Real Cubic Hypersurfaces and Group Laws

Johannes Huisman
Département de Mathématiques
UFR Sciences et Techniques
Université de Bretagne Occidentale
6, avenue Victor Le Gorgeu
B.P. 809
29285 Brest Cedex - France
johannes.huisman@univ-brest.fr

Recibido: 20 de Enero de 2003
Aceptado: 19 de Febrero de 2004

Abstract

Let X be a real cubic hypersurface in \mathbb{P}^{n}. Let C be the pseudo-hyperplane of X, i.e., C is the irreducible global real analytic branch of the real analytic variety $X(\mathbb{R})$ such that the homology class $[C]$ is nonzero in $H_{n-1}\left(\mathbb{P}^{n}(\mathbb{R}), \mathbb{Z} / 2 \mathbb{Z}\right)$. Let \mathcal{L} be the set of real linear subspaces L of \mathbb{P}^{n} of dimension $n-2$ contained in X such that $L(\mathbb{R}) \subseteq C$. We show that, under certain conditions on X, there is a group law on the set \mathcal{L}. It is determined by $L+L^{\prime}+L^{\prime \prime}=0$ in \mathcal{L} if and only if there is a real hyperplane H in \mathbb{P}^{n} such that $H \cdot X=L+L^{\prime}+L^{\prime \prime}$. We also study the case when these conditions on X are not satisfied.

Key words: real cubic hypersurface, real cubic curve, real cubic surface, pseudohyperplane, pseudo-line, pseudo-plane, linear subspace, group.
2000 Mathematics Subject Classification: 14J70, 14P25.

1. Introduction

The group law on the set of rational points of a cubic curve does not admit a generalization to cubic hypersurfaces [4]. That is, the set of rational points of a cubic hypersurface does not have a group law for which colinear points have zero sum. The idea of the present paper is that the higher dimensional analogue of a rational point of a cubic curve should not be a rational point of a cubic hypersurface, but should be a rational linear subspace of \mathbb{P}^{n} of dimension $n-2$ that is contained in a cubic hypersurface.

2. Pseudo-hyperplanes of real hypersurfaces

Let n be a natural integer satisfying $n \geq 2$. Let $X \subseteq \mathbb{P}^{n}$ be a real hypersurface, i.e., X is defined by a nonconstant homogeneous real polynomial. Note that we do not assume X to be reduced, irreducible or smooth. The set of real points $X(\mathbb{R})$ of X is a real analytic subvariety of $\mathbb{P}^{n}(\mathbb{R})$. Let C be an irreducible global real analytic branch of $X(\mathbb{R})$. Then C is a compact connected real analytic subvariety of $\mathbb{P}^{n}(\mathbb{R})$. Its dimension is at most $n-1$. By [1], C realizes a $\mathbb{Z} / 2 \mathbb{Z}$-homology class $[C]$ in $H_{n-1}\left(\mathbb{P}^{n}(\mathbb{R}), \mathbb{Z} / 2 \mathbb{Z}\right)$. This homology class vanishes if $\operatorname{dim}(C)<n-1$. We say that C is a pseudo-hyperplane of X if $[C] \neq 0$. In particular, the dimension of a pseudo-hyperplane of X is equal to $n-1$. If $n=2$, a pseudo-hyperplane is called a pseudo-line. If $n=3$, a pseudo-hyperplane is called a pseudo-plane.

Proposition 2.1. Let n and d be natural integers. Let X be a real hypersurface of \mathbb{P}^{n} of degree d. Then, the number of pseudo-hyperplanes of X, when counted with multiplicities, is congruent to $d(\bmod 2)$.
Proof. We may assume that X is reduced. Denote by $[X(\mathbb{R})]$ the homology class of $X(\mathbb{R})$ in $H_{n-1}\left(\mathbb{P}^{n}(\mathbb{R}), \mathbb{Z} / 2 \mathbb{Z}\right)$. One has $[X(\mathbb{R})]=d\left[\mathbb{P}^{n-1}(\mathbb{R})\right]$. Let L be a general real projective line in \mathbb{P}^{n}. Then,

$$
[X(\mathbb{R})] \cdot[L(\mathbb{R})]=d\left[\mathbb{P}^{n-1}(\mathbb{R})\right] \cdot[L(\mathbb{R})]=d
$$

in $\mathbb{Z} / 2 \mathbb{Z}$. But the intersection number $[X(\mathbb{R})] \cdot[L(\mathbb{R})]$ is equal to the number of pseudo-hyperplanes of X. Therefore, the statement follows.

