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ABSTRACT

We study an Helium atom (composed of one nucleus and two electrons) sub-
mitted to a general time dependent electric field, modeled by the Hartree-Fock
equation, whose solution is the wave function of the electrons, coupled with the
classical Newtonian dynamics, for the position of the nucleus. We prove a result
of existence and regularity for the Cauchy problem, where the main ingredients
are a preliminary study of the regularity in a nonlinear Schrédinger equation
with semi-group techniques and a Schauder fixed point theorem.
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1. Introduction, notations and main results

We are interested in the mathematical study of a simplified chemical system, in fact
an atom consisting in a nucleus and two electrons, submitted to an external electric
field. We need very classical approximations used in quantum chemistry to describe
the chemical system in terms of partial differential equations. We choose a non-
adiabatic approximation of the general time dependent Schréodinger equation

10,V (x,t) = H(t)U(x,t) — Vi(x,t)¥(x,t),
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where H is the Hamiltonian of the molecular system, ¥ its wave function, and V;
the external electric potential, which allows, even under the effect of an electric field
(see [5]), to neglect the quantum nature of the nucleus since it is much heavier than the
electrons. On the one hand, we consider the nucleus as a point particle which moves
according to the Newton dynamics in the external electric field and in the electric
potential created by the electronic density (nucleus-electron attraction of Hellman-
Feynman type). On the other hand, we obtain under the Restricted Hartree-Fock
formalism, a time dependent Hartree-Fock equation whose solution is the wave func-
tion of the electrons.
Indeed, we consider the following coupled system:

i@tu+Au+7|xfa| + Viu = (Jul? * I;T)u’ in R? x (0,7),

U(O) = Uy, in R37 (1)
2 .

m G = fo (f\u(az)IQV(‘xial)) dz —VVi(a), in (0,7),

a(O) = aop, %(0) = Vo,

where V7 is the external electric potential which takes it values in R and satisfy the
following assumptions:

(1+ |z|*)~ 'V € L*°((0,T) x R?),
(1+ |z>) "o, Vi € LY (0, T; L°°(R?)),
(14 |2[*)"'VVi € LY(0,T; L= (R?)),

VVi € L0, T; WL (R?)).

loc

(2)

Here, the time dependent Hartree-Fock equation is a Schrodinger equation (in the
mathematical meaning) with a Coulombian potential due to the nucleus, singular
at finite distance, an electric potential corresponding to the external electric field,
singular at infinity, and a nonlinearity of Hartree type in the right hand side. Next,
the classical nuclear dynamics is the second order in time ordinary differential equation
solved by the position a(t) of the nucleus (of mass m and charge equal to 1) responsible
of the Coulombian potential.

This kind of situation has already been studied in the particular case when the
atom is subjected to a uniform external time-dependent electric field I(¢) such that
in equation (1), one has V3 = —I(t) - = as in reference [5]. The authors remove
the electric potential from the equation, using a change of unknown function and
variables (gauge transformation given in [7]). From then on, they have to deal with
the nonlinear Schriodinger equation with only a time dependent Coulombian potential.
Of course, we cannot use this technique here because of the generality of the potential
V1 we are considering.

We work in R? and throughout this paper, we use the following notations:

. vvz(av v v )’AU:Z?) 8% atvzav

Oz1 Ox2 Ox3 i=1 9277 ot
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e Re and Im are the real and the imaginary parts of a complex number,
o W2L1(0,T) =W?21(0,T;R3), for p > 1, LP = LP(R3) and
e the usual Sobolev spaces are H! = H1(R?) and H? = H?(R?).

We also define

Hy = {v € L*(R?)

/Rs(l + ) |v(z)[? de < +OO}7

Hy = {v € L*(R?)

/Rs(l + |2 |o(@)]? de < +oo},

One can notice that H;, and H, are respectively the images of H' and H? under the
Fourier transform.
The main purpose of this paper is to prove the following result.

Theorem 1.1. Let T be a positive arbitrary time. Under the assumptions (2), and
if we also assume ug € H?> N Hy and ag,vo € R, system (1) admits a solution

(u,a) € (L>(0,T; H> N Hy) N WH(0,T; L?)) x W>1(0,T).

