds. Also, we have

Jh (@) < f1 () < fL(quigr) forae. te [z, o] (2.3)
and
fjr (O[i+1) < f/ (t) < fL (xi+1) for a.e. te€ [O[iJrl,iEiJrl] . (24)
Using (2.3) and (2.4), we may write that

Q41 Qi1
fI, (aiJrl) / (t — ai+1) dt S / f/ (t) (t — Oéi+1) dt (25)
x; T
, Qg1
< Sy (@) (t — ciga)dt
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and

i (ai+1)/vi+1 (t—aip)dt < /vi+1 fH(#) (t = i) dt (2.6)

IN

fL ($i+1)/ - (t — cjq1) dt.

i+1

Adding (2.5) and (2.6) and taking into account that

[ PRE] 1 5
/ (t—@it1)dt = —§(Oéi+1 — ;)

i

and
we get
% [(x”l —air1)” fi (@) = (@iry —2:)” fL (ai“)} (2.7)
< /:+ (t —ayt1) () dt
= % [(”””1 — aip1)? £ (ig) — (i1 — ) £ (g;i)}

forany ¢ =0,...,k—1.

If we sum (2.7) over 4 from 0 to k — 1 and use the identity (2.2), we deduce the
desired result (2.1).

The sharpness will be proved in what follows for a particular case. [ |

It is natural to consider the following particular case.
Corollary 1. Let Ly and f be as in the above theorem. Then we have the inequality

13 i+ T , i+ T
0 < 3 Z {fjr <:v+2x+1) - f- <:v+2x+1)] (Tip1 —x)° (2.8)

=0

k—1
< % [(iﬂl —a) f(a)+ Z (@it1 —xi—1) [ (@) + (b —xp-1) f (b)l
, =1
— [ f@)at
1 kjl
< 3 [f2 @ir1) = £ (@2)] (@iga — 23)*
=0

The constant % in both inequalities is sharp.
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The proof follows by the above theorem choosing a; = %, i=1,...,k and
taking into account that (see also [2])
k
Z (ip1 —aq) [ () (2.9)
i=0
1 k—1
D) (z1—a) f(a) + Z (i1 — @i—1) [ (z:) + (b —zp—1) f (b)
i=1

The following corollary for equidistant partitioning also holds.

Corollary 2. Let

In:z;:=a+ (b—a)- (i=0,...,k)

| .

be an equidistant partitioning of [a,b]. If f : [a,b] — R is convezx on [a,b], then we
have the inequalities

0 < (b8_n§)2 kz_:l {f’+ [a—&- (H— %) b;a] (2.10)

c LI@n,
+b;aljzllf{(k—iz€a+zb} - a"f(t)dt
R frven 5] e )

The following particular cases which hold when we assume differentiability condi-
tions may be stated.

Corollary 3. If o; € (a,b) fori=1,...,k are points of differentiability for f, then
we have the inequality

k—1 T, + x;
> (@iv1 — 1) (zTZH - Oéz'+1> [ (@ig1) (2.11)
=0
k b
< (it — i) [ (@it1) —/ f(t) dt.
=0 a
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If we denote by v (I,) := max{x;11 — ;i =0,...,k — 1}, then the following
corollary also holds.

Corollary 4. Ifz; (i=1,...,k — 1) are points of differentiability for f then

L k—1 b
B} (z1—a) f(a) + Z (Tit1 — @i—1) f(zi) + (b —ap-1) f (b)] - / f(t)dt
i=0 N
< S0 - f (@) (212)

3. Some Particular Inequalities

(1) If we choose xp = a, 1 = b, g = a, a1 = z € (a,b), ag = b, then from (2.1)
we deduce (see also [6])

[ A RE —aff<@} (31)
< @-a)f@+b-2)f t/f
< %[@—xffL@%—@—w)f_ (@)].

The constant % is sharp in both inequalities (see for example [6]).

If 2 = 22 then by (3.1) one deduces (see also [6])

0 < go-o?|r (50) - (5] (32)
< HAOHO ) t/f
< S0=a?[fL0)- 11 @)

and the constant g in both inequalities is sharp (see for example [6]).

