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ABSTRACT

Let Fq denotes the finite field of q elements. O. Ahmadi and A. Menezes have
recently considered the question about the possible number of elements with
zero trace in polynomial bases of F2n over F2. Here we show that the Weil
bound implies that there is such a basis with n + O(log n) zero-trace elements.
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1. Introduction

Let Fq denotes the finite field of q elements, and let

Tr(z) =
n−1∑
j=0

z2j

(1)

denote the trace of z ∈ F2n in F2.
We also denote by An the set of roots α of all irreducible polynomials of degree n

over F2, thus F2n = F2(α) for every α ∈ An.
For α ∈ An, we denote by N(α) the number of zero trace elements in the polyno-

mial basis {1, α, . . . , αn−1} of F2n over F2.
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The question about the spectrum of possible values of N(α), when α runs through
the set An, has recently been introduced by O. Ahmadi and A. Menezes [1]. In
particular elements with small values of n − N(α) are useful for speeding up finite
field arithmetic. It is shown in [1] that under the assumption of the existence of
certain irreducible trinomials N(α) achieves its largest (and thus optimal from the
computational point of view) value N(α) = n − 1. One can also find several other
results in [1], which show that other irreducible fewnomials also lead to almost optimal
values of N(α). We however remark that, although the existence of such irreducible
fewnomials has never been doubted in practice, there are no theoretical results which
guarantee the existence of infinitely many of them. Thus it is interesting to get a
rigorous bound on the largest possible value of N(α).

Here we show that the Weil bound implies that for any sufficiently large n there
are elements α ∈ An with N(α) = n + O(log n) (hereafter, log m denotes the binary
logarithm of m > 0). In fact, we show a more explicit statement.

Theorem 1.1. For every n ≥ 21, there exists α ∈ An such that N(α) ≥ n− log n−2.

For smaller values of n one can certainly use the numerical results from [1].

2. Preparation

We need several well known results from the theory of finite fields.

Lemma 2.1. The bound
|#An − 2n| ≤ 2n/2+1

holds.

Proof. It is known, see [2, Theorem 3.25], that there are

In =
1
n

∑
d|n

µ(d)2n/d

irreducible polynomials of degree n over F2n , where µ(d) is the Möbius function and
the sum is taken over all positive integer divisors of n. Therefore∣∣∣∣In − 2n

n

∣∣∣∣ ≤ ∣∣∣∣ 1
n

∑
d|n
d<n

µ(d)2n/d

∣∣∣∣ ≤ 1
n

∑
d|n
d<n

2n/d ≤ 1
n

∑
k≤n/2

2k ≤ 2n/2+1

n
.

Since each polynomial contributes exactly n elements to An (and distinct polynomials
contribute distinct elements) we have #An = nIn and the result follows.
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Lemma 2.2. For any polynomial g(X) ∈ F2[x] of odd degree k, the bound∣∣∣∣ ∑
α∈An

(−1)Tr(g(α))

∣∣∣∣ ≤ (k + 1)2n/2

holds.

Proof. By Lemma 2.1, we have,∣∣∣∣ ∑
α∈F2n

(−1)Tr(g(α)) −
∑

α∈An

(−1)Tr(g(α))

∣∣∣∣ ≤ 2n − #An ≤ 2n/2+1.

By the Weil bound, see [2, Theorem 5.38],∣∣∣∣ ∑
α∈F2n

(−1)Tr(g(α))

∣∣∣∣ ≤ (k − 1)2n/2

and the result follows.

3. Proof of Theorem 1.1

For a positive integer s ≤ n − 1 we denote by Tn,s the number of α ∈ An satisfying
the system of equations

Tr(α2j−1) = 0, j = 1, . . . , s. (2)

We have

Tn,s =
1
2s

∑
α∈An

1∑
a1,...,as=0

(−1)a1 Tr(α)+a2 Tr(α3)+···+as Tr(α2s−1).

Changing the order of summation, separating the term #An/2s corresponding to
a1 = · · · = as = 0, and using Lemma 2.2 for the other 2s − 1 terms, we deduce∣∣∣∣Tn,s −

#An

2s

∣∣∣∣ ≤ 2s − 1
2s

(2s + 1)2n/2.

Hence, by Lemma 2.1 we have

|Tn,s − 2n−s| ≤ 2s − 1
2s

(2s + 1)2n/2 +
1
2s

2n/2+1 < (2s + 1)2n/2.

It is now easy to verify that 2n−s ≥ (2s + 1)2n/2 for s = n/2 − dlog ne and thus
Tn,s > 0 for the above choice of s. We note that (1) implies that for any z ∈ F2n we
have Tr(z) = Tr(z2). Thus, if 2s − 1 ≥ (n − 1)/2 then Tr(α2i) = 0 for every positive
integer i ≤ (n − 1)/2 ≤ 2s − 1. Therefore

N(α) ≥ b(n − 1)/2c + s = n/2 + s − 1 ≥ n − log n − 2

for every α which satisfies (2). We also remark that for n ≥ 21, we have 2s − 1 =
2(n/2 − dlog ne) − 1 = n − 2dlog ne − 1 ≥ (n − 1)/2 and the result follows.
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