The reader may notice at first sight that we do not give any uniqueness result
for this coupled system. Actually, there is a proof of existence and uniqueness of
solutions for the analogous system without electric potential in [5] (and also with a
uniform electric potential, via the gauge transformation). Of course, their way of
proving uniqueness cannot be applied here because the Marcinkiewicz spaces they
used do not suit the electric potential V3 we have. Even if one can be convinced
that the solution in this class is unique, we do not have any proof of uniqueness yet.
Nevertheless, for any solution of system (1) in the class given in Theorem 1.1, the
following estimate holds:

Proposition 1.2. Let (u,a) be a solution of the coupled system (1) under the as-
sumptions (2) in the class

Whee(0,T; L) N L>(0,T; H? N Hy) x W20, 7).
If p > 0 satisfies

\A%
|

<p,

H1+|17| HWI 1(0,T,L°°) 1(0,T,L>°)

then there exists a constant R > 0 depending on p such that ||a|co,r) < R and if
p1 > 0 is such that

\A%

* H1+ BB

+IVVillLz0,m,wre(BR)) < P15

H1+|$| HWll (0,T,L°°) L1(0,T,L°)
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then there exists a mon-negative constant K3 o depending on the time T', on p1, on
llwoll g2nm, s on laol, and on |vg|, such that

d?a

da da
at? dt

ll e torsarznara + vl mqoirize + m\ n m\
L1(0,T)

1
1 2
+ sup ( / (|u<t,x>|2*)u<t,x>|2) <KY,.
te[0,7] \JRr3 || '

The proof of Theorem 1.1 will be given in a first step in the case when the time T
is small enough (section 3). Proposition 1.2 will then be useful to reach any arbitrary
time T and prove Theorem 1.1 (section 4).

c((o,1])

Finally, we would like to point out that the result given in Theorem 1.1 is a
necessary step towards the study of the optimal control linked with system (1), the
control being performed by the external electric field. This mathematical point of view
participates to the understanding of the optimal control of simple chemical reactions
by means of a laser beam action. One can notice that Theorem 1.1 ensures the
existence of solution to the coupled equations for a large class of control parameters
since V; satisfies (2). The optimal control problem has been described and studied in
references [2] (nonlinear Schrédinger equation and coupled problem) and [3] (linear
Schrédinger equation). One can read the whole study in [1].

Before working on the situation described above, we will consider the position a(t)
of the nucleus as known at any time ¢t € [0, T]. Of course, this is too restrictive for the
study of chemical reactions but the next section is only a first step which leads to the
proof of Theorem 1.1. We can refer to [6] for the study of the well-posedness of the
Cauchy problem for fixed nuclei, in the Hartree-Fock approximation for the electrons.
This reference precisely describes the N-electrons situation where the position of the
nucleus is known. We consider here the 2-electrons 1-nucleus system.

2. A nonlinear Schrodinger equation

In this section, we will consider the position a of the nucleus as known at any moment
and we will prove existence, uniqueness and regularity for the solution of the nonlinear
Schrodinger equation of Hartree type which we are led to study. Indeed, we consider
the following equation:

{i&tu + Au+ hgu+ Viu = (|u|2 . |7;‘)% in R® x (0, )

U(O) = an 1n R?’,
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where a and V; are given and satisfy the following assumptions:

a € W21(0,T),
(1+ ]2~V € L=((0,T) x R?),
(1+ |z|>)"to,V; € LY(0,T; L™),
(1+ |z*)"tVvVy € LY0,T; L™).

(4)

The study of this equation is submitted to the results known for the corresponding
linear equation. We will use the main result given in references [3,4] about existence
and regularity of the solution of the linear Schrédinger equation

10iu + Au + ﬁ +Viu=0, inR3x (0,7),
u(0) = uo, in R3.

We set p > 0 such that

< p.

|+ e
LU0, T,L>%)

- _l’_ -
1+|z|2HW1=1(O,T,L°°) H1+|x|2

Theorem 2.1. Let ugy belong to H> N Hy, a and Vy satisfy the assumptions (4). We
define the family of Hamiltonians {H(t),¢ € [0,T]} by

1

Ht) = =8~ o —am)

—Vi(t).

