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ABSTRACT

A formula of Matsuo Oka [9] expresses the Milnor number of a germ of a complex
analytic map with a generic principal part in terms of the Newton polyhedra
of the components of the map. In this paper this formula is generalized to
the case of the index of a 1-form on a local complete intersection singularity
(Theorem 1.10, Corollaries 1.11, 4.1). In particular, the Newton polyhedron of
a 1-form is defined (Definition 1.6). This also simplifies the Oka formula in some
particular cases (Propositions 3.5, 3.7).
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1. Indices of 1-forms

In this paper we give a formula for the index of a 1-form on a local complete inter-
section singularity. First of all we recall the definition of this index (introduced by
W. Ebeling and S. M. Gusein-Zade).

Definition 1.1 ([5,6]). Consider a germ of a map f̄ = (f1, . . . , fk) : (Cn, 0) → (Ck, 0),
k < n and a germ of a 1-form ω on (Cn, 0). Suppose that f̄ = 0 is an (n − k)-
dimensional complete intersection with an isolated singular point at the origin, and
the restriction ω|{f̄=0} has not singular points (zeroes) in a punctured neighborhood
of the origin. For a small sphere S2n−1

δ around the origin the set S2n−1
δ ∩ {f̄ = 0} =

M2n−2k−1 is a smooth manifold. One can define the map (ω, df1, . . . , dfk) : M2n−2k−1
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→ W (n, k+1) to the Stiefel manifold of (k+1)-frames in Cn. The image of the funda-
mental class of the manifold M2n−2k−1 in the homology group H2n−2k−1(W (n, k+1))
= Z is called the index ind0 ω|{f̄=0} of the 1-form ω on the local complete intersection
singularity {f̄ = 0} (all orientations are defined by the complex structure).

Remark 1.2. One can consider this index as a generalization of the Milnor number.
Indeed, let g be a complex analytic function, then ind0 dg|{f̄=0} is equal to the sum of
the Milnor numbers of the germs (f1, . . . , fk) : (Cn, 0) → (Ck, 0) and (g, f1, . . . , fk) :
Cn → Ck+1 (if k = 0 then the first Milnor number is 0). This follows from [6,
Example 2.6 and Proposition 2.8].

Now we introduce some necessary notation and recall the statement of the Oka
theorem. Suppose f1, . . . , fk are holomorphic functions on a smooth complex man-
ifold V . Then “f1 = · · · = fk = 0 is a generic system of equations in V ” means
“df1, . . . , dfk are linearly independent at any point of the set {f1 = · · · = fk = 0}.”
Definition 1.3. Suppose f : (Cn, 0) → (C, 0) is a germ of a complex analytic func-
tion. Represent f as a sum over a subset of the integral lattice f(x) =

∑
c∈A⊂Zn

+
fcx

c,
where fc ∈ C \ {0}, Z+ = {z ∈ Z| z ≥ 0}, and xc means xc1

1 , . . . , xcn
n . The convex hull

∆f of the set (A + Rn
+) ⊂ Rn

+ = { r ∈ R | r ≥ 0 }n is called the Newton polyhedron
of f .

We denote by (Zn
+)∗ the set of covectors γ ∈ (Zn)∗ such that (γ, v) > 0 for every

v ∈ Zn
+, v 6= 0. Consider a polyhedron ∆ ⊂ Rn

+ with integer vertices and a covector
γ ∈ (Zn

+)∗. As a function on ∆ the linear form γ achieves its minimum on a maximal
compact face of ∆. Denote this face by ∆γ . Denote by fγ the polynomial

∑
c∈∆γ

f
fcx

c.

Definition 1.4. A collection of germs of functions f1, . . . , fk on (Cn, 0) is called C-
generic, if for every γ ∈ (Zn

+)∗ the system fγ
1 = · · · = fγ

k = 0 is a generic system of
equations in (C \ {0})n. A collection of germs f1, . . . , fk is called strongly C-generic,
if the collections (f1, . . . , fk) and (f2, . . . , fk) are C-generic.