Proposition 2.2. Let n and d be natural integers. Let X be a real hypersurface of \mathbb{P}^{n} of degree d. Then, X has at most d pseudo-hyperplanes, when counted with multiplicities.
Proof. Let $L \subseteq \mathbb{P}^{n}$ be a general real projective line. Let C be a pseudo-hyperplane of X. Since $[C] \neq 0$ and $[L(\mathbb{R})] \neq 0$, the homological intersection product $[C]$. $[L(\mathbb{R})]$ is nonzero. In particular, the subsets C and $L(\mathbb{R})$ of $\mathbb{P}^{n}(\mathbb{R})$ intersect each other. Therefore, any pseudo-hyperplane of X intersects $L(\mathbb{R})$. Hence, the number of pseudo-hyperplanes of X, counted with multiplicities, is not greater than the degree of the intersection product $X \cdot L$. Since the latter degree is equal to d, the statement follows.

Proposition 2.3. Let n and d be natural integers. Let X be a real hypersurface of \mathbb{P}^{n} of degree d. Then, X has exactly d pseudo-hyperplanes if and only if X is the scheme-theoretic union of d real hyperplanes.

Proof. Suppose that X is the scheme-theoretic union of d real hyperplanes. Then it is clear that X has exactly d pseudo-hyperplanes, when counted with multiplicities.

Conversely, suppose that X has exactly d pseudo-hyperplanes, when counted with multiplicities. We show that X is a scheme-theoretic union of real hyperplanes.

Clearly, one may assume that X is reduced. Let C be a pseudo-hyperplane of X. Since $\operatorname{dim}(C)=n-1$, there is a smooth point P of X that belongs to C. We show that the projective tangent space $T_{P} X$ of X at P is contained in X. It will follow that X is the scheme-theoretic union of real hyperplanes.

Let L be a real projective line in $T_{P} X$ passing through P. We show that L is contained in X. Suppose that $L \nsubseteq X$. Then the intersection product $L \cdot X$ contains P with multiplicity ≥ 2. Moreover, $L(\mathbb{R})$ intersects each of the $d-1$ pseudohyperplanes C^{\prime} of X that are distinct from C. It follows that $\operatorname{deg}(L \cdot X) \geq 2+(d-1)=$ $d+1$, contradiction.

From Propositions 2.1, 2.2 and 2.3 one deduces the following consequence.
Corollary 2.4. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface. Then X has exactly one pseudo-hyperplane.

3. Real cubic hypersurfaces

Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface. Then, by Corollary 2.4 above, X has exactly one pseudo-hyperplane. Let C be the pseudo-hyperplane of X. Let \mathcal{L} be the set of real linear subspaces L of \mathbb{P}^{n} of dimension $n-2$ that are contained in X and that satisfy $L(\mathbb{R}) \subseteq C$. Note that the last condition on L is superfluous if C is entirely contained in the smooth locus of X. To put it otherwise, if all points of C are smooth points of X then \mathcal{L} is nothing but the set of real linear subspaces of \mathbb{P}^{n} of dimension $n-2$ that are contained in X.

The set \mathcal{L} is well understood. If $n=2$, the set \mathcal{L} is equal to the pseudo-line of X. If $n=3$, the set \mathcal{L} is finite if X is smooth or if X is singular with isolated rational singularities [3, p. 66]. More generally, for arbitrary $n \geq 2$, let $X \subseteq \mathbb{P}^{n}$ have rational singularities in codimension ≥ 2, i.e., the singular locus of X has codimension ≥ 2 and any general section of X by a real 3 -dimensional linear subspace of \mathbb{P}^{n} has only rational singularities. Then \mathcal{L} is finite. This follows easily from [3].

Let Z be the subset of $\mathcal{L} \times \mathcal{L}$ consisting of all pairs (L, L) such that there is either no real hyperplane H with $H \cdot X \geq 2 L$, or there are several such hyperplanes. Equivalently, Z is the subset of the diagonal Δ of $\mathcal{L} \times \mathcal{L}$ whose complement in Δ consists of all pairs (L, L) such that there is exactly 1 real hyperplane H in \mathbb{P}^{n} with $H \cdot X \geq 2 L$.

Proposition 3.1. Suppose that C is homeomorphic to $\mathbb{P}^{n-1}(\mathbb{R})$. There is a unique partial composition law

$$
\circ: \mathcal{L} \times \mathcal{L} \backslash Z \longrightarrow \mathcal{L}
$$

determined by $L^{\prime \prime}=L \circ L^{\prime}$ if and only if there is a real hyperplane H in \mathbb{P}^{n} such that $H \cdot X=L+L^{\prime}+L^{\prime \prime}$.

