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UFR de Mathématiques Université Lille I
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ABSTRACT

For a complex polynomial in two variables we study the morphism induced in
homology by the embedding of an irregular fiber in a regular neighborhood of
it. We give necessary and sufficient conditions for this morphism to be injective,
surjective. Particularly this morphism is an isomorphism if and only if the
corresponding irregular value is regular at infinity. We apply these results to
the study of vanishing and invariant cycles.
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Introduction

Let f : Cn −→ C be a polynomial. The bifurcation set B for f is the minimal set
of points of C such that f : Cn \ f−1(B) −→ C \ B is a locally trivial fibration. For
c ∈ C, we denote the fiber f−1(c) by Fc. The fiber Fc is irregular if c is in B. If
s /∈ B, then Fs is a generic fiber and is denoted by Fgen . The tube Tc for the value
c is a neighborhood f−1(D2

ε(c)) of the fiber Fc, where D2
ε(c) stands for a 2-disk in

C, centered at c, of radius ε � 1. We assume that affine critical singularities are
isolated. The value c is regular at infinity if there exists a sufficiently large compact
set K of Cn such that the restriction of f , f : Tc \ K −→ D2

ε(c) is a locally trivial
fibration.
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Arnaud Bodin Irregular fibers of complex polynomials

Set n = 2. Let jc : H1(Fc) −→ H1(Tc) be the morphism induced by the inclusion
of Fc in Tc. The first part of this work is the study of this morphism. Let Gc the
dual graph of Fc = f−1(c), and Ḡc the dual graph of a compactification of the fiber
Fc obtained by a resolution at infinity of f . The value c is acyclic if the dual graph
Gc and some dual graphs Gc,P obtained by compactification have the same number
of cycles (see the full definition later). This is a combinatoric condition, for example
if the fiber Fc is connected then c is acyclic if and only if H1(Gc) is isomorphic to
H1(Ḡc). Finally we define j∞ : H1(Fc \K) −→ H1(Tc \K) induced by inclusion (this
map is independent of the sufficiently large set K).

Theorem.

(A) jc is injective if and only if Fc is connected and c is acyclic.

(B) jc is surjective if and only if j∞ is surjective and c is acyclic.

(C) jc is an isomorphism if and only if c is a regular value at infinity.

It should be noticed that the fiber Fc is not supposed to be smooth. In fact we
have a stronger result for the part (A) because the rank of the kernel of jc is:

rkKer jc = n(Fc)− 1 + rkH1(Ḡc)− rkH1(Gc)

where n(Fc) is the number of connected components of Fc. The acyclicity condi-
tion and the surjectivity of j∞ can be checked from the dual graphs of resolution.
E. Artal-Bartolo, Pi. Cassou-Noguès and A. Dimca have proved the part (C) in [1] for
polynomials with a connected fiber Fc. For a non-connected fiber jc is not injective
(part (A)), and we could have used the result of [1] to prove part (C) but we will give
a complete proof.

We apply these results to the study of neighborhoods of irregular fibers. Set n > 2.
Let F ◦c be the smooth part of Fc: F ◦c is obtained by intersecting Fc with a large 2n-ball
and cutting out a small neighborhood of the (isolated) singularities. Then F ◦c can be
embedded in Fgen . We study the following commutative diagram that links the three
elements F ◦c , Fgen , and Tc:

Hq(F ◦c )
j◦c //

`c

��

Hq(Tc)

Hq(Fgen)
kc

99ssssssssss

where `c is the morphism induced in integral homology by the embedding; j◦c and kc
are induced by inclusions. The morphism kc is well-known and Vq(c) = Ker kc are the
vanishing cycles for the value c. Let hc be the monodromy induced on Hq(Fgen) by a
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2004, 17; Núm. 1, 67–81

68



Arnaud Bodin Irregular fibers of complex polynomials

small circle around the value c. Then we prove that the image of `c are the invariant
cycles by hc:

Ker(hc − id) = `c
(
Hq(F ◦c )

)
.

This formula for the case n = 2 has been obtained by F. Michel and C. Weber in [6].
Finally we give a description of vanishing cycles with respect to the eigenvalues

of hc for homology with complex coefficients. For λ 6= 1 and p a large integer the
characteristic space Eλ = Ker(hc − λ id)p is generated by vanishing cycles for the
value c. For λ = 1 the situation is different. If Kq(c) = Vq(c) ∩ Ker(hc − id) are
invariant and vanishing cycles we have

Kq(c) = `c
(
Ker j◦c

)
.

