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ABSTRACT

Let X be a real cubic hypersurface in Pn. Let C be the pseudo-hyperplane
of X, i.e., C is the irreducible global real analytic branch of the real analytic
variety X(R) such that the homology class [C] is nonzero in Hn−1(Pn(R), Z/2Z).
Let L be the set of real linear subspaces L of Pn of dimension n − 2 contained
in X such that L(R) ⊆ C. We show that, under certain conditions on X, there
is a group law on the set L. It is determined by L + L′ + L′′ = 0 in L if and
only if there is a real hyperplane H in Pn such that H ·X = L + L′ + L′′. We
also study the case when these conditions on X are not satisfied.
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1. Introduction

The group law on the set of rational points of a cubic curve does not admit a gen-
eralization to cubic hypersurfaces [4]. That is, the set of rational points of a cubic
hypersurface does not have a group law for which colinear points have zero sum. The
idea of the present paper is that the higher dimensional analogue of a rational point
of a cubic curve should not be a rational point of a cubic hypersurface, but should
be a rational linear subspace of Pn of dimension n − 2 that is contained in a cubic
hypersurface.
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2. Pseudo-hyperplanes of real hypersurfaces

Let n be a natural integer satisfying n ≥ 2. Let X ⊆ Pn be a real hypersurface,
i.e., X is defined by a nonconstant homogeneous real polynomial. Note that we do
not assume X to be reduced, irreducible or smooth. The set of real points X(R)
of X is a real analytic subvariety of Pn(R). Let C be an irreducible global real
analytic branch of X(R). Then C is a compact connected real analytic subvariety
of Pn(R). Its dimension is at most n − 1. By [1], C realizes a Z/2Z-homology
class [C] in Hn−1(Pn(R),Z/2Z). This homology class vanishes if dim(C) < n−1. We
say that C is a pseudo-hyperplane of X if [C] 6= 0. In particular, the dimension of a
pseudo-hyperplane of X is equal to n − 1. If n = 2, a pseudo-hyperplane is called a
pseudo-line. If n = 3, a pseudo-hyperplane is called a pseudo-plane.

Proposition 2.1. Let n and d be natural integers. Let X be a real hypersurface
of Pn of degree d. Then, the number of pseudo-hyperplanes of X, when counted with
multiplicities, is congruent to d (mod 2).

Proof. We may assume that X is reduced. Denote by [X(R)] the homology class
of X(R) in Hn−1(Pn(R),Z/2Z). One has [X(R)] = d[Pn−1(R)]. Let L be a general
real projective line in Pn. Then,

[X(R)] · [L(R)] = d[Pn−1(R)] · [L(R)] = d

in Z/2Z. But the intersection number [X(R)] · [L(R)] is equal to the number of
pseudo-hyperplanes of X. Therefore, the statement follows.

Proposition 2.2. Let n and d be natural integers. Let X be a real hypersurface
of Pn of degree d. Then, X has at most d pseudo-hyperplanes, when counted with
multiplicities.

Proof. Let L ⊆ Pn be a general real projective line. Let C be a pseudo-hyperplane
of X. Since [C] 6= 0 and [L(R)] 6= 0, the homological intersection product [C] ·
[L(R)] is nonzero. In particular, the subsets C and L(R) of Pn(R) intersect each
other. Therefore, any pseudo-hyperplane of X intersects L(R). Hence, the number of
pseudo-hyperplanes of X, counted with multiplicities, is not greater than the degree
of the intersection product X ·L. Since the latter degree is equal to d, the statement
follows.

Proposition 2.3. Let n and d be natural integers. Let X be a real hypersurface
of Pn of degree d. Then, X has exactly d pseudo-hyperplanes if and only if X is the
scheme-theoretic union of d real hyperplanes.

Proof. Suppose that X is the scheme-theoretic union of d real hyperplanes. Then it
is clear that X has exactly d pseudo-hyperplanes, when counted with multiplicities.

Conversely, suppose that X has exactly d pseudo-hyperplanes, when counted with
multiplicities. We show that X is a scheme-theoretic union of real hyperplanes.
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Clearly, one may assume that X is reduced. Let C be a pseudo-hyperplane of X.
Since dim(C) = n − 1, there is a smooth point P of X that belongs to C. We show
that the projective tangent space TPX of X at P is contained in X. It will follow
that X is the scheme-theoretic union of real hyperplanes.

