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ABSTRACT

We obtain short and unified new proofs of two recent characterizations of hyper-
ellipticity given in [4] and [6], as well as a way of establishing a relation between
them.
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1. Introduction

We offer a new point of view of two recent geometrical characterizations of hyperellip-
ticity of Riemann surfaces of genus g ≥ 2 (see [4] and [6]). We introduce two special
types of fundamental regions for surface Fuchsian groups, i. e. Fuchsian groups with-
out elliptic elements uniformizing closed Riemann surfaces. With this approach, the
Maskit characterization of hyperellipticity is equivalent to the rotational symmetry
for a type of hyperbolic polygon that is a fundamental region for surface Fuchsian
groups. The Schaller characterization of hyperellipticity is equivalent to the existence
of a fundamental hyperbolic polygon for surface Fuchsian groups where the elements
of the group induce the identification of opposite sides of the polygon. In this way,
we obtain short and unified new proofs of the two recent characterizations of hyper-
ellipticity and a way of establishing a relation between them. In order to have basic
information about hyperelliptic Riemann surfaces see for instance [1] or [5].

The authors are partially supported by BFM2002-04801.

Rev. Mat. Complut.
2004, 17; Núm. 1, 59–65
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Figure 1: Prehyperelliptic polygon (g=3).

2. Prehyperelliptic and centralhyperelliptic fundamental poly-
gons for Fuchsian groups

In this work we shall consider Riemann surfaces of genus g ≥ 2 equipped with a metric
of constant curvature −1. We start by defining two special types of fundamental
polygons for surface Fuchsian groups.

Definition 2.1 (Prehyperelliptic fundamental polygon). Let Γ be a surface
Fuchsian group of genus g ≥ 2. A fundamental polygon P for Γ is said to be prehy-
perelliptic if and only if (see Figure 1):

(i) P has m = 8g−4 sides with labelling l0, l1, . . . , lm−1 where {0, 1, 2, . . . ,m− 1} =
Z/mZ.

(ii) There are hyperbolic transformations in Γ sending l2i to lm
2 −2i and l2i+1 to

l−2i−1.

(iii) Let V̂i denote the measure of the interior angle of P with sides li and li+1. The
following conditions must be satisfied:

V̂i = V̂i+ m
2
, V̂i + V̂−i−1 = π, V̂i + ̂V−i−1+ m

2
= π.

Remark that by condition (iii) every prehyperelliptic fundamental polygon is con-
vex.
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Figure 2: Centralhyperelliptic polygon (g=3).

Definition 2.2 (Centralhyperelliptic fundamental polygon). Let Γ be a sur-
face Fuchsian group of genus g ≥ 2. A fundamental polygon P for Γ is said to be
centralhyperelliptic if and only if (see Figure 2):

(i) P has 4g sides with labelling l0, l1, . . . , l4g−1, where {0, 1, 2, . . . , 4g − 1}
= Z/4gZ.

(ii) There are hyperbolic transformations in Γ sending li to li+2g, i = 0, . . . , 2g− 1.

(iii) The interior angles of P satisfy V̂i = V̂i+2g, Vi = li ∩ li+1, i = 0, . . . , 2g − 1.

Since Γ is a surface group remark that
2g−1∑
i=0

V̂i = 2π.

Proposition 2.3. Every centralhyperelliptic fundamental polygon P has rotational
symmetry of order two, i. e. there is an order two elliptic transformation r such that
r(P ) = P .

Proof. We recall the following well-known property about the congruency of hyper-
bolic polygons:

Let P and P ′ be two hyperbolic polygons. Let LV = {li, Vi} and LV ′ = {l′i, V ′
i } be

the sets of sides and vertices of P and P ′ respectively. Let φ : LV → LV ′ be a bijection
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sending vertices to vertices, sides to sides and preserving the adjacency relation. Let
W be a subset of LV having three elements. Assume that length(li) = length(φ(li))
and V̂i = φ̂(Vi), where V̂i (resp. φ̂(Vi)) is measure of the interior angle of P (resp. P ′)
with vertex in Vi (resp. φ(Vi)) and li, Vi ∈ LV −W . Then the bijection φ is induced
by an hyperbolic transformation.