If one would assume that x € (a,b) is a point of differentiability, then

b
o0 ("3 -2) f @ e-af@+0-af0- [ foan 63
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(2) If we choose a = xp < & < 23 = b and the numbers ag = a, a € (a,z], 8 € [z,b)
and a3 = b, then by Theorem 3, we deduce

S lE = f @)~ (a0 £ @)+ 0= B 1L ()~ (8- 1 (8)]

b
< a-af@+E-a)f@+b-HI0- [ Fod (34)
< SlE- @ - @+ -0 L0 - (- £ @)

The constant % is sharp in both inequalities.

(a) Note that if we let « — a+ and 5 — b—, then from (3.4), by taking into ac-
count firstly that (z — a)? fi(a) < (x— o)’ f () and — (8 — ) L (b) <
—(B—x) f (B), we may deduce the inequality obtained in [7]:

% (b= 2)" £} (@) = (@ = @) [ ()] (3.5)
b
< [rwia-e-af@
< SlE-oPr oot @].

The constant % is sharp in both inequalities (see for example [7]).

If in (3.5) we choose z = b then (see also [7])

0 < L0-a [f; (ajb>f’_ (a;b)] (3.6)
< /abf(t>dt—(b—a>f<a;b>
1

< g0=a [fL ()~ fi (@)

and the constant % is sharp in both inequalities.

We may state now the following result for convex functions improving
Hermite-Hadamard integral inequalities.
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Proposition 1. Let f : [a,b] — R be a convex function on [a,b]. Then

1 , (a+b , [a+b

so-alr (50) - ()] 57)
b

i [ roa-(450)

b
Htt8 2 [

1

g (b=a) [fL(0) = fi (@)].

0

IN

IN

IN

IN

The constant % s sharp in both parts.

If one would assume that = € (a,b) is a differentiability point for f, then we have
the inequality [7]

b
oo (SF-a) F@ < [ Fa- -0 5. (38)

(b) If we choose o = %1% and B = ZE2, then by (3.4) we have the three point
inequality:

o < e () - (5] 39
oo (55) - ()

(@ —a) f (@) + f (@) (b—a) + (b — ) ] (V)] —/abf(t)dt

{@— (£ @~ 72 @] + 0 -2 [ 0) - 12 ()]}

<

0| = DN =

<

for any « € (a,b). The constant £ is sharp in both parts.

If in (3.9) we choose x = %P, then we get
1 o, (3a+b , [(3a+b
< —(bh- - 1
0 < Z(b-a {f+< 1 ) o= (3.10)

L <a+3b>_f, <a—11—13b>}

=~

1 [f(a)+ f(b) a+b b
< 3 MY () 60 [roa
1 / / b / b /
< -t ro-r () () - s
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If one would assume that f is differentiable in ‘IT'H’, then we get the following

reverse of Bullen’s inequality

fla)+f(b)

o
IA

IN

1
>
-’ [f. () - 1. ()]
32 - +

1 .
The constant 55 is sharp.

(¢) Now, if we choose a = ‘E’“TH’, 8=
have the inequalities

i +f(“§b)}<b—a>—/abf<t>dt

a+5b 5a+b a-+5b7 :
“E2 and x € [—6 e ] 1

(3.11)

n (3.4), then we

(-

5a+b) /L <5a6+b> -

N (b—a)zfi (a—ESb) 3 (a—ESb

36

(b—a)Qf,_ <5a+b> (3.12)

36

2
—x) I (a—;Bb)

6

f’+ (a)

] e
sy

(b—a)® a—+ 5b
0 ("

+

If in (3.12) we choose z = %£2,

Lo ay {ﬁ (5“6“’) N4 (
+if/+<a25b>
. b3a[f(a);f(b)+2f<a+b)]
< -t () - i@+
381

- ) I <x>] .

then we get the Simpson’s inequality

5a + b
; ) (3.13)

()

b

Fb)dt

if'() n (5]
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If the function is differentiable on (a,b), then we get

S (52) () e

_ b
_ ba [f(a)+f(b) 1o <a+b>} _/ o
3 2 2 a
1
< 5 (b-a)’ [fL(0) - f} ()]
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