Then, there exists a unique family of evolution operators {U(t,s) | s,t € [0,T]} (the

s0 called propagator associated with H(t)) on H?N Hy such that for all ug € H*> N Hy:
(i) U(t,s)U(s,r)ug = U(t,r)ug and U(t,t)ug = ug for all s,t,r € [0,T],

(ii) (t,s) — U(t,s)uq is strongly continuous in L* on [0,T)? and U(t,s) is an iso-
metry on L? : ||U(t, s)ugl|z2 = |luo||Lz2,

(iii) U(t,s) € L(H>N Hy) for all (s,t) € [0,T)? and (t,s) — Ul(t, s)ug is weakly con-
tinuous from [0, T)? to H2N Hy; moreover, for all o > 0, there exists Mr o, >0
such that for all t,s € [0,T], and f € H? N Ho,

lallwz10,1) <o = [|U®,s)flaznm, < Mroplfllazam,,

(iv) the equalities 10U (t, s)ug = H(t)U(t, s)ug and i0,U(t,s)ug = —U(t, s)H(s)ug
hold in L*.

One shall notice that of course, in (iii), the constant Mr o , depends on the norm
of V1 in the space where it is defined, via p.
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We would like to underline that the main difficulty to prove this theorem is to
deal at the same time with the two potentials which have very different properties.
The main reference is a paper by K. Yajima [11] which treats the case where V; = 0,
using strongly T. Kato’s results in reference [8]. In our situation, we first regularize
Vo and Vi by Vi and Vi and obtain accurate estimates, independent of €. The key
point is to find an LZ-estimate of the time derivative of the solution u®. We use a
change of variable y = x — a(t) and considering then the equation solved by the time
derivative of v°(t,y) = u®(t,z) we prove an estimate of ||0yuc(t)|| 2. Making € tend
to 0 ends the proof of Theorem 2.1.

We finally give the existence result on the nonlinear Schrédinger equation (3):

Theorem 2.2. Let T be a positive arbitrary time. Under the assumptions (4),
and if we also assume uy € H? N Hy, then equation (3) has a unique solution
u € L*>(0,T; H?> N Hy) which satisfies Oyu € L°°(0,T; L?) and there exists a con-
stant Cr,a,p > 0 depending on T, o, and p where

d?a

dt?

Vi

Tl Sp and

L1(0,T,L>°)

< q,

=
Lor)

— +
L+ |z]? HWM(O,T,LOO) ’

such that

[wll Lo 0.75120112) + [10ettl| Lo 0,7522) < Cncpllvoll 2, -

An analogous result has already been obtained in the particular case when the
atom is subjected to an external uniform time-dependent electric field I(¢) such that
in equation (3), one has Vi = —I(t) - x as in reference [5] (but for a time 7" small
enough) and in reference [7] (for the linear case). They both use a gauge transfor-
mation to remove the electric potential from the two equations such that they only
have to deal with the usual difficulty corresponding to a time dependent Coulombian
potential. The generality of potentials V; we are considering does not allow us to use
this technique.

2.1. Local existence

We will begin with a local-in-time existence result for equation (3). We first need the
following lemma to deal with the Hartree nonlinearity.

Lemma 2.3. For u € H', we define F(u) = (|u|? * 1))u and one has the following

EY
estimates:

(i) There exists C > 0 such that for all u,v € H',

1F(w) = F(v)llz2 < C(llullZ + ollF)llu — vl (5)
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(i) There exists Cp > 0 such that for all u,v € H?> N Ho,

1F () = F(o)ll2am, < Cr(llullin + [0lFeam)llu = vllazam, (6)

VE )20, < Crllullp 2o, (7)

We notice that everywhere in this paper, C denotes a real non-negative generic con-
stant. We may put in index a precise dependence of the constant (like Cr or Cr 4, p)

Proof. From Cauchy-Schwarz and Hardy inequalities, we have

1F(u) - <>|L2<H(|u|2 L= (e ) }
< e gy =+ (e = oy« 7)o

< 2l|ull 2| Vull g2 lu = v]| L2

+ 2[|vllL2 (IVullz> + [Vollz2) [lu — vl 22
< C(llullf + lollz) e — vl 22

L2

which proves (5). Now, we have to establish (6) and (7). First of all we have
1F (w) = F(0)ll320m, = 1F(w) = F©)[[Z: + [|2*F(u) = |2[*F(v)[|72