For n = 2 we have E1 = Ker(hc − id)2 and we prove that Ker(hc − id)2 ∩ V1(c) =
Ker(hc − id) ∩ V1(c) =: K1(c) with the formula

rkK1(c) = r(Fc)− 1 + rkH1(Ḡc),

where r(Fc) is the number of irreducible components of Fc.
The study of vanishing cycles is motivated by the following result of [3]: the

monodromy h∞ : H1(Fgen) −→ H1(Fgen) induced by a large circle around the set B
and Broughton’s decomposition H1(Fgen) =

⊕
c∈B V1(c) determine the monodromy

representation π1(C \ B) −→ AutH1(Fgen). The formula for rkK1(c) enables to
describe vanishing cycles with respect to a decomposition of the homology of the
generic fiber given by the resolution of singularities.

1. Irregular fibers and tubes

1.1. Bifurcation set

We can describe the bifurcation set B as follows: let Sing =
{
z ∈ Cn | gradf (z) = 0

}
be the set of affine critical points and let Baff = f(Sing) be the set of affine critical
values. The set Baff is a subset of B. The value c ∈ C is regular at infinity if there
exist a disk D centered at c and a compact set K of Cn with a locally trivial fibration
f : f−1 (D) \K −→ D. The non-regular values at infinity are the critical values at
infinity and are collected in B∞. The finite set B of critical values is now:

B = Baff ∪ B∞.

In this article we always assume that affine singularities are isolated, that is to
say that Sing is an isolated set in Cn. For n = 2 this hypothesis implies that the
generic fiber is a connected set.
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1.2. Preliminaries

In this paragraph n = 2. The inclusion of Fc in Tc induces a morphism jc : H1(Fc) −→
H1(Tc). We firstly recall notations and results from [1].

Let denote Faff = Fc ∩B4
R (R � 1) and F∞ = Fc \ Faff , thus Faff ∩ F∞ = Kc =

f−1(c)∩S3
R is the link at infinity for the value c. Similarly Taff = Tc ∩B4

R and T∞ =
Tc \ Taff . We denote j∞ : H1(F∞) −→ H1(T∞) the morphism induced by inclusion.
The inclusion Faff ⊂ Taff is a homotopy equivalence so jaff : H1(Faff ) −→ H1(Taff ) is
an isomorphism. H1(Faff ∩ F∞) and H1(Taff ∩ T∞) are isomorphic.

The Mayer-Vietoris exact sequences for the decompositions Fc = Faff ∪ F∞ and
Tc = Taff ∪ T∞ give the commutative diagram (D):

0 // H1(F∞ ∩ Faff )
g //

∼=
��

H1(F∞)⊕H1(Faff ) h //

j∞⊕jaff
��

H1(Fc) //

jc

��

0

0 // H1(T∞ ∩ Taff )
g′ // H1(T∞)⊕H1(Taff ) h′ // H1(Tc) // H0(T∞ ∩ Taff ).

The 0 at the upper-right corner is provided by the injectivity of H0(F∞∩Faff ) −→
H0(F∞) hence H0(F∞∩Faff ) −→ H0(F∞)⊕H0(Faff ) is injective (notice that Fc need
not to be a connected set).

1.3. Resolution of singularities

To compactify the situation, for n = 2, we need the resolution of singularities at
infinity [5]:

C2 //

f

��

CP 2

f̃

��

Σw
πwoo

φw||yy
yy

yy
yy

C // CP 1

Here f̃ is a rational map coming from the homogenisation of f and is not defined
at some points of the line at infinity L∞ of CP 2; π is the minimal blow-up at these
points in order to obtain a well-defined morphism φw : Σw −→ CP 1: this is the weak
resolution. We denote φ−1

w (∞) by D∞, and let Ddic be the set of components D of
π−1
w (L∞) that verify φw(D) = CP 1. Such a D is a dicritical component. The degree

of a dicritical component D is the degree of the branched covering φw : D −→ CP 1.
For the weak resolution the divisor φ−1