Now let P be a centralhyperelliptic fundamental polygon of a surface Fuchsian
group. Let d be a diagonal joining two opposite vertices of P . The diagonal d divides
the polygon P in two polygons C1 and C2. Let r be the elliptic element of order two
with fixed point the middle point of the diagonal d. Let P ′ be the polygon obtained by
the union of C1 and r(C1). The polygons P and P ′ have the vertices of C1 in common.
We can establish a bijection φ between the sets of vertices and sides of P and P ′ that
preserves adjacency and fixes the sides and vertices of C1. Then condition (ii) of the
definition of centralhyperelliptic polygons implies that, if l is a side in P , l and φ(l)
have the same measure. And if V1 and V2 are the vertices at the ends of d, it follows
by condition (iii) that V̂ = φ̂(V ), V different from V1 and V2. Therefore the polygons
P and P ′ are congruent and, since C1 is common to P and P ′, then P and P ′ are the
same polygon and thus r is a rotational symmetry of order two of P .

The following result is the main Theorem of this work:

Theorem 2.4. Let Γ be a surface Fuchsian group of genus g ≥ 2. The following
three conditions are equivalent:

(i) D/Γ is a hyperelliptic Riemann surface.

(ii) Γ has a prehyperelliptic fundamental polygon having a rotational symmetry of
order two.

(iii) Γ has a centralhyperelliptic fundamental polygon.

Proof. ((i)=⇒(ii)) Assume that D/Γ is a hyperelliptic Riemann surface of genus g, i.
e. there is a covering f : D/Γ → Ĉ (the Riemann sphere) with 2g+2 branched points.
It follows that there is a Fuchsian group ∆ with signature (0, [2, 2g+2. . . , 2]) containing
Γ as an index two subgroup and let p : D → D/∆ = Ĉ be the natural projection. The
group ∆ admits a canonical presentation:〈

x1, . . . , x2g+2;x2
1 = · · · = x2

2g+2 = x1 · · ·x2g+2 = 1
〉
.

The group ∆ has a fundamental region Q that is a convex polygon with 2g + 2
sides, λ1, . . . , λ2g+2, and the middle point mi of each side λi is the fixed point of
the elliptic generator xi, i. e. Q is the canonical fundamental polygon for ∆. The
existence of such canonical fundamental polygon for ∆ is a classic result by Fricke-
Klein (pp. 294–320 of [2] and p. 241 of [3]). The vertices of Q belong to one orbit
of ∆.
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In order to be selfcontained we shall sketch a construction of the polygon Q.
Let W1, . . . ,W2g+2 be the fixed points of the generators x1, . . . , x2g+2. The points
W1, . . . ,W2g+2 do not lie on a hyperbolic line (in the contrary case all the elements
of ∆ left invariant such hyperbolic line λ, but then all the hyperbolic elements in
∆ have λ as axis and ∆ cannot contain a surface subgroup). The convex hull Π
of W1, . . . ,W2g+2 has nonempty interior. Let Σ be the set of all hyperbolic lines
joining fixed points of elements of ∆. The set Σ is countable and then there is a point

W ∈
◦
Π− ∪

r∈Σ
r. Now there are geodesic segments γ1, . . . , γ2g+2 joining f(W ) with the

branched points of f . The result of cutting the orbifold D/∆ by γ1, . . . , γ2g+2 and
the lifting by p produces the fundamental convex polygon Q.

Let δi be a hyperbolic segment in Q joining mi with mi+1, i = 1, . . . , 2g +1. Each
δi determines a triangle Ti with vertices mi, mi+1, and a vertex of Q. We define

R = (Q− (
2g+1⋃
i=1

Ti)) ∪ (
2g+1⋃
i=1

xi · · ·x1(Ti)).

The polygon R is a fundamental region for ∆.
The polygon R has 4g sides:

δ1 ∪ δ′1, δ2, δ3, . . . , δ2g, δ2g+1 ∪ δ′2g+1, δ
′
2g, δ

′
2g−1, . . . , δ

′
2,

where δ′i = xi · · ·x1(δi).
Let V̂i (resp. V̂ ′

i ) be the measure of the interior angle with vertex δi ∩ δi+1 (resp.
δ′i ∩ δ′i+1). By the construction of R we have that V̂i + V̂ ′

i = π.
The polygon P = R ∪ x2g+2(R) is a fundamental region for Γ and x2g+2 is a

rotational symmetry of order two for P . Since V̂2g+1 + V̂ ′
2g+1 = π the polygon P has