+|AF(u) = AF(0)[Z2- (8)

The first term of the right hand side is conveniently bounded in (5). We also use the
same proof as for (5) to bound the second term:

1
o ( ul? « — Ju—Jal*( [of* % — ]
Jae] | ||

< H(W o)l ) ) (= 1) 1 Yo )

9
< Cllull 2|Vl L2 lw = vl a1, + Cllvlla, (IVullze + [1Vollz2) lu — vl 22 ®)
< Cllulld + ol nmm ) lu = vl .-

L2

"

Moreover

[AF(u) — AF(v)| 2

<l o]
< Ja (e o]+

SICRGE- B
||+ et 1ot )|
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However, for any arbitrary function a, b, and ¢ € H?, we have

A[(ab* 1)0} =47Tabc—|—2(bVa* 1)V0+2<aVb* )Vc—i— (ab* |i|>Ac

|| ||

1
||

and we thus obtain
< Cllallg 16l z2 (|l #r=-

o[+ )

Using that result, it is easy to conclude that

L2

IAF(u) = AF(v)]| L2 < Cr(llullf + [0ll32) lw = vl 2. (10)

Then, using (8), (9), and (10), we finally prove (6) and F is locally Lipschitz in
H? N Hy. Therefore, taking v = 0, we also get (7). O

The proof of a local-in-time result is based on a Picard fixed point theorem and
Theorem 2.1 and Lemma 2.3 are the main ingredients. We begin by fixing an arbitrary
time T' > 0 and considering 7 €]0,7]. We also consider the functional

w:u— U(-,0)ug —i/ U(-,s)F(u(s)) ds,
0
where U is the propagator given in Theorem 2.1, and the set
B ={ve L>(0,7; H* N Ha), 0]l o= 0,7 520m,) < 2Mr,0,pl[00]| 200, }-
If 7 > 0 is small enough, the functional ¢ maps B into itself and is a strict contraction

in the Banach space L>(0,7; H? N Hy). Indeed, on the one hand, from estimate (7)
of Lemma 2.3, if u € B, we have for all ¢ € [0, 7],

o (a)(0) a2ty < HU(zzomo i / U(t, $)F(u(s)) ds

H2NH,
< MT,a,pHUOHH?ﬁHz + TMT,a,pHF(“)HLOO(O,T;H20H2)

< Mraplluollaznm, + 7CFMr 0,

‘UH%N(O,T;Hl) ||UHL°°(0,T;H20H2)

< MT,O«PHU’OHHzﬁHz + STCFM’%,Q,/)HUOH?;IQQHQ'

Then, if we choose 7 > 0 such that 87CrMP , lluol32ny, < 1 we obtain
le(u)llz= 0,720 H) < 2Mr1 0 plluollm2nm, and @(u) belongs to B.
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On the other hand, if u € B and v € B, then for all ¢ in [0, 7] we have

lo) (1) — () ()2, = H [ vt (s - Fluts)) ds

H2NH,

IN

MT,a,p/O [1E(u(s)) = F(v(s)) | z2nm, ds

A

t
= CFMT,OQP(HU‘”%N(O,T;HU + ||U||%°°(O,T;H2F]H2)) /O ||’LL(S) - U(S)HHzﬁHz ds
< 8TCFM%,a,p||UO||§{2ﬁH2 ||U - ,U”L"O(O,T;H20H2)v

with 87'C'FM%Q”D||u0||%,20H2 < 1.
Therefore, we can deduce existence and uniqueness of the solution to the equation

u(t) = U(t, 0o — i /O U, s)F(u(s)) ds (11)

in B, then in L>(0,7; H? N Hy) for 7 > 0 small enough. Moreover, d;u belongs
to L>°(0,7; L?) since from equation (3), we can write

Opu = i+ i—— + iViu — iF(u).
|z —al
Indeed, u € L>(0,7; H2NHy) brings F(u) € L>=(0,7; H*NHs) and Au € L*(0,7; L?)
and we can prove that Viu € L(0,7; L?) and Toar € L*(0,7; L?) in the following
way: it is clear that for all ¢ in [0, 7],