Theorem 1.5 ([9, Theorem (6.8), ii]). Suppose that a collection of germs of com-
plex analytic functions f1, . . . , fk on (Cn, 0) is strongly C-generic and the polyhedra
∆f1 , . . . ,∆fk

⊂ Rn
+ intersect all coordinate axes. Then the Milnor number of the map

(f1, . . . , fk) equals the number µ(∆f1 , . . . ,∆fk
) which depends only on the Newton

polyhedra of the components of the map.

The explicit formula for µ(∆1, . . . ,∆k) in terms of the integral volumes of some
polyhedra associated to ∆1, . . . ,∆k is given in [9], Theorem (6.8), ii. In the case k = 1
one has the well-known Kouchnirenko formula [8] for the Milnor number of a germ of
a function.

To generalize this theorem we generalize Definitions 1.3 and 1.4 first.

Definition 1.6. One can formally represent an analytic 1-form ω on Cn as
∑

c∈A xcωc,
where A ⊂ Zn

+, ωc =
∑n

i=1 ωi
c

dxi

xi
6= 0, ωi

c ∈ C. The convex hull ∆ω of the set
A + Rn

+ ⊂ Rn
+ is called the Newton polyhedron of the 1-form ω.

Revista Matemática Complutense
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Remark 1.7. The Newton polyhedron of the differential of an analytic function coin-
cides with the Newton polyhedron of the function itself.

Definition 1.8. A collection of germs of a 1-form ω and k functions f1, . . . , fk on
(Cn, 0) is called C-generic, if for every γ ∈ (Zn

+)∗ the system fγ
1 = · · · = fγ

k = 0 is a
generic system of equations in (C\{0})n, and the restriction ωγ |{fγ

1 =···=fγ
k =0}∩(C\{0})n

has not singular points (we define the polynomial 1-form ωγ as
∑

c∈∆γ
ω

ωcx
c for ω =∑

c∈∆ω
ωcx

c).

Remark 1.9. A collection (dg, f1, . . . , fk) is C-generic if and only if the collection
(g, f1, . . . , fk) is strongly C-generic.

Non-C-generic collections form a subset Σ in the set of germs with given Newton
polyhedra B(∆0, . . . ,∆k) = { (ω, f1, . . . , fk) | ∆ω = ∆0,∆fi

= ∆i, i = 1, . . . , k }.

Theorem 1.10. Suppose that the polyhedra ∆0, . . . ,∆k in Rn
+, k < n intersect all co-

ordinate axes. Then the index of a 1-form on a local complete intersection singularity
as a function on B(∆0, . . . ,∆k) \ Σ is well defined and equals a constant.

Corollary 1.11. This constant equals µ(∆1, . . . ,∆k) + µ(∆0, . . . ,∆k). (To prove it
one can choose a 1-form to be the differential of a complex analytic function and use
Theorem 1.5 and the remarks above.)

Corollary 1.12. In Theorem 1.5, one can substitute the strong C-genericity condition
by the C-genericity condition. (To prove it one can choose a function g such that the
collection (g, f1, . . . , fk) is strongly C-generic, and use Theorems 1.5 and 1.10 for it.)

It is somewhat natural to express the index not in terms of the separate Newton
polyhedra of the components of a 1-form, but in some sense in terms of their union.
Indeed, consider a germ of a 1-form ω = (ω1, . . . , ωn) on (Cn, 0) and an n×n matrix C.
If the entries of C are in general position, then all the components of the 1-form Cω
have the same Newton polyhedron which is the convex hull of

⋃n
i=1 ∆ωi

. On the other
hand, ind0 Cω = ind0 ω.

The definition of the Newton polyhedron of a 1-form is a bit different from the
convex hull of the union of the Newton polyhedra of the components of a 1-form. This
definition is more natural in the framework of toric geometry. Consider a monomial
map p : (C \ {0})m → (C \ {0})n, v = p(z) = zC , where C is an n × n matrix with
integer entries. Consider a 1-form ω = (ω1, . . . , ωn) on the torus (C \ {0})n. Then
the lifting p∗ω satisfies the following equality: z · p∗ω(z) = C(p(z) · ω(p(z))). In this
equality we multiply vectors componentwise. Therefore, the Newton polyhedron in
the sense of Definition 1.6 is invariant with respect to monomial mappings. Thus,
multiplication by a matrix mixes the components of a 1-form, just as a monomial
map mixes its “shifted” components vi ·ωi(v). This difference leads to some relations
for integral volumes of polyhedra. We discuss them in section 3.
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2. Proof of Theorem 1.10

The idea of the proof is the following. In fact, the set Σ is closed and its complex
codimension is 1. Thus, it is enough to prove that the index is a locally constant
function on B(∆0, . . . ,∆k) \ Σ. The only problem is that the last set is infinite
dimensional, so we substitute it by a finite dimensional “approximation.”