Proof. Let $L, L^{\prime} \in \mathcal{L}$ with $\left(L, L^{\prime}\right) \notin Z$. The homology classes $[L(\mathbb{R})]$ and $\left[L^{\prime}(\mathbb{R})\right]$ are nonzero in $H_{n-2}(C, \mathbb{Z} / 2 \mathbb{Z})$. Since C is homeomorphic to $\mathbb{P}^{n-1}(\mathbb{R})$, the intersection product $[L(\mathbb{R})] \cdot\left[L^{\prime}(\mathbb{R})\right]$ is nonzero. It follows that the linear subspaces L and L^{\prime} intersect in a real linear subspace of \mathbb{P}^{n} of dimension $\geq n-3$. If $L \neq L^{\prime}$, the dimension of the intersection is equal to $n-3$. Hence, if $L \neq L^{\prime}$, there is a unique real hyperplane H in \mathbb{P}^{n} such that $H \cdot X \geq L+L^{\prime}$. If $L=L^{\prime}$ then there is also a unique real hyperplane H in \mathbb{P}^{n} such that $H \cdot X \geq L+L^{\prime}$ since $\left(L, L^{\prime}\right) \notin Z$.

Now, $H \cdot X$ is a real cubic hypersurface in the real projective space H. It has at least 2 pseudo-hyperplanes, when counted with multiplicities. From Propositions 2.1 and 2.3 it follows that there is a unique real linear subspace $L^{\prime \prime}$ of \mathbb{P}^{n} of dimension $n-2$ such that $H \cdot X=L+L^{\prime}+L^{\prime \prime}$. Since Since $[H(\mathbb{R})] \cdot[C] \neq 0$ and $[L(\mathbb{R})]+\left[L^{\prime}(\mathbb{R})\right]=0$ in $H_{n-2}(C(\mathbb{R}), \mathbb{Z} / 2 \mathbb{Z})$, one has $L^{\prime \prime}(\mathbb{R}) \subseteq C$, i.e., $L^{\prime \prime} \in \mathcal{L}$.

It will be convenient, as in the case of cubic curves, to have an element $O \in \mathcal{L}$ such that there exist a unique real hyperplane H_{0} in \mathbb{P}^{n} with $H_{0} \cdot X=3 O$. Therefore, we consider the following conditions on X :
(i) X is smooth in codimension 1 ,
(ii) C is homeomorphic to $\mathbb{P}^{n-1}(\mathbb{R})$, and
(iii) there is a real hyperplane H_{0} in \mathbb{P}^{n} such that $H_{0} \cdot X=3 O$ in $\operatorname{Div}(X)$.

There are lots of real cubic hypersurfaces satisfying conditions (i), (ii) and (iii): smooth real cubic curves in \mathbb{P}^{2} satisfy the conditions (i) and, whenever an irreducible real cubic hypersurface in \mathbb{P}^{n} satisfies the conditions, then a projective cone over it in \mathbb{P}^{n+1} also satisfies the conditions (i), (ii) and (iii). And these are not the only ones [3].

Note, however, that a real cubic hypersurface X satisfying conditions (i), (ii) and (iii) is necessarily singular if $n \geq 3$. Indeed, after a change of coordinates, one may assume that H_{0} is given by the equation $X_{0}=0$, and that O is the linear subspace of \mathbb{P}^{n} defined by the equations $X_{0}=0$ and $X_{1}=0$. Then, X is defined by a homogeneous polynomial of the form $X_{1}^{3}+X_{0} F$, where F is a real quadratic form in X_{0}, \ldots, X_{n}. The closed subscheme of X defined by the equations $X_{0}=0$, $X_{1}=0$ and $F=0$ is contained in the singular locus of X. If $n \geq 3$ then this closed subscheme is nonempty. Therefore, X is singular if $n \geq 3$.

Lemma 3.2. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above. Then $O \in \mathcal{L}$ and $(O, O) \notin Z$.

Proof. Since $H_{0} \cdot X=3 O, O$ is a real linear subspace of \mathbb{P}^{n} of dimension $n-2$. Since $n-2 \geq 0$, the set of real points $O(\mathbb{R})$ of O is nonempty. Since $O(\mathbb{R}) \subseteq X(\mathbb{R})$ and $O(\mathbb{R})$ is irreducible, there is an irreducible global real analytic branch C^{\prime} of $X(\mathbb{R})$ such that $O(\mathbb{R}) \subseteq C^{\prime}$. Since X is smooth in codimension $1, O$ is not contained in the singular locus of X. It follows that $O(\mathbb{R})$ contains a smooth point of X. In
particular, C^{\prime} is a real analytic variety of dimension $n-1$. Suppose that $\left[C^{\prime}\right]=0$ then also $\left[H_{0}(\mathbb{R})\right] \cdot\left[C^{\prime}\right]=[O(\mathbb{R})]=0$. But $[O(\mathbb{R})] \neq 0$, contradiction. Therefore, $\left[C^{\prime}\right] \neq 0$, i.e., C^{\prime} is a pseudo-hyperplane of X. It follows from Corollary 2.4 that $C^{\prime}=C$ and $O \in \mathcal{L}$.