Vi(t)
t)u(t < t
Vi®u®lee < 17 EE LOOIIU( (P
and from Hardy’s inequality,
u(t)
|l < 2lu@)a-
[z —a(®)[|l .-

It is finally easy to prove that there exists a constant C' > 0 depending on «, p, F
and T such that for all ¢ in [0, 7],

10ru(®)]| 2 < Clluollg2nm, -

The last point to prove is the uniqueness of the solution w of (11) in the space
L>°(0,7; H*N Hy) NW12°(0, 75 L?). Let u and v be two solutions of (11) and w equal
to u —v. Then w(0) =0 and

10w + Aw + L—I—Vlw:F(u) — F(v). (12)

|z —a
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Calculating Im [, (12) - @(z) dz and using Lemma 2.3 we obtain

d
S (IwllZ2) < Cllw]z:

and uniqueness follows by Gronwall lemma.
Hence the proof of uniqueness, existence and regularity of the solution of equa-
tion (3) in R? x [0, 7] for any time 7 such that 87Cr M2 , lluoll72ny, < 1.

2.2. A priori Energy estimate

We will prove here an a priori energy estimate of the solution of equation (3) for any
arbitrary time 7. We set ag > 0 and pg > 0 such that

‘ da V1

dt 14+ |z|?
Proposition 2.4. If u is a solution of equation (3) in the space W (0,T; L?) N
L*(0,T; H? N Hy), under assumption (4) for a and Vi, then there exists a non-

negative constant C’%ao’po depending on the time T, on po, oo and on ||uo| g2nm,
such that for all t in [0,T),

< po-

< ay and H
L*(0,7)

’WlJ(O,T,LN)

1
@, + [ (10 0P L)) <

|z

Proof. On the one hand, we multiply equation (3) by ;, integrate over R? and take
the real part. After an integration by parts we obtain

—Ei/ |Vu|2+Re/ u Ot +Re | Viu 3tﬁ=+Re/ |u|2>i<i u Ol
2dt Jps r3 |T — al R3 R3 |z]

which is equivalent to

[ o 1 g1 (e D)
dt /RJV“' +/]R3<|gc—a|+‘/1>‘9t(|“ )= 5@ Rs(“‘ AL
Then,

ﬂ 2 1 2 1 2 / 1 2
(L7t [ (o g = [ (g =i
1
:_/ (8t+8t‘/1)|u|2. (13)
R3 |z — al

On the other hand, since V; satisfies assumption (4), we have

O Vi (t)
B 2< tV1
/Rsatvﬂu‘ —H1+wl2

lu(®)I13,
LOQ
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and from Hardy’s inequality,

1
—/ \U|25t
R3 xr —

In order to get an Hj-estimate of u, we then calculate the imaginary part of the
product of equation (3) with (1 + |z|?)i(x), integrated over R3. This gives

jt(/ (1 4[] )|u|2) <O/ |Vu|2—|—C/ |22 2.

We define E at time t of [0,7] by

Et)Z/ \Vu(t,w)|2d:c+A/ (1 + ) [u(t, 2)[* da
R3 R3

+;/Rg<u(t,x)|2 E |)|u(t )|

where A is a non-negative constant to be precised later. From now on, C' denotes
various positive constants, independent of anything but A. We obviously have

4B i(/ﬂ@ (m_la(t)' + Vl(t)> |u(t)|2>

+C (1 +
and if we integrate over (0,t), we obtain

50 < [ (o WOl + [ (o +130))luto)?

+C/Ot(1+ d?(s)‘Jerﬁi‘Tl >E(s)ds+E(0)

da 8t‘/1<t)
dt(t)‘ * H T o

e

Lo

Using Cauchy-Schwarz, Hardy and Young’s inequalities, we prove that for all n > 0,

L <2 [ '2> ([ )

<l Vu(®)|Z> + @Huolliz

since it is easy to prove the conservation of the L?-norm of u, and we also have

Vi
Vit
/ 1(B)u(t) H 1+ [af?

lu()II3, -

Lo°((0,T) xR3)

205 Revista Matemdtica Complutense
2005, 18; Num. 2, 285-314



Lucie Baudouin Hartree-Fock equation coupled with a classical nuclear dynamics

Moreover, (1 + |z?)~'Vy € WH1(0,T,L>°) and W11(0,T7) — C([0,T]), then
(1 + |z|?)~1V4(0) € L>® and we have for the same reasons as above,