The union of all compact faces of the Newton polyhedron of a function f is called
the Newton diagram of a function f . We denote it by ∆0

f . Suppose that f(x) =∑
c∈Zn

+
fcx

c, then the polynomial
∑

c∈∆0
f

fcx
c is called the principal part of f . We

denote it by f0. Denote by B(f) the set { g | ∆g = ∆f , g − g0 = λ(f − f0), λ ∈ C }.
Similarly, we define the Newton diagram ∆0

ω, the principal part ω0 and the set B(ω)
for a 1-form ω.

A collection of germs of an analytic 1-form ω and k analytic functions f1, . . . , fk

on (Cn, 0) is C-generic if and only if (ω0, f0
1 , . . . , f0

k ) is C-generic. The set of non-C-
generic collections Σ∩B(ω)×B(f1)× · · · ×B(fk) is a (Zariski) closed proper subset
of a finite dimensional set B(ω) × B(f1) × · · · × B(fk). Its complex codimension is
1 (see, for instance, [1, ch. II, § 6.2, Lemma 1], for an example of the proof of such
facts).

Now we can reformulate Theorem 1.10 in the following form:

Lemma 2.1. For any C-generic collection (ω, f1, . . . , fk) there exists a neighborhood
U ⊂ B(ω)×B(f1)× · · · ×B(fk) of it and a punctured neighborhood V ⊂ Cn around
the origin such that for any (υ, g1, . . . , gk) ∈ U the system g1 = · · · = gk = 0 is a
generic system of equations in V and the restriction υ|{g1=···=gk=0}∩V has no sin-
gular points (in particular the index ind0 υ|{g1=···=gk=0} is well defined and equals
ind0 ω|{f1=···=fk=0}).

Consider the toric resolution p : (M,D) → (Cn, 0) related to a simplicial fan Γ
compatible with ∆ω,∆f1 , . . . ,∆fk

(see [1, ch. II, § 8.2, Theorem 2] or [9, § 4] for
definitions). We call it a toric resolution of the collection (ω, f1, . . . , fk). Since the
exceptional divisor D is compact, we can reformulate Lemma 2.1 as follows:

Lemma 2.2. For any y ∈ D there exist neighborhoods Uy ⊂ B(ω)×B(f1)×· · ·×B(fk)
around (ω, f1, . . . , fk) and Vy ⊂ M around y such that for every (υ, g1, . . . , gk) ∈ Uy

the system (g1, . . . , gk) ◦ p = 0 is a generic system of equations in (Vy \ D) and the
restriction p∗υ|{(g1,...,gk)◦p=0}∩(Vy\D) has no critical points.

Proof. M is a toric manifold, so we have a natural action of the complex torus
(C\{0})n on M . The exceptional divisor D is invariant with respect to this action. De-
note by Dy the orbit of the point y. The exceptional divisor D has the minimal decom-
position into the union of disjoint smooth strata. Denote by D0

y the stratum of D, such
that y ∈ D0

y (if y is in the closure of the set p−1(the union of coordinate planes \ {0})
then Dy ( D0

y). If a ∈ T ∗
z M is orthogonal to the orbit of z ∈ M under the action of

the stabilizer of D0
y, then we (formally) write a ‖ D0

y.
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Now we consider the three cases of location of the point y on Dy with respect to
the collection (ω, f1, . . . , fk).

Case 1. y /∈ ({ (f1, . . . , fk) ◦ p = 0 } \Dy) ∩Dy.
Case 2. y doesn’t satisfy the condition of the case 1, but y /∈ ({p∗ω‖D0

y} \Dy)∩Dy.
Case 3. y doesn’t satisfy the conditions of the cases 1 and 2.
To prove Lemma 2.2 in these three cases we need a coordinate system near Dy.