Let L be a real projective line in TPX passing through P . We show that L
is contained in X. Suppose that L 6⊆ X. Then the intersection product L · X
contains P with multiplicity ≥ 2. Moreover, L(R) intersects each of the d−1 pseudo-
hyperplanes C ′ of X that are distinct from C. It follows that deg(L·X) ≥ 2+(d−1) =
d+ 1, contradiction.

From Propositions 2.1, 2.2 and 2.3 one deduces the following consequence.

Corollary 2.4. Let X ⊆ Pn be an irreducible real cubic hypersurface. Then X has
exactly one pseudo-hyperplane.

3. Real cubic hypersurfaces

Let X ⊆ Pn be an irreducible real cubic hypersurface. Then, by Corollary 2.4 above,
X has exactly one pseudo-hyperplane. Let C be the pseudo-hyperplane of X. Let L
be the set of real linear subspaces L of Pn of dimension n− 2 that are contained in X
and that satisfy L(R) ⊆ C. Note that the last condition on L is superfluous if C is
entirely contained in the smooth locus of X. To put it otherwise, if all points of C
are smooth points of X then L is nothing but the set of real linear subspaces of Pn

of dimension n− 2 that are contained in X.
The set L is well understood. If n = 2, the set L is equal to the pseudo-line of X.

If n = 3, the set L is finite if X is smooth or if X is singular with isolated rational
singularities [3, p. 66]. More generally, for arbitrary n ≥ 2, let X ⊆ Pn have rational
singularities in codimension ≥ 2, i.e., the singular locus of X has codimension ≥ 2
and any general section of X by a real 3-dimensional linear subspace of Pn has only
rational singularities. Then L is finite. This follows easily from [3].

Let Z be the subset of L × L consisting of all pairs (L,L) such that there is
either no real hyperplane H with H ·X ≥ 2L, or there are several such hyperplanes.
Equivalently, Z is the subset of the diagonal ∆ of L × L whose complement in ∆
consists of all pairs (L,L) such that there is exactly 1 real hyperplane H in Pn

with H ·X ≥ 2L.

Proposition 3.1. Suppose that C is homeomorphic to Pn−1(R). There is a unique
partial composition law

◦ : L × L \ Z −→ L

determined by L′′ = L ◦ L′ if and only if there is a real hyperplane H in Pn such
that H ·X = L+ L′ + L′′.
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Proof. Let L,L′ ∈ L with (L,L′) 6∈ Z. The homology classes [L(R)] and [L′(R)] are
nonzero in Hn−2(C,Z/2Z). Since C is homeomorphic to Pn−1(R), the intersection
product [L(R)] · [L′(R)] is nonzero. It follows that the linear subspaces L and L′

intersect in a real linear subspace of Pn of dimension ≥ n − 3. If L 6= L′, the
dimension of the intersection is equal to n − 3. Hence, if L 6= L′, there is a unique
real hyperplane H in Pn such that H · X ≥ L + L′. If L = L′ then there is also a
unique real hyperplane H in Pn such that H ·X ≥ L+ L′ since (L,L′) 6∈ Z.

Now, H ·X is a real cubic hypersurface in the real projective space H. It has at
least 2 pseudo-hyperplanes, when counted with multiplicities. From Propositions 2.1
and 2.3 it follows that there is a unique real linear subspace L′′ of Pn of dimension n−2
such that H ·X = L+L′ +L′′. Since Since [H(R)] · [C] 6= 0 and [L(R)] + [L′(R)] = 0
in Hn−2(C(R),Z/2Z), one has L′′(R) ⊆ C, i.e., L′′ ∈ L.

It will be convenient, as in the case of cubic curves, to have an element O ∈ L
such that there exist a unique real hyperplane H0 in Pn with H0 ·X = 3O. Therefore,
we consider the following conditions on X:

(i) X is smooth in codimension 1,

(ii) C is homeomorphic to Pn−1(R), and

(iii) there is a real hyperplane H0 in Pn such that H0 ·X = 3O in Div(X).