Since X is smooth in codimension 1 , the hyperplane H_{0} is the unique real hyperplane satisfying $H_{0} \cdot X \geq 2 O$. Hence, $(O, O) \notin Z$.

From now on, suppose that $X \subseteq \mathbb{P}^{n}$ is an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above. Define a partial composition law \oplus on \mathcal{L},

$$
\oplus: \mathcal{L} \times \mathcal{L} \backslash Z \longrightarrow \mathcal{L}
$$

by $L \oplus L^{\prime}=O \circ\left(L \circ L^{\prime}\right)$ for all $\left(L, L^{\prime}\right) \in \mathcal{L}^{2} \backslash Z$. Note that this is well defined by Lemma 3.2. Define also a map

$$
\ominus: \mathcal{L} \longrightarrow \mathcal{L}
$$

by $\ominus L=O \circ L$ for all $L \in \mathcal{L}$. Note again that this well defined.
Let $\operatorname{Pic}(X)$ be the Picard group of X. Since X is smooth in codimension 1, the group $\operatorname{Pic}(X)$ is the group of linear equivalence classes of divisors on X [2]. Define a map

$$
\varphi: \mathcal{L} \longrightarrow \operatorname{Pic}(X)
$$

by $\varphi(L)=\operatorname{cl}(L-O)$, for all $L \in \mathcal{L}$, where cl denotes the linear equivalence class.
Theorem 3.3. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above. Then the map φ is injective. Moreover, for all $\left(L, L^{\prime}\right) \in \mathcal{L}^{2} \backslash Z$ one has

$$
\varphi\left(L \oplus L^{\prime}\right)=\varphi(L)+\varphi\left(L^{\prime}\right)
$$

And, for all $L \in \mathcal{L}$ one has

$$
\varphi(\ominus L)=-\varphi(L)
$$

Proof. Let $L, L^{\prime} \in \mathcal{L}$ such that $\varphi(L)=\varphi\left(L^{\prime}\right)$. Then the invertible sheaves $\mathcal{O}(L)$ and $\mathcal{O}\left(L^{\prime}\right)$ on X are isomorphic. Let $P \subseteq \mathbb{P}^{n}$ be a general real linear subspace of dimension 2. Then, $E=P \cap X$ is a smooth real cubic curve, $P \cap L$ and $P \cap L^{\prime}$ are real points of E, and the invertible sheaves $\mathcal{O}(P \cap L)$ and $\mathcal{O}\left(P \cap L^{\prime}\right)$ on E are isomorphic. It follows (cf. [5]) that $P \cap L=P \cap L^{\prime}$. Since P is general, one has $L=L^{\prime}$. This proves that φ is injective.

Let $L \in \mathcal{L}$. By Proposition 3.1, there is a real hyperplane H of \mathbb{P}^{n} such that

$$
H \cdot X=O+L+\ominus L
$$

Then

$$
\operatorname{div}\left(\frac{H}{H_{0}}\right)=(O+L+\ominus L)-3 O=(L-O)+(\ominus L-O)
$$

It follows that $\varphi(\ominus L)=-\varphi(L)$.
Similarly, if $\left(L, L^{\prime}\right) \in \mathcal{L}^{2} \backslash Z$, then $\varphi\left(L \oplus L^{\prime}\right)=\varphi(L)+\varphi\left(L^{\prime}\right)$.

Corollary 3.4. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above. Suppose that for each $L \in \mathcal{L}$ there is a real hyperplane H in \mathbb{P}^{n} such that $H \cdot X \geq 2 L$. Then $(\mathcal{L}, \oplus, \ominus, O)$ is an abelian group and the map φ is an isomorphism from \mathcal{L} onto a subgroup of $\operatorname{Pic}(X)$.