Let m = n − dim Dy. By definition of a toric variety related to a fan the orbit Dy

corresponds to some m-dimensional cone Γy. Denote by s the number of coordinate
axes which are generatrices of Γy. Then s = dim D0

y − dim Dy. Γy is a face of some
n-dimensional cone in the fan Γ. Coordinates of generating covectors of this cone
form as row-vectors an integral square matrix B with nonnegative entries. After an
appropriate reordering of variables the first m its rows correspond to the generating
covectors of Γy, and the first s of them coincide with the first rows of the unit matrix.

This cone gives a system of coordinates z1, . . . , zn on a (Zariski) open set contain-
ing Dy. These coordinates are given by the equation (z1, . . . , zn)B = (x1, . . . , xn) ◦ p
(note that ‖B‖ = ±1 because Γ is chosen to be simplicial). We can describe Dy,
f1 ◦ p, . . . , fk ◦ p and the components of

p∗ω =

(p∗ω)1
...

(p∗ω)n


in this coordinate system as follows (ō means a smooth function on an open neigh-
borhood of Dy which equals zero on Dy):

(i) Dy = {z1 = · · · = zm = 0, zm+1 6= 0, . . . , zn 6= 0}; D0
y = {zs+1 = · · · = zm = 0};

a ‖ D0
y ⇔ a⊥〈 ∂

∂zs+1
, . . . , ∂

∂zm
〉.

(ii) (fi ◦ p)(z1, . . . , zn) = z
ϕs+1

i
s+1 · · · zϕm

i
m (f̂i(zm+1, . . . , zn) + ō) where i = 1, . . . , k.

(iii) (p∗ω)i(z1, . . . , zn) = zνs+1

s+1 · · · zνm

m ((̂p∗ω)i(zm+1, . . . , zn) + ō) where i = 1, . . . , s.

(iv) (p∗ω)i(z1, . . . , zn) = zνs+1

s+1 · · · zνm

m ((̂p∗ω)i(zm+1, . . . , zn)+ ō)z−1
i where i = s+1,

. . . , n.

These descriptions are related to the functions which appear in the definition of
C-genericity. Namely, for any γ ∈ Γy:

(ii’) (fγ
i ◦ p)(z1, . . . , zn) = z

ϕs+1
i

s+1 · · · zϕm
i

m f̂i(zm+1, . . . , zn) where i = 1, . . . , k.

(iii’) (ωγ)i = 0 for i = 1, . . . , s by definition.
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(iv’)

B



0
...
0

xs+1(ωγ)s+1

...
xn(ωγ)n


◦ p = zνs+1

s+1 · · · zνm

m



0
...
0

̂(p∗ω)s+1(zm+1, . . . , zn)
...

(̂p∗ω)n(zm+1, . . . , zn)


.

Now we can prove Lemma 2.2.
Case 1. This means that y /∈ {f̂1 = · · · = f̂k = 0}. The same holds for y′ close

to y in M and (g1, . . . , gk) close to (f1, . . . , fk) in B(f1)× · · ·×B(fk). Thus if y′ /∈ D
is close to y then y′ /∈ {(g1, . . . , gk) ◦ p = 0}.

Case 2. (Informally, in this case v is almost orthogonal to D0
y near y.) This

means that y does not satisfy the condition of the case 1 and y /∈ { ̂(p∗ω)s+1 = · · · =
̂(p∗ω)m = 0}. Choose j0 ∈ {s + 1, . . . ,m} such that ̂(p∗ω)j0(y) 6= 0. Then the same

holds for y′ close to y in M and υ close to ω in B(ω).
From C-genericity, (ii), and (ii’) it follows that f̂1 = · · · = f̂k = 0 is a generic

system of equations in (C \ {0})n. Thus we can choose {j1, . . . , jk} ⊂ {m + 1, . . . , n}
such that

∥∥ ∂f̂i

∂zj
(y)

∥∥i=1,...,k

j=j1,...,jk
6= 0. Then the same holds for y′ close to y in M and

(g1, . . . , gk) close to (f1, . . . , fk) in B(f1)× · · · ×B(fk).
The matrix U = p∗(υ, dg1, . . . , dgk) has the full rank for y′ /∈ D close to y in M

and (υ, g1, . . . , gk) close to (ω, f1, . . . , fk) in B(ω)×B(f1)× · · · ×B(fk). Indeed,

‖Ui,j‖i=1,...,k+1
j=j0,...,jk

= z
νs+1+ϕs+1

1 +···+ϕs+1
k

s+1 · · · zνm+ϕm
1 +···+ϕm

k
m z−1

j0
· · · z−1

jk
×

× ( ̂(p∗υ)j0

∥∥∥∂ĝi

∂zj

∥∥∥i=1,...,k

j=j1,...,jk

+ ō) 6= 0.