1
————+[V1(0 2 < O oy
/Rg(|:c—a(0)|+| 1( )|)|uo| < Cyplluoll?pinm,

We also notice that

E(0) < Clluoliznam, + Clluollm lluollzs-

Then, if we set n = % and A = % + ||1-&-‘\/7;c|2||L°°((07T)><R3) we get
2 3 1 2
E(t) < Colluollznm, + Clluollm lluollze + 5 llu(®) |z
da 815V1(8)

+ </\ ;) u(®)|F, +C/Ot <1 +

We define F at time ¢ of [0,T] by

o]+ |2, ) B

F(t) = R3|Vu(t,:1:)|2dx+ /Rs(l + |z[?)|u(t, )| dz

4 /}R <u(t,x)|2 % Izll) lu(t, z)[*

and it is easy to see that we have, for all ¢ in [0, T7,

F(t) < ClluollFrnm, + lluolla lluollZ-
6tV1(s)
1+ [z

)
t
+C (1+
0

flj(s)‘ + H )F(s) ds.

Lo

We obtain from Gronwall’s lemma

t
F(t) < Crexp ( / ﬂ(s)d8> (o2 s, + ol o).

where 8 = H 1i‘|‘;1|2 ||Loo + %| € LY0,T).

Therefore, there exists a non-negative constant C%ao’ 0o depending on the time T,
on the initial data ||uo|| gr1nm, and on ag, po > 0, such that for all ¢ in [0, T,

1
o) s, + [ (u<t>|2 ' ) () < €2 .
R3 ‘1‘|

Hence the proof of Proposition 2.4. O
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2.3. Global existence

Now, we can use Proposition 2.4 and equation (3) to obtain an a priori estimate of
the solution in W1:>°(0,T; L?) N L*>°(0, T; H?> N Hy) for any arbitrary time 7. Indeed,
since equation (3) is equivalent to the integral equation

u(t) =U(t,0)ug — i/o Ul(t,s)F(u(s))ds,

we have, from Theorem 2.1 and Lemma 2.3,

t
|W@mH%W2SA@&HWﬂH%W2+NHMp/HFW@»MPWh%
0
t
SanameHmee+Janp/ﬂWK$H%JW@0M#meﬁ
0

t
S C%’O‘wp (1 + /0 ||u(s)HH2ﬂH2 dS),

where C’%,% > 0 is a generic constant depending on the time 7', on p, o and on
lluollr2nm,- We obtain from Gronwall lemma and from equation (3), that

vt e [0,T),  llu)llaznm, + 10wu)lre < Cha .

Now, in view of Segal’s theorem [9], the local solution we obtained previously
exists globally because we have a uniform bound on the norm

lu(@)l 20, + [[Oru(®)]| L2

Hence the proof of Theorem 2.2. O

3. Proof of Theorem 1 for a small time 7

The position of the nucleus is now unknown but solution of classical dynamics. We
recall the system we are concerned with, for 7 € (0,7),

i0yu + Au + Tia\“ + Viu = (Jul? * %l)u, in R3 x (0,7),

u(0) = uo, in R3,
2 .
m((iiTg = f]R3 —|u(z)]*V \xia| dx — VVi(a), in (0,7),
a(0) = ay, da0) = vy.
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We are going to choose 7 small enough in this section in order to prove first existence
of solutions for this system. In the sequel we make assumption (2):

(1+[z*)"'vi € L2((0,T) x R?),
(1+ |z*)" o, Vi € L0, T; L*°(R?)),
(1+ |z[*)~'VVi € LY0,T; L>=(R?))

VVi € L0, T; Wh> (R3)).

loc
3.1. Structure of the proof of local existence
Let @ > 0 and p > 0 be such that
o = max(|vgl, 1)
and

<p.
L1(0,T,L~°)

e NS e
L4122 |y oy | T+ 22

We define the following subsets

Be={ue L®0,7; H> N Hy) N WH(0, 75 L?) |

lull oo (0,7 2 H2) < 2MT 0 pll U0l B2 HS }

<« }
L(0,7)

The indexes e and n stand for “electrons” and “nucleus”, while u(x,t) correspond to
the wave function of the electrons and a(t) to the position of the nucleus.