w (c) ∩ π−1
w (L∞), c ∈ C, is a union of bamboos

(possibly empty). A bamboo is a divisor whose dual graph is a linear tree. The set
B∞ is the set of values of φw on non-empty bamboos union the set of critical values
of the restriction of φw to the dicritical components.
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We can blow-up more points to obtain the total resolution, φt : Σt −→ CP 1,
such that all fibers of φt are normal crossing divisors that intersect the dicritical
components transversally; moreover we solve affine singularities. Then D∞ = φ−1

t (∞)
is the same as above and for c ∈ B we denote Dc the divisor φ−1

t (c).
The dual graph Ḡc of Dc is obtained as follows: one vertex for each irreducible

component of Dc and one edge between two vertices for one intersection of the corre-
sponding components. A similar construction is done for D∞, we know that Ḡ∞ is a
tree [5]. The multiplicity of a component is the multiplicity of φt on this component.

1.4. Study of j∞

See [1]. Let φ be the weak resolution map for f . Let denote by Dicc the set of points P
in the dicritical components, such that φ(P ) = c. To each P ∈ Dicc is associated one,
and only one, connected component TP of T∞; TP is called the place at infinity for P .
We have T∞ =

∐
P∈Dicc

TP and we set FP = TP ∩ F∞ = TP ∩ Fc and KP = ∂FP ,
finally n(FP ) denotes the number of connected components of FP . Let F̄P be the
strict transform of c by φ, intersected with TP . The map j∞ is the direct sum of the
maps jP : H1(FP ) −→ H1(TP ). Let mP be the intersection multiplicity of F̄P with
the divisor π∗w(L∞) at P .

Case of P ∈ F̄P . The group H1(TP ) is isomorphic to Z and is generated by [MP ],
MP being the boundary of a small disk with transversal intersection with the dicritical
component. Moreover if FP =

∐n(FP )
i=1 F iP then jP ([F iP ]) = jP ([Ki

P ]) = mi
P [MP ].

Case of P being in a bamboo. The group H1(TP ) is also isomorphic to Z and is
generated by [MP ], MP being the boundary of a small disk, with transversal intersec-
tion with the last component of the bamboo. Then jP [F iP ] = jP [Ki

P ] = mi
P .`i[MP ].

The integer `i only depends of the position where F iP intersects the bamboo, moreover
`i > 1 and `i = 1 if and only if F iP intersects the bamboo at the last component. For
a computation of `i with the help of continuous fraction associated to the bamboos,
refer to [1].

As a consequence jP is injective if and only if n(FP ) = 1 and j∞ is injective if and
only if n(FP ) = 1 for all P in Dicc. In fact the rank of the kernel of j∞ is the sum of
the ranks of the kernels of jP then we deduce:

rk ker j∞ =
∑

P∈Dicc

(n(FP )− 1).

Finally j∞ is surjective if and only if for all P ∈ Dicc, jP is surjective.
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1.5. Acyclicity

The value c is acyclic if the morphism ψ : H0(T∞∩Taff ) −→ H0(T∞)⊕H0(Taff ) given
by the Mayer-Vietoris exact sequence is injective.

Let give some interpretations of the acyclicity condition.

(i) The injectivity of ψ can be viewed as follows: two branches at infinity that
intersect the same place at infinity have to be in different connected components
of Fc.

(ii) Let Gc be the dual graph of Fc (one vertex for an irreducible component of Fc,
two vertices are joined by an edge if the corresponding irreducible components
have non-empty intersection, if a component has auto-intersection it provides a
loop) and let Gc,P be the graph obtained from Gc by adding edges to vertices
that correspond to the same place at infinity TP . In other words c is acyclic if
and only if there is no new cycles in Gc,P , that is to say H1(Gc) ∼= H1(Gc,P )
for all P in Dicc.

(iii) Another interpretation is the following: c is acyclic if and only if the morphism
h′ of the diagram (D) is surjective. This can be proved with the exact sequence:

H1(T∞)⊕H1(Taff ) h′−→ H1(Tc)
ϕ−→ H0(T∞ ∩ Taff )

ψ−→
ψ−→ H0(T∞)⊕H0(Taff ) −→ H0(Tc) −→ 0.