8g − 4 sides. The equalities δ′i = xi · · ·x1(δi), V̂i + V̂ ′
i = π and the fact that x2g+2 is

a symmetry imply the prehyperelliptic quality of P .
((ii)=⇒(iii)) Let P be a prehyperelliptic fundamental polygon with rotational

symmetry r of order two with fixed point O. Let l1, . . . , lm be the sides of P and
V1, . . . , Vm be the vertices: li ∩ li+1 = Vi, satisfying the conditions of Definition 2.1.
Let di be the diagonal of P joining Vi with Vi+ m

2
. By the rotational symmetry of

P, all the diagonals di intersect in O. Let p : D → D/Γ be the natural projection
and S2g = { p(di) : i = 1, . . . , 2g }. The set S2g consists of 2g closed geodesics
which intersect in p(O) and does not intersect in other point (i. e. S2g is a 2g-star,
see the Definition 2.8 below). Cutting D/Γ by S2g we obtain a centralhyperelliptic
fundamental polygon for Γ.

((iii)=⇒(i)) Let C be a centralhyperelliptic polygon. Then, by Proposition 2.3, C
has a rotational symmetry r of order two. The identifications induced by the elements
of Γ on the sides of C are compatible with the symmetry r. Hence r induces an order
two automorphism φ of D/Γ. Let p : D → D/Γ be the natural projection. The number
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of fixed points of φ is 2g + 2: the image by p of the fixed point of r, the image by p
of the 2g middle points of the sides of C and the point which is the projection of the
vertices of C by p.

Remark 2.5. From the above proof we have also the following geometrical result: a
prehyperelliptic polygon P has rotational symmetry of order two if and only if the
diagonals of P joining opposite vertices cut in a point.

We obtain from Theorem 2.4 the characterizations of hyperellipticity given in [4]
and [6].

Definition 2.6 (Necklace). A (geodesic) necklace on a Riemann surface of genus g is
a cyclically ordered set of 2g+2 simple nonseparating closed geodesics L1, . . . , L2g+2,
where each Li intersects Li−1 exactly one, intersects Li+1 exactly one, and is otherwise
disjoint from every other geodesic in the necklace.

Corollary 2.7 (B. Maskit [4]). A Riemann surface X is hyperelliptic if and only
if X has an evenly spaced geodesic necklace.

Proof. Assume that X is a hyperelliptic Riemann surface. Then X = D/Γ where Γ
is a surface Fuchsian group admitting a prehyperelliptic fundamental polygon P with
a rotational order two symmetry (Theorem 2.4 (ii)). The sides of the polygon P and
the axis of the hyperbolic generators of Γ identifying l0 with lm

2
and lm

4
with l 3m

4
produce a necklace in X. The fact that the polygon P is symmetric implies that the
necklace is evenly spaced.

If we have an evenly spaced necklace on X, cutting X by such necklace we ob-
tain a prehyperelliptic fundamental polygon for a Fuchsian group uniformizing X.
The condition of being evenly spaced gives that length(li) = length(li+ m

2
). By a

similar argument to the one used in the proof of Proposition 3, it results that the
polygon P has a rotational symmetry of order two and then by the Theorem 4, X is
hyperelliptic.

Definition 2.8 (Star). A (geodesic) k-star in a Riemann surface is a set Sk of k
simple closed geodesics which all intersect in the same point and such that among the
elements of Sk there are no further intersection points.

Corollary 2.9 (P. S. Schaller [6]). A Riemann surface X is hyperelliptic if and
only if X has a (2g − 2)-star.

Proof. Assume that X is hyperelliptic. According to Theorem 2.4 (iii), X can be
uniformized by a surface Fuchsian group admitting a centralhyperelliptic fundamental
polygon. The sides of such polygon produce on X a 2g-star which contains, obviously,
a (2g − 2)-star.

Suppose now that X has a (2g − 2)-star S2g−2. Cutting the surface X by S2g−2

we obtain a surface T1 homeomorphic to a torus with a boundary component and
such boundary component is piecewise geodesic. Since T1 is hyperelliptic (all surfaces
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with this topological type are hyperelliptic), let p1 and p2 be two of the fixed points
of the hyperelliptic involution h of T1 and V be one of the vertices in ∂T1. Let ai,
i = 1, 2, be two disjoint geodesic arcs joining V with pi and containing no other fixed
points of h. The set S2g = S2g−2∪{a1∪h(a1)}∪{a2∪h(a2)} is a 2g-star. Cutting X
by S2g we obtain a centralhyperelliptic fundamental polygon for a surface Fuchsian
group uniformizing X. Hence, by Theorem 2.4, X is hyperelliptic.
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