We will prove here a local-in-time existence result for system (1), using a Schauder
fixed point theorem. One can find a similar result in reference [5], where in a first
time, V73 = 0. We shall need the following lemmas, whose proofs are postponed until
the next subsections.

On the one hand, we consider the wave function of the electrons as known and
the second order differential equation which modelize the movement of the nucleus is
to be solved:

and
&

B, = {a e w0,7) e

Lemma 3.1. Let ug € H> N Hy, ag, vo € R, and let 7 > 0 be small enough. We set
u € Be and we consider the equation

d*z 9 T —2
= =" dx—-VV j 14
e /RSW(QC)‘ |z — 2|3 e 1) in (0,7) (14)

with initial data z(0) = ag and %2(0) = vo. Then equation (14) has a unique solution
z € C([0,7]) such that z € B,.
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On the other hand, we know the position of the nucleus at any moment and we
use the previous section to prove

Lemma 3.2. Let ag, vg € R and ug € H?> N Hy, and let 7 > 0 be small enough. We

sety € B, and we consider the equation

1
i0yu + Au + S Viu= (|u2 * )u in R® x (0,7) (15)
|z —y| ||

with initial data w(0) = ug. Then equation (15) has a unique solution u € L*(0,T;
H? N Hy) N W1°(0, 75 L?) such that u belongs to Be.

From Lemma 3.1 and 3.2, the following mappings are well defined:
¢ : B — B, P By, — Be
u —— Z’ y — u,

and we finally consider the application G = ¢ o 1) which maps B, into itself, where B,
is convex and bounded. We will also prove the following lemma later on.

Lemma 3.3. The application G : B, — B, is continuous and G(B,) is compact in B,.

Therefore, we will be allowed to apply the Schauder fixed point theorem and if
y € B, then, with u = ¢¥(y) and z = G(y), it satisfies

i0u + Au + Tiy‘u + Viu = ([ul? * \TII)U’ in R3 x (0,7),

u(0) = o, in R,
m% = fR3 *‘U($)|2V|miz‘ de —VVi(z), in (0,7),
2(0) = ay, 42(0) = wo.

Then, there exists a € B, such that a = G(a). Therefore (¢)(a),a) is solution of (1)
with ¥(a) € Be and a € B,. The proof of Theorem 1.1 for a small time 7 will then be
completed with the proofs of Lemma 3.1, Lemma 3.2, and Lemma 3.3. O

3.2. Second order differential equation, proof of Lemma 3.1
We are considering an ordinary differential equation of type

d?z

with two initial conditions. In order to construct the proof of Lemma 3.1, we need
to prove a general lemma about existence and regularity of solution for this type of
equation and to study the right hand side

G(t,z) = /]R3 —|u(t,x)|2v(|z i z|) dr — VVi(t, 2)
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to make sure we can apply this general lemma to our situation. Although it is a rather
classical result, we give a short proof of the following result:

Lemma 3.4. Let 7 > 0. We consider the differential equation

{C;;; = G(t, ) ) in (0,7) 16)
©(0) = o, 52(0) = .

If T is small enough and if G € L'(0, T; Wlicoo (R3)) then there exists a unique solution
v € C([0,7]) to equation (16).

Proof. We consider the application ® on C([0,7]) defined by

() (t) = o + thot +/O (t = 5)G(s,p(s))ds, vt e[0,7]. (17)

We will use a Picard fixed point theorem in the space C([0,7]) in order to prove
existence and uniqueness of a solution to equation (17).

Let R > 4 be such that |¢g| < %. We also assume that 7 > 0 is small enough
such that we have

Tmax(|1/)0|, 1) < 1, T||GHLl(O,T;W1,oo(BR)) <1 (18)

where Bp = {z € R3,|z| < R}.
Let o € C([0,7]) be such that [[¢c(o,r) = supiepo,-l¢(t)| < R. Then, for all ¢ in
[0, 7] we can write

t

1B() ()] < ol + lot] + / (t — 8)|G(s, 0(s))| ds
R T

< g +rlvol 7 [ 16w ds

R
) + Tlbo| + 7'”G”Ll(0,7';W1'°°(BR))