(iv) Let consider the above Mayer-Vietoris exact sequence in reduced homology,
the morphism ψ̃ : H̃0(T∞ ∩ Taff ) −→ H̃0(T∞) ⊕ H̃0(Taff ) is surjective because
H̃0(Tc) = {0}. Moreover ψ̃ is injective if and only if ψ is injective. As ψ̃ is
surjective, ψ̃ is injective if and only if rk H̃0(T∞∩Taff ) = rk H̃0(T∞)+rk H̃0(Taff ),
but T∞ has exactly #Dicc connected components (see paragraph 1.4). Then c
is acyclic if and only if∑

P∈Dicc

n(FP ) − 1 = #Dicc − 1 + n(Fc)− 1. (?)

This implies the lemma:

Lemma 1.1. j∞ is injective ⇐⇒ Fc is a connected set and c is acyclic.

Proof. If j∞ is injective then n(FP ) = 1 for all P in Dicc, then H0(T∞ ∩ Taff ) ∼=
H0(T∞) and ψ is injective, hence c is acyclic and from equality (?), we have n(Fc) = 1
i.e. Fc is a connected set. Conversely, if c is acyclic and n(Fc) = 1 then equality (?)
gives n(FP ) = 1 for all P in Dicc, thus j∞ is injective.
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Let us define a stronger notion of acyclicity. Let Ḡc be the dual graph of φ−1(c).
The graph Ḡc can be obtained from Gc by adding edges between vertices that belong
to the same place at infinity for all P in Dicc. The value c is strongly acyclic if
H1(Ḡc) ∼= H1(Gc). Strong acyclicity implies acyclicity, but the converse can be false.
However if Fc is a connected set (that is to say Gc is a connected graph) then both
conditions are equivalent. This is implicitly expressed in the next lemma, which is
just a result involving graphs.

Lemma 1.2. rkH1(Ḡc)− rkH1(Gc) =
∑

P∈Dicc

(
n(FP )− 1

)
−

(
n(Fc)− 1

)
.

1.6. Surjectivity

Part (B). jc surjective ⇐⇒ j∞ surjective and c acyclic.

Proof. Let us suppose that jc is surjective then a version of the five lemma applied
to diagram (D) proves that j∞ is surjective. As jc and j∞ are surjective, diagram
(D) implies that h′ : H1(T∞) ⊕H1(Taff ) −→ H1(Tc) is surjective, that means that c
is acyclic.

Conversely if j∞ is surjective and c is acyclic then h′ is surjective and diagram
(D) implies that jc is surjective.

1.7. Injectivity

Part (A). jc is injective ⇐⇒ Fc is a connected set and c is acyclic.

It follows from lemma 1.1 and from the next lemma.

Lemma 1.3. jc injective ⇐⇒ j∞ injective.
Moreover the rank of the kernel is:

rk ker jc = rk ker j∞ =
∑

P∈Dicc

(
n(FP )− 1

)
= n(Fc)− 1 + rkH1(Ḡc)− rkH1(Gc).

Proof. The first part of this lemma can be proved by a version of the five lemma.
However we shall only prove the equality of the ranks of ker jc and ker j∞. It will
imply the lemma because we already know that rk ker j∞ =

∑
P∈Dicc

(
n(FP )−1

)
(see

paragraph 1.4) and from lemma 1.2 we then have rk ker j∞ = n(Fc)−1+rkH1(Ḡc)−
rkH1(Gc).

The study of the morphism jc : H1(Fc) −→ H1(Tc) is equivalent to the study
of the morphism H1(Taff ) −→ H1(Tc) induced by inclusion that, by abuse, will also
be denoted by jc. To see this, it suffices to remark that Fc is obtained from Faff =
Fc ∩ B4

R by gluing Fc ∩ S3
R × [0,+∞[ to its boundary Fc ∩ S3

R. We then have two
homotopy equivalences Fc ⊃ Fc ∩ Taff ⊂ Taff . Then the morphism H1(Faff ) −→

73 Revista Matemática Complutense
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H1(Fc) induced by inclusion is an isomorphism; finally jaff : H1(Faff ) −→ H1(Taff ) is
also an isomorphism. The long exact sequence for the pair (Tc, Taff ) is:

H2(Tc) −→ H2(Tc, Taff ) −→ H1(Taff )
jc−→ H1(Tc)

but H2(Tc) = 0 (see [1] for example) then the rank of ker jc is the rank of H2(Tc, Taff ).
On the other hand, the study of j∞ : H1(F∞) −→ H1(T∞) is the same as the

study of H1(∂T∞) −→ H1(T∞) induced by inclusion (and denoted by j∞) because the
morphisms H1(∂F∞) −→ H1(F∞) and H1(∂F∞) −→ H1(∂T∞) induced by inclusions
are isomorphisms. The long exact sequence for (T∞, ∂T∞) is:

H2(T∞) −→ H2(T∞, ∂T∞) −→ H1(∂T∞)
j∞−→ H1(T∞).