Case 3. In this case y ∈ {f̂1 = · · · = f̂k = 0} ∩ { ̂(p∗ω)s+1 = · · · = ̂(p∗ω)m = 0}.
From C-genericity, (iii), (iii’), (iv), and (iv’) it follows that the matrix (p̂∗ω, df̂1, . . . ,

df̂k) has the rank k + 1. Thus some of its minors U0 (suppose it consists of rows
j0 > · · · > jk > m) is nonzero and the same holds for y′ close to y in M and
(υ, g1, . . . , gk) close to (ω, f1, . . . , fk) in B(ω)×B(f1)× · · · ×B(fk).

The same minor of the matrix U = p∗(υ, dg1, . . . , dgk) is equal to z−1
j0

· · · z−1
jk

×

z
νs+1+ϕs+1

1 +···+ϕs+1
k

s+1 · · · zνm+ϕm
1 +···+ϕm

k
m (U0+ō) 6= 0. Thus U has the full rank for y′ /∈ D

close to y in M and (υ, g1, . . . , gk) close to (ω, f1, . . . , fk) in B(ω)×B(f1)×· · ·×B(fk).
Lemma 2.2 and, consequently, Theorem 1.10 are proved.
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3. Interlaced polyhedra

Consider polyhedra ∆1, . . . ,∆n ⊂ Rn
+. Denote by U∆1,...,∆n

the convex hull of⋃n
i=1 ∆i.

Definition 3.1. Suppose that for any γ ∈ (Zn
+)∗ there exists I ∈ {1, . . . , n},

|I| = dim Uγ
∆1,...,∆n

+ 1 such that ∆γ
i ⊂ Uγ

∆1,...,∆n
for any i ∈ I. Then the poly-

hedra ∆1, . . . ,∆n are said to be interlaced.

The notion of interlaced polyhedra is related to the notion of C-genericity. As a
consequence, Oka formulas from [9] and Theorem 1.10 give some interrelations for the
polyhedra ∆1, . . . ,∆n and U∆1,...,∆n

provided ∆1, . . . ,∆n are interlaced. The aim of
the discussion below is to point out these facts.

Suppose that ∆1, . . . ,∆n ⊂ Rn
+ are convex polyhedra with integer vertices and

the sets Rn
+ \ ∆1, . . . , Rn

+ \ ∆n are bounded. Suppose ω =
∑n

i=1 ωi dxi is a germ of
a 1-form such that the Newton polyhedra of ω1, . . . , ωn are ∆1, . . . ,∆n (with respect
to a coordinate system x1, . . . , xn on (Cn, 0)). We can also consider the collection
(ω1, . . . , ωn) as a map ω∗ = (ω1, . . . , ωn) : (Cn, 0) → (Cn, 0). Generally speaking,
the C-genericity of the map w∗ : Cn → Cn in sense of the definition 1.4 and the C-
genericity of the 1-form w in sense of the definition 1.8 are not related. The following
lemmas are obvious (they follow from the Bertini-Sard theorem, see [1, ch.II, § 6.2,
Lemma 1] for an example of the proof of such facts).

Lemma 3.2. If ∆1, . . . ,∆n are interlaced, then, for a generic complex square ma-
trix B and generic principal parts of ω1, . . . , ωn, the map (Bω)∗ : Cn → Cn is
C-generic.

Denote by e1, . . . , en the standard basis of Zn,

ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0).

Lemma 3.3. If ∆1 + e1, . . . ,∆n + en are not interlaced, then the 1-form ω is not
C-generic. If they are interlaced, then the condition of C-genericity of the 1-form ω
on a local complete intersection singularity {f1 = · · · = fk = 0} is a condition of
general position for the principal parts of ω1, . . . , ωn, f1, . . . , fk.