If $n=2$, then X is a smooth real cubic curve, C is the pseudo-line of X, the set \mathcal{L} is equal to C, and $Z=\emptyset$. Therefore, Corollary 3.4 reconstructs the classical group structure on C [5]. This is not surprising since we used in the proof of Theorem 3.3 the classical fact that the map φ is injective if $n=2$. More generally, if $X \subseteq \mathbb{P}^{n}$ is a real projective cone over a nonsingular real cubic curve E, then there is an obvious bijection between \mathcal{L} and the real pseudoline of E, and, again, $Z=\emptyset$. Therefore, \mathcal{L} is a group that is isomorphic to the group structure on the pseudo-line of E. More interesting cases are the cases where X has rational singularities in codimension ≥ 2.

Let $\mathbb{Z}[\mathcal{L}]$ be the free abelian group generated by the elements of \mathcal{L}. Let H be the subgroup of $\mathbb{Z}[\mathcal{L}]$ generated by the elements

$$
L \oplus L^{\prime}-L-L^{\prime}
$$

for $\left(L, L^{\prime}\right) \in \mathcal{L}^{2} \backslash Z$, and the elements

$$
\ominus L+L
$$

for $L \in \mathcal{L}$, and the element O. Let G be the quotient group $\mathbb{Z}[\mathcal{L}] / H$.
Proposition 3.5. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above. Then

$$
G=\mathcal{L} \cup\{m L \mid(L, L) \in Z \text { and } m \geq 2\}
$$

Proof. Let R be the right-hand side of the equation. Let g be an element of G. We may assume that $g=\sum_{i=1}^{\ell} L_{i}$, where $L_{i} \in \mathcal{L}$ for $i=1, \ldots, \ell$. We show that one can reduce ℓ successively to get in the end $g \in R$.

If $\ell \leq 1$ then we are done. Suppose therefore that $\ell \geq 2$. If $\left(L_{\ell-1}, L_{\ell}\right) \notin Z$ then put $L_{\ell-1}^{\prime}=L_{\ell-1} \oplus L_{\ell}$. One has $g=\sum_{i=1}^{\ell-1} L_{i}^{\prime}$, where $L_{i}^{\prime}=L_{i}$ for $i=1, \ldots, \ell-2$. Continuing in this way, one has in the end either $g \in \mathcal{L}$ or $g=m L$ for some $L \in \mathcal{L}$ with $(L, L) \in Z$ and $m \geq 2$, i.e., $g \in R$.

Corollary 3.6. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above. Suppose that X has rational singularities in codimension ≥ 2. Then $\operatorname{rank}(G) \leq 1$.

Proof. Since X has rational singularities in codimension ≥ 2, the set \mathcal{L} is finite [3]. By Proposition 3.5, the \mathbb{Q}-vector space $\mathbb{Q} \otimes G$ is a union of finitely many 1-dimensional subspaces. Hence, $\operatorname{dim}(\mathbb{Q} \otimes G) \leq 1$. Since G is a \mathbb{Z}-module of finite type, $\operatorname{rank}(G) \leq 1$.

Corollary 3.7. Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above. Suppose that X has rational singularities in codimension ≥ 2. Then the map $\varphi: \mathcal{L} \longrightarrow \operatorname{Pic}(X)$ induces a morphism

$$
\psi: G \longrightarrow \operatorname{Pic}(X)
$$

The image of ψ is a subgroup of $\operatorname{Pic}(X)$ of rank ≤ 1.
Let $X \subseteq \mathbb{P}^{n}$ be an irreducible real cubic hypersurface satisfying conditions (i), (ii) and (iii) above, and having rational singularities in codimension ≥ 2. One of the following three conditions hold:
(i) $\psi(G)=\varphi(\mathcal{L})$,
(ii) $\psi(G) \neq \varphi(\mathcal{L})$ and $\psi(G)$ is finite, or
(iii) $\psi(G)$ is not finite.

The first case occurs when, for each $L \in \mathcal{L}$, there is a real hyperplane H in \mathbb{P}^{n} such that $H \cdot X \geq 2 L$ (see Proposition 3.5). Explicit examples of real cubic hypersurfaces X having this property can be easily constructed using [3, p. 66]. It would be interesting to construct real cubic hypersurfaces X for which one of the other conditions hold. It would also be interesting to determine the group $\psi(G)$ explicitly in each of the above three cases.

Acknowledgements. I am grateful to Louis Mahé for our discussions on cubic hypersurfaces and group laws.

References

[1] A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513.
[2] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, ISBN 0-387-90244-9.
[3] H. Knörrer and T. Miller, Topologische Typen reeller kubischer Flächen, Math. Z. 195 (1987), 51-67.
[4] Y. I. Manin, Cubic forms, North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986, ISBN 0-444-87823-8.
[5] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986, ISBN 0-387-96203-4.