As H2(T∞) = 0 (see [1]), then the rank of ker j∞ is equal to rkH2(T∞, ∂T∞).
Finally the groups H2(T∞, ∂T∞) and H2(Tc, Taff ) are isomorphic by excision, then

the ranks of ker jc and of ker j∞ are equal. That completes the proof.

1.8. Bijectivity

Part (C). jc is an isomorphism ⇐⇒ c /∈ B∞

Proof. If c /∈ B∞, Fc is homotopic to Faff and Tc to Taff then the isomorphism
jaff : H1(Faff ) −→ H1(Taff ) implies that jc is an isomorphism. Let suppose that c is
a critical value at infinity and that jc is injective. We have to prove that jc is not
surjective. As jc is injective then by lemma 1.3, j∞ is injective. By the part (B) it
suffices to prove that j∞ is not surjective. Let P be a point of Dicc that provides
irregularity at infinity for the value c, then n(FP ) = 1 because j∞ is injective. Let us
prove that the morphism jP is not surjective. For the case of P ∈ F̄P , the intersection
multiplicity mP is greater than 1, then jP is not surjective. For the second case, in
which P belongs to a bamboo, we have mP .`i > 1 except for the situation where only
one strict transform intersects the bamboo at the last component (remember that
`i = 1 if and only if we are at the last component of a bamboo). This is exactly the
situation excluded by the lemma “bamboo extremity fiber” of [6]. Hence j∞ is not
surjective and jc is not an isomorphism.

1.9. Examples

We apply the results to two classical examples.

Broughton polynomial. Let f(x, y) = x(xy + 1), then Baff = ∅, B = B∞ = {0}.
Then for c 6= 0, jc is an isomorphism. For the value 0, F0 contains two connected
components (x = 0) and (xy + 1 = 0) so Gc is composed of two vertices. The dual
graph Ḡ0 contains also a vertex that corresponds to a component with multiplicity
+1 of a bamboo. The value 0 is acyclic since H1(G0) ∼= H1(Ḡ0). The fiber F0 is not
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connected hence j0 is not injective. As the new component of Ḡ0 is of multiplicity 1
the corresponding morphism j∞ is surjective, hence j0 is surjective.

s s s s
s

�
�
�

A
A

A

G0 Ḡ0

+1

Briançon polynomial. Let f(x, y) = yp3 +p2s+a1ps+a0s with s = xy+1, p =
x(xy+1)+1, a1 = − 5

3 , a0 = − 1
3 , see [2]. The bifurcation set is B = B∞ = {0, c =

− 16
9 }, moreover all fibers are smooth and irreducible. The value 0 is not acyclic then

j0 is neither injective nor surjective (but j∞ is surjective).

s s
s

G0 Ḡ0

+1

The value c is acyclic, and Fc is connected (since irreducible) then jc is injective.
The morphism jc is not surjective: j∞ is not surjective because the compactification
of Fc does not intersect the bamboo at the last component.

s s
ss s

Gc Ḡc

+6 +3+2

2. Situation around an irregular fiber

For f : Cn −→ C we study the neighborood of an irregular fiber.

2.1. Smooth part of Fc

Let fix a value c ∈ C and let B2n
R be a large closed ball (R � 1). Let B2n

1 , . . . , B2n
p

be small open balls around the singular points (which are supposed to be isolated) of
Fc : Fc ∩ Sing. We denote B2n

1 ∪ . . . ∪B2n
p by B∪. Then the smooth part of Fc is

F ◦c = Fc ∩ (B2n
R \B∪).

It is possible to embed F ◦c in the generic fiber Fgen (see [6] and [8]). We now
explain the construction of this embedding by W. Neumann and P. Norbury. As Fc
has transversal intersection with the balls of B∪ and with B2n

R , there exists a small
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disk D2
ε(c) such that, for all s in this disk, Fs has transversal intersection with these

balls. According to Ehresmann fibration theorem, f induces a locally trivial fibration

f| : f−1
(
D2
ε(c)

)
∩ (B2n

R \B∪) −→ D2
ε(c).