Remark 3.4. This lemma implies that the Newton diagrams of ωixi don’t necessary
belong to the Newton diagram of a C-generic 1-form ω =

∑n
i=1 ωi dxi. For instance,

suppose n = 2: the Newton diagram of ∆i, i = 1, 2, consists of N edges, and the j-th
edge of ∆1 + e1 intersects the j-th edge of ∆2 + e2 for any j. Then, by Lemma 3.3,
there exists a C-generic 1-form ω = ω1 dx1 + ω2 dx2 such that ∆ωi = ∆i for i = 1, 2.

Recall that µ(∆f1 , . . . ,∆fm
) is the Milnor number µ(f1, . . . , fm) of a germ of a

C-generic map (f1, . . . , fm). Denote by Vol the integral volume in Rn ⊃ Zn (such
that Vol [0, 1]n = 1).
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Proposition 3.5. If ∆1, . . . ,∆n are interlaced, then

µ(∆1, . . . ,∆n) = n! Vol(Rn
+ \ U∆1,...,∆n

)− 1.

Proof. This statement is true if all the polyhedra coincide (this is a consequence
of the Oka formula, see [9, Theorem (7.2)]). The following equality is obvious:
µ(ω1, . . . , ωn) = ind0 ω − 1 = ind0(Bω) − 1 = µ((Bω)1, . . . , (Bω)n). Now one can
apply these facts to a 1-form ω =

∑n
i=1 ωi dxi such that the maps ω∗ and (Bω)∗ are

C-generic (they exist because of Lemma 3.2), and the Newton polyhedra of all the
components of (Bω)∗ are equal to U∆1,...,∆n

.

Remark 3.6. This statement gives an independent proof of Theorem 1.10 in the case
k = 0. One can use Proposition 3.5 and the evident equation

µ(x1ω1, . . . , xnωn) =
∑

{i1,...,im}({1,...,n}

ind0 ω|{xi1=···=xim=0}

to prove this particular case by induction on n. (If the 1-form ω is C-generic then
any map

(x1ω1, . . . , xnωn)|{xi1=···=xim=0} : {xi1 = · · · = xim
= 0} → {xi1 = · · · = xim

= 0}

is C-generic as well.)

Proposition 3.7. If the polyhedra ∆1 + e1, . . . ,∆n + en are interlaced, then

µ(∆1, . . . ,∆n) = µ(U∆1+e1,...,∆n+en
)− 1.

It is a consequence of Theorems 1.5 and 1.10 and the equation µ(ω1, . . . , ωn) =
ind0 ω − 1 (one should choose ω1, . . . , ωn such that the 1-form ω and the map ω∗ are
C-generic).

Corollary 3.8. If the polyhedra ∆1, . . . ,∆n are interlaced and the polyhedra ∆1 +e1,
. . . , ∆n + en are interlaced, then

µ(U∆1+e1,...,∆n+en) = n! Vol(Rn
+ \ U∆1,...,∆n).

One can easily give a straightforward combinatorial proof of this equation (it is
enough to explicitly express these volumes in terms of the coordinates of the vertices
of the polyhedra).
Remark 3.9. In a similar way we can define interlaced compact polyhedra: com-
pact polyhedra ∆1, . . . ,∆n ⊂ Rn are interlaced if for any γ ∈ (Rn)∗ there exists
I ∈ {1, . . . , n}, |I| = dim Uγ

∆1,...,∆n
+ 1 such that ∆γ

i ⊂ Uγ
∆1,...,∆n

for any i ∈ I.
In the same way we can prove that, for interlaced polyhedra ∆1, . . . ,∆n ⊂ Rn, the
mixed volume of ∆1, . . . ,∆n equals Vol(U∆1,...,∆n

). As a consequence, the volume
Vol(U∆1+ā1,...,∆n+ān) does not depend on ā1, . . . , ān ∈ Rn, if the polyhedra ∆1 + ā1,
. . . , ∆n + ān are interlaced.
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4. Remarks

For a 1-form on a germ of a manifold with an isolated singular point there is defined
the, so called, radial index (see [6, Definition 2.1]). The radial index of a 1-form ω on
a local complete intersection singularity f1 = · · · = fk = 0 equals ind0 ω|{f̄=0} minus
the Milnor number of the map (f1, . . . , fk).