There are lots of real cubic hypersurfaces satisfying conditions (i), (ii) and (iii):
smooth real cubic curves in P2 satisfy the conditions (i) and, whenever an irreducible
real cubic hypersurface in Pn satisfies the conditions, then a projective cone over it
in Pn+1 also satisfies the conditions (i), (ii) and (iii). And these are not the only
ones [3].

Note, however, that a real cubic hypersurface X satisfying conditions (i), (ii) and
(iii) is necessarily singular if n ≥ 3. Indeed, after a change of coordinates, one
may assume that H0 is given by the equation X0 = 0, and that O is the linear
subspace of Pn defined by the equations X0 = 0 and X1 = 0. Then, X is defined
by a homogeneous polynomial of the form X3

1 + X0F , where F is a real quadratic
form in X0, . . . , Xn. The closed subscheme of X defined by the equations X0 = 0,
X1 = 0 and F = 0 is contained in the singular locus of X. If n ≥ 3 then this closed
subscheme is nonempty. Therefore, X is singular if n ≥ 3.

Lemma 3.2. Let X ⊆ Pn be an irreducible real cubic hypersurface satisfying condi-
tions (i), (ii) and (iii) above. Then O ∈ L and (O,O) 6∈ Z.

Proof. Since H0 · X = 3O, O is a real linear subspace of Pn of dimension n − 2.
Since n − 2 ≥ 0, the set of real points O(R) of O is nonempty. Since O(R) ⊆ X(R)
and O(R) is irreducible, there is an irreducible global real analytic branch C ′ of X(R)
such that O(R) ⊆ C ′. Since X is smooth in codimension 1, O is not contained
in the singular locus of X. It follows that O(R) contains a smooth point of X. In
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particular, C ′ is a real analytic variety of dimension n−1. Suppose that [C ′] = 0 then
also [H0(R)] · [C ′] = [O(R)] = 0. But [O(R)] 6= 0, contradiction. Therefore, [C ′] 6= 0,
i.e., C ′ is a pseudo-hyperplane of X. It follows from Corollary 2.4 that C ′ = C
and O ∈ L.

Since X is smooth in codimension 1, the hyperplane H0 is the unique real hyper-
plane satisfying H0 ·X ≥ 2O. Hence, (O,O) 6∈ Z.

From now on, suppose that X ⊆ Pn is an irreducible real cubic hypersurface
satisfying conditions (i), (ii) and (iii) above. Define a partial composition law ⊕ on L,

⊕ : L × L \ Z −→ L

by L ⊕ L′ = O ◦ (L ◦ L′) for all (L,L′) ∈ L2 \ Z. Note that this is well defined by
Lemma 3.2. Define also a map

	 : L −→ L
by 	L = O ◦ L for all L ∈ L. Note again that this well defined.

Let Pic(X) be the Picard group of X. Since X is smooth in codimension 1, the
group Pic(X) is the group of linear equivalence classes of divisors on X [2]. Define a
map

ϕ : L −→ Pic(X)

by ϕ(L) = cl(L−O), for all L ∈ L, where cl denotes the linear equivalence class.

Theorem 3.3. Let X ⊆ Pn be an irreducible real cubic hypersurface satisfying
conditions (i), (ii) and (iii) above. Then the map ϕ is injective. Moreover, for
all (L,L′) ∈ L2 \ Z one has

ϕ(L⊕ L′) = ϕ(L) + ϕ(L′).

And, for all L ∈ L one has
ϕ(	L) = −ϕ(L).

Proof. Let L,L′ ∈ L such that ϕ(L) = ϕ(L′). Then the invertible sheaves O(L) and
O(L′) on X are isomorphic. Let P ⊆ Pn be a general real linear subspace of dimen-
sion 2. Then, E = P ∩ X is a smooth real cubic curve, P ∩ L and P ∩ L′ are real
points of E, and the invertible sheaves O(P ∩L) and O(P ∩L′) on E are isomorphic.
It follows (cf. [5]) that P ∩ L = P ∩ L′. Since P is general, one has L = L′. This
proves that ϕ is injective.

Let L ∈ L. By Proposition 3.1, there is a real hyperplane H of Pn such that

H ·X = O + L+	L.

Then

div
(
H

H0

)
= (O + L+	L)− 3O = (L−O) + (	L−O).