In fact, as D2
ε(c) is null homotopic, this fibration is trivial. Hence F ◦c × D2

ε(c) is
diffeomorphic to f−1(D2

ε(c)) ∩ (B2n
R \B∪). That provides an embedding of F ◦c in Fs

for all s in D2
ε(c); and for such a s with s 6= c, Fs is a generic fiber. The morphism

induced in homology by this embedding is denoted by `c. Let j◦c be the morphism
induced by the inclusion of F ◦c in Tc = f−1(D2

ε(c)). Similarly kc denotes the morphism
induced by the inclusion of the generic fiber Fgen = Fs (for s ∈ D2

ε(c), s 6= c) in Tc.
As all morphisms are induced by natural maps we have the lemma:

Lemma 2.1. The following diagram commutes:

Hq(F ◦c )
j◦c //

`c

��

Hq(Tc)

Hq(Fgen)
kc

99ssssssssss

.

2.2. Invariant cycles by hc

Invariant cycles by the monodromy hc can be recovered by the following property.

Proposition 2.2.
Ker

(
hc − id

)
= `c

(
Hq(F ◦c )

)
.

For n = 2, there is a similar formula in [6], even for non-isolated singularities.

Proof. The proof uses a commutative diagram due to W. Neumann and P. Norbury [8]:

Hq(Fgen , F ◦c ) ∼
ψ

// Vq(c)

i ⊂
��

Hq(Fgen)

ϕ

OO

id−hc // Hq(Fgen)

The morphism i is the inclusion and ψ is an isomorphism, so Ker(hc − id) equals
Kerϕ. The long exact sequence for the pair (Fgen , F ◦c ) is:

· · · −→ Hq(F ◦c ) `c−→ Hq(Fgen)
ϕ−→ Hq(Fgen , F ◦c ) −→ · · ·

So Im `c = Kerϕ = Ker(hc − id).
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We are able to applicate this result to the calculus of the rank of Ker(hc − id) in
H1(Fgen) for n = 2. Let denote the number of irreducible components in Fc by r(Fc),
and let Singc be Sing∩Fc: the affine singularities on Fc. Let B4

x be a small closed ball
around a singular point x of Fc. Then H2(Fgen , F ◦c ) =

⊕
x∈Singc

H2(Fgen ∩B4
x, Fgen ∩

∂B4
x) =

⊕
x∈Singc

H2(S2), then the rank of H2(Fgen , F ◦c ) is the cardinal of Singc,
which is also the rank of Ker `c (by the exact sequence of the proof of proposition
2.2). Moreover χ(Fc) = rkH1(F ◦c )− r(Fc)−# Singc.

rkKer
(
hc − id

)
= rk Im `c

= rkH1(F ◦c )− rkKer `c
= r(Fc)− χ(Fc) + # Singc−# Singc
= r(Fc)− χ(Fc).

Remark. We obtain the following fact (see [6]): if the fiber Fc (c ∈ B) is irreducible
then hc 6= id. The proof is as follows: if r(Fc) = 1 and hc = id then from one hand
rkKer(hc− id) = rkH1(Fgen) = 1−χ(Fgen) and from the other hand rk Ker(hc− id) =
1−χ(Fc); thus χ(Fc) = χ(Fgen) which is absurd for c in B by Suzuki formula, see [4].

2.3. Vanishing cycles

Now and until the end of this paper homology is homology with complex coefficients.

Vanishing cycles for eigenvalues λ 6= 1. Let Eλ be the space Eλ = Ker(hc−λ id)p

for a large integer p.

Lemma 2.3. If λ 6= 1 then Eλ ⊂ Vq(c).

Proof. If σ ∈ Hq(Fgen) then hc(σ) − σ ∈ Vq(c). This is just the fact that the cycle
hc(σ) − σ corresponds to the boundary of a “tube” defined by the action of the
geometrical monodromy. We remark that this fact can be generalized for j > 1 to

hjc(σ)− σ ∈ Vq(c).

Let p be an integer that defines Eλ, then for σ ∈ Eλ:

0 = (hc − λ id)p(σ) =
p∑
j=0

(
p

j

)
(−λ)p−jhjc(σ)

=
p∑
j=0

(
p

j

)
(−λ)p−j

(
hjc(σ)− σ

)
+

p∑
j=0

(
p

j

)
(−λ)p−jσ

=
p∑
j=0

(
p

j

)
(−λ)p−j

(
hjc(σ)− σ

)
+ (1− λ)pσ.
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Each hjc(σ)−σ is in Vq(c), and a sum of such elements is also in Vq(c), then (1−λ)pσ ∈
Vq(c). As λ 6= 1, σ ∈ Vq(c).