Corollary 4.1. Suppose a collection of germs ω, f1, . . . , fk on Cn is C-generic and
the polyhedra ∆ω,∆f1 , . . . ,∆fk

⊂ Rn
+ intersect all coordinate axes. Then V n−k =

{f1 = · · · = fk = 0} is a local complete intersection singularity and the radial index
of ω on V n−k equals µ(∆ω,∆f1 . . . , ∆fk

).

This corollary follows from Theorems 1.5 and 1.10.
This corollary and Theorem 1.10 are generalizations of the Oka theorem, which

is a consequence of the A’Campo theorem (see [2]). Thus, it would be interesting
to obtain this corollary and Theorem 1.10 as consequences of a generalization of
the A’Campo theorem. To do it, we need the notion of a resolution of a germ of a
1-form on a germ of a manifold with an isolated singular point. Namely, we can try to
generalize the notion of a toric resolution of a 1-form on a local complete intersection
singularity, taking the three cases from the proof of Lemma 2.2 as a definition of a
resolution.

Let (V, 0) ⊂ (Cn, 0) be a germ of a variety. Suppose V \ {0} is smooth. Let ω be
a 1-form on (Cn, 0). Suppose ω|V \{0} has no singular points near 0.

Definition 4.2. Let p : (M,D) → (V, 0) be a proper map. Suppose M is smooth,
D = p−1(0) is a normal crossing divisor, D =

⊔
Di is the minimal stratification

such that Di are smooth, and p is biholomorphic on M \ D. Suppose that, for any
y ∈ Di ⊂ D and for any holomorphic vector field v near y such that v(y) /∈ Ty(Di),
there exists a neighborhood U ⊂ M of y such that

(i) 〈p∗(ω), v〉 = 0 is a generic system of equations in U \D,

(ii) {〈p∗(ω), v〉 = 0} ∩ U is a normal crossing divisor.

(In coordinates, these conditions mean that 〈p∗(ω), v〉 equals either xa1
1 · · ·xak

k or
xa1

1 · · ·xak

k xk+1, where ai ∈ N, and (x1, . . . , xn) are coordinates near y such that
D = {x1 · · ·xk = 0}). Then p is called a resolution of (ω, V ).

The toric resolution from the proof of Lemma 2.2 is a partial case of a resolution
in sense of this definition. If w = df , then a resolution of f in the sense of Hironaka
is a resolution of w in the sense of this definition. It would be interesting to know,
whether every (ω, V ) is resolvable. There are some works on resolutions of singular
points of vector fields and 1-forms, especially integrable and low-dimensional ones,
see [3], [7], [4].
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Form the sets

Sm = { y ∈ D | the function 〈p∗(ω), v〉 in a neighborhood of y

has the form zm, where z is some local coordinate on M near y }.

Consider the straightforward generalization of the A’Campo formula:

Conjecture. The radial index of ω on V equals (−1)n
(
−1 +

∑
m≥1 mχ(Sm)

)
.

Theorem 1.10 proves this generalization in the toric case. The A’Campo formula
itself proves it if ω is the differential of a function. This generalization is also obviously
true in the case n−k = 1. It would be interesting to know whether this generalization
is true in the general case.

The simplest example to illustrate Theorem 1.10 is the following: n = 2, k = 0,
ω1 = xa + yb, ω2 = xc + yd, a

b > c
d , and a, b, c, d are coprime. Then ind0 ω =

µ(ω1, ω2) + 1 = bc (the last equation illustrates the Oka formula). The Newton
polyhedron ∆ω is generated by the points (a+1, 0), (c, 1), (1, b), (0, d+1). The Newton
polyhedra of the components are interlaced when c < a, b < d. In accordance with
Theorem 1.10, the index ind0 ω can be computed by the Kouchnirenko formula µ(∆ω)
if and only if the Newton polyhedra of the components are interlaced.
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[6] W. Ebeling, S. M. Gusĕın-Zade, and J. Seade, Homological index for 1-forms and a Milnor
number for isolated singularities, preprint, arXiv:math.AG/0307239.

[7] Y. Ilyashenko and S. Yakovenko, Lectures on Analytic Differential Equations, to appear.
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2005, 18; Núm. 1, 233–242

242