It follows that ϕ(	L) = −ϕ(L).
Similarly, if (L,L′) ∈ L2 \ Z, then ϕ(L⊕ L′) = ϕ(L) + ϕ(L′).
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Corollary 3.4. Let X ⊆ Pn be an irreducible real cubic hypersurface satisfying condi-
tions (i), (ii) and (iii) above. Suppose that for each L ∈ L there is a real hyperplane H
in Pn such that H ·X ≥ 2L. Then (L,⊕,	, O) is an abelian group and the map ϕ is
an isomorphism from L onto a subgroup of Pic(X).

If n = 2, then X is a smooth real cubic curve, C is the pseudo-line of X, the set L
is equal to C, and Z = ∅. Therefore, Corollary 3.4 reconstructs the classical group
structure on C [5]. This is not surprising since we used in the proof of Theorem 3.3
the classical fact that the map ϕ is injective if n = 2. More generally, if X ⊆ Pn is
a real projective cone over a nonsingular real cubic curve E, then there is an obvious
bijection between L and the real pseudoline of E, and, again, Z = ∅. Therefore, L
is a group that is isomorphic to the group structure on the pseudo-line of E. More
interesting cases are the cases where X has rational singularities in codimension ≥ 2.

Let Z[L] be the free abelian group generated by the elements of L. Let H be the
subgroup of Z[L] generated by the elements

L⊕ L′ − L− L′,

for (L,L′) ∈ L2 \ Z, and the elements

	L+ L,

for L ∈ L, and the element O. Let G be the quotient group Z[L]/H.

Proposition 3.5. Let X ⊆ Pn be an irreducible real cubic hypersurface satisfying
conditions (i), (ii) and (iii) above. Then

G = L ∪ {mL | (L,L) ∈ Z and m ≥ 2 }.

Proof. Let R be the right-hand side of the equation. Let g be an element of G. We
may assume that g =

∑`
i=1 Li, where Li ∈ L for i = 1, . . . , `. We show that one can

reduce ` successively to get in the end g ∈ R.
If ` ≤ 1 then we are done. Suppose therefore that ` ≥ 2. If (L`−1, L`) 6∈ Z then

put L′`−1 = L`−1 ⊕ L`. One has g =
∑`−1

i=1 L
′
i, where L′i = Li for i = 1, . . . , ` − 2.

Continuing in this way, one has in the end either g ∈ L or g = mL for some L ∈ L
with (L,L) ∈ Z and m ≥ 2, i.e., g ∈ R.

Corollary 3.6. Let X ⊆ Pn be an irreducible real cubic hypersurface satisfying con-
ditions (i), (ii) and (iii) above. Suppose that X has rational singularities in codimen-
sion ≥ 2. Then rank(G) ≤ 1.

Proof. Since X has rational singularities in codimension ≥ 2, the set L is finite [3].
By Proposition 3.5, the Q-vector space Q⊗G is a union of finitely many 1-dimensional
subspaces. Hence, dim(Q ⊗ G) ≤ 1. Since G is a Z-module of finite type,
rank(G) ≤ 1.
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Corollary 3.7. Let X ⊆ Pn be an irreducible real cubic hypersurface satisfying con-
ditions (i), (ii) and (iii) above. Suppose that X has rational singularities in codimen-
sion ≥ 2. Then the map ϕ : L −→ Pic(X) induces a morphism

ψ : G −→ Pic(X).

The image of ψ is a subgroup of Pic(X) of rank ≤ 1.

Let X ⊆ Pn be an irreducible real cubic hypersurface satisfying conditions (i),
(ii) and (iii) above, and having rational singularities in codimension ≥ 2. One of the
following three conditions hold:

(i) ψ(G) = ϕ(L),

(ii) ψ(G) 6= ϕ(L) and ψ(G) is finite, or

(iii) ψ(G) is not finite.

The first case occurs when, for each L ∈ L, there is a real hyperplane H in Pn such
thatH ·X ≥ 2L (see Proposition 3.5). Explicit examples of real cubic hypersurfacesX
having this property can be easily constructed using [3, p. 66]. It would be interesting
to construct real cubic hypersurfaces X for which one of the other conditions hold. It
would also be interesting to determine the group ψ(G) explicitly in each of the above
three cases.
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