Vanishing cycles for the eigenvalue λ = 1. Let recall that vanishing cycles
Vq(c) = Ker kc for the value c, are cycles that “disappear” when the generic fiber
tends to the fiber Fc. Hence cycles that will not vanish are cycles that already exist
in Fc. From lemma 2.3, a cycle of Eλ with eigenvalue λ 6= 1 is a vanishing cycle. We
now study what happens for cycles associated to the eigenvalue 1.

Let (τ1, . . . , τp) be a family of Hq(Fgen) such that the matrix of hc in this family
is: 

1 1 (0)
1 1

1
. . .

(0)
. . . 1

1

 .

Then, the cycles τ1, . . . , τp−1 are vanishing cycles. It is a simple consequence of the
fact that hc(σ)−σ ∈ Vq(c), because for i = 1, . . . , p− 1, we have hc(τi+1)− τi+1 = τi,
and then τi is a vanishing cycle. It remains the study of the cycle τp and the particular
case of Jordan blocks (1) of size 1× 1. We will start with the second part.

Vanishing and invariant cycles. Let Kq(c) be the space of invariant and vanish-
ing cycles for the value c: Kq(c) = Ker(hc− id)∩Vq(c). Let us remark that the space
Kq(c)⊕

⊕
c′ 6=c Vq(c

′) is not equal to Ker(hc − id). But equality holds in cohomology,
see [7].

Lemma 2.4. Kq(c) = `c(Ker j◦c ).

This lemma just follows from the description of invariant cycles (proposition 2.2)
and from the diagram of lemma 2.1. For n = 2 we can calculate the dimension of
K1(c).

Proposition 2.5. For n = 2, rkK1(c) = r(Fc)− 1 + rkH1(Ḡc).

Proof. The proof will be clear after the following remarks:

(i) K1(c) = `c(Ker j◦c ), by lemma 2.4.

(ii) j◦c = jc ◦ ic with ic : H1(F ◦c ) −→ H1(Fc) the morphism induced by inclusion. It
is consequence of the commutative diagram:

H1(Fc)
jc

%%JJJJJJJJJ

H1(F ◦c )

ic

OO

j◦c

// H1(Tc)
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(iii) rkKer j◦c = rk Ker ic+rk(Ker jc∩Im ic), which is a general formula for the kernel
of the composition of morphisms.

(iv) Ker jc ∩ Im ic = Ker jc; we have the composition of maps:

H1(F ◦c ) ic⊕0−→ (Im ic ⊕H1(Gc)) = H1(Fc)
jc−→ H1(Tc),

and the restriction of jc, jc : H1(Gc) −→ H1(Tc) is injective, so Ker jc ⊂ Im ic.

(v) rk Ker ic =
∑
z∈Singc

r(Fc,z), where Fc,z denotes the germ of the curve Fc at z.

(vi) rkKer jc = rkKer j∞ =
∑
P∈Dicc

(n(FP ) − 1) = n(Fc) + rkH1(Ḡc) − rk(Gc), it
has been proved in lemma 1.3.

(vii) r(Fc) + rkH1(Gc) = n(Fc) +
∑
z∈Singc

(r(Fc,z) − 1). This a general formula
for the graph Gc, the number of vertices of Gc is r(Fc), the number of con-
nected components is n(Fc), the number of loops is rkH1(Gc) and the number
of edges for a vertex that correspond to an irreducible component Firr of Fc is:∑
z∈Firr

(r(Firr ,z)− 1).

(viii) rkK1(c) = rk Ker j◦c − # Singc because Ker ic is a subspace of Ker `c so
rkK1(c) = rk Ker j◦c − rkKer `c and the dimension of Ker `c is # Singc (see
paragraph 2.2).

We complete the proof:

rkK1(c) = rk `c(Ker j◦c ) by (i)
= rk Ker j◦c − rkKer `c by (viii)
= rk Ker jc ◦ ic −# Singc by (ii) and (viii)
= rk Ker ic + rkKer jc ∩ Im ic −# Singc by (iii)
= rk Ker ic −# Singc +rkKer jc by (iv)

=
∑

z∈Singc

(
r(Fc,z)− 1

)
+ n(Fc) + rkH1(Ḡc)− rk(Gc) by (v) and (vi)

= r(Fc)− 1 + rkH1(Ḡc). by (vii)

Filtration. Let φ be the map provided by the total resolution of f . The divisor
φ−1(c) is denoted by D =

∑
imiDi where mi stands for the multiplicity of Di. We

associate to Di a part of the generic fiber denoted by Fi. We briefly recall this
construction (see [6]), let V = φ−1(D2

ε(c)) be a tubular neighborhood of D, we will
identify the generic fiber Fgen with φ−1(s)\π−1(L∞) for a generic value s ∈ ∂D2

ε(c), π
is the blow-up associated to φ. There is a natural deformation retraction R : V −→ D,
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and we set Fi = R−1(Di) ∩ Fgen . The filtration of the homology of the generic fiber
is the sequence of inclusions:

W−1 ⊂W0 ⊂W1 ⊂W2 = H1(Fgen),

with

• W−1: the boundary cycles, that is to say, if F̄gen is the compactification of Fgen
and ι∗ : H1(Fgen) −→ H1(F̄gen) is induced by inclusion then W−1 = Ker ι∗;

• W0: these are gluing cycles: the homology group on the components of Fi ∩ Fj
(i 6= j);

• W1: the direct sum of the H1(Fi);

• W2 = H1(Fgen).

The subspaces W0 and W1 depend on the value c.

Jordan blocks for n = 2. For polynomials in two variables, the size of Jordan
blocks for the monodromy hc is less or equal to 2. Let denote by σ and τ cycles of
H1(Fgen) such that h(σ) = σ and h(τ) = σ+ τ . The matrix of hc for the family (σ, τ)
is ( 1 1

0 1 ). We already know that the cycle σ vanishes.
A large cycle is a cycle of W2 = H1(Fgen) that has a non-trivial class in W2/W1.

According to [6] τ is large cycle; moreover large cycles associated to the eigenvalue 1
are the embedding of H1(Ḡc) in H1(Fgen). So large cycles are not vanishing cycles.
We have rkW2/W1 equal to rkH1(Ḡc), this is also the number of Jordan 2-blocks for
the eigenvalue 1.

Vanishing cycles. We are now able to describe vanishing cycles. For all the spaces
W−1, W0/W−1, W1/W0 and W2/W1 the cycles associated to eigenvalues different
from 1 are vanishing cycles (lemma 2.3).

Proposition 2.6. We have

Ker(hc − id)2 ∩ V1(c) = Ker(hc − id) ∩ V1(c) =: K1(c)

and vanishing cycles for the eigenvalue 1 are dispatch as follows:

• for W−1: r(Fc)− 1 cycles ( i. e. rkW−1 ∩K1(c) = r(Fc)− 1),

• for W0: rkH1(Ḡc) other cycles ( i. e. rk(W0 ∩ K1(c))/(W−1 ∩ K1(c)) =
rkH1(Ḡc)),

• for W1, no other cycle ( i. e. rk(W1 ∩K1(c))/(W0 ∩K1(c)) = 0),

• for W2, no other cycle ( i. e. rk(W2 ∩K1(c))/(W1 ∩K1(c)) = 0).
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Proof. We have already remarked that large cycles (like τ) associated to ( 1 1
0 1 ) are not

vanishing cycles, so vanishing cycles inW2 are inW1, that is to sayW2∩Ker(hc−id)2∩
V1(c) = W1∩Ker(hc−id)2∩V1(c). Then the other vanishing cycles for the eigenvalue 1
are invariant cycles by hc, in other words we proved that Ker(hc−id)2∩V1(c) = K1(c).
We have W1 ∩K1(c) = W0 ∩K1(c) because invariant cycles for W1 that are not in
W0 correspond to the genus of the smooth part F ◦c of Fc (this is due to the equality
Ker(hc − id) = `c(H1(F ◦c ))). As they already appear in Fc, these cycles are not
vanishing cycles for the value c. Moreover there are rkH1(Ḡc) Jordan 2-blocks for
the eigenvalue 1 that provide rkH1(Ḡc) vanishing cycles (like σ) in W0/W−1. Finally,
proposition 2.5 proves that rkW−1 ∩K1(c) = r(Fc)− 1.
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