<§+1—|—1§R

IA

and we obtain [|®(¢)[l¢(jo,7) < R.
We ensure here that ® is a strict contraction in C([0,7]). Let ¢1,¢92 € C([0,7])
be such that [|¢1lc(o,-) < R and [|oz2]c(o,-) < R. We have, for all ¢ in [0, 7],

[(@(p1) — P(2)) (1) S/O (t = 5)|G(s,1(s)) — G(s, p2(s))| ds

<7 / 1G(3) w1 (8y 01 (5) — 02 (s)] ds

<TGl L1 0,rwro(Br)) 01 — P2lle(0,71)5
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and since from (18), 7 > 0 is small enough such that 7||G||z1 (0 -1 (Bg)) < 1, then
® is a strict contraction.

We apply the Picard fixed point theorem to application ®. Thus, if 7 > 0 satis-
fies (18), there exists a unique ¢ € C([0,7]) such that ®(p) = ¢. Moreover, equa-
tion (17) is an integral equation equivalent to (16), hence the end of the proof of
Lemma 3.4. O

Proof of Lemma 3.1. From Lemma 3.4, it is easy to deduce that if the mapping

tzn—>/|utx |d - VVi(t, 2)
belongs to L'(0,; Wlifo) then equation (14) of Lemma 3.1 has a unique solution
in C(]0,7]). Since we assume from the very beginning that VV; € L2(0,T; W,->),

loc
we only have to work on f(t,2) = [ps|u(t, z)|? lf 5 dw.

Lemma 3.5. We set uj,uz € H? and g(z) = fW% x — z)dx. Then

g € WL>(R3) and there exists a real constant C > 4 such that
19l < ClIVual|L2[|Vuel| L2
1DgllL~ < Clluall g2 [|uz]| &

Proof. From Cauchy-Schwarz and Hardy’s inequality, for all z € R® we have

ool < [ el g,

|z — 22

2 3 2 3
o ([l ) ([ et
ra € —z[? ra € — z[?
< A Vua || p2[[Vuel| L2
Therefore, ||g||z~ < C||Vui| 2] Vuz||z2. Then we set, for all z in R?,
h(z) = / wle) ta(z) 4,
rs |z — 7| '

The function £ is well deﬁned since |h(z2)| < C||lu1||r2||Vuz||z2 and one can notice that
g=Vhand h = (u1tg)* ‘ ;- Then, we only have to prove that h belongs to W2 (R3)

with ||D?h| p~ < C|luyl| gz ||uz| g2. We set §; = BTi and from Cauchy-Schwarz and
Hardy’s inequalities, for all ¢,57 = 1,2,3 we get

1
8i(u1a2) * —

[0ih]| Lo <
|z Lo
< / diu (y)u2(y) all o+ ‘ / u1(y) itz (y) dy
R3 |z —y| Lo R3 lz —yl L
< A Vuy|[ 2] Vug| 22
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and in the same way,

1
@@th<‘&@Wmﬁ*
|1‘| Lo
g‘/ Mdy +‘/ Mdy
R3 |9C - ?/| Loo R3 |9C - 1/| Lo
n / Mdy +‘/ MC@
R3 |$ - y| Loo R3 |$ - y| Loo

< 2fug || g2 || Vuel L2 + 2|V || g2 [uz || g2 + 8] Vur || g1 || Vs || g
< 12||ur|| g2 |Jue ]| 2.

Therefore, h € W2>°(R3) and g € W1*°(R?) with
[Dgllzee < Clluallg2llusll g2,
hence the proof of Lemma 3.5. O

Thereafter, setting u(t) = u; = uz, we get f(¢,z) = g(z) and we proved that
f(t) € WHe(R?) with [ f(t)llwr. < Cllu(t)]|}2. Then,

LIl 2o 0,710y < C||U||%oo(o,T;H2) < 4CM12",a,p||u0||iI20H2

and f € L>(0,T; W1°). Thus, if 7 > 0 is small enough, we have proved the existence
of a unique solution z € C([0, 7]) for equation (14). More precisely, in this particular
situation of equation (16) where the initial conditions are ¢(0) = ag and %(O) =g
and the right hand side is

G (t9) = (f(1,0) = V(1 0)),

we obtain that actually, if 7 > 0 is small enough such that we have

Ta < 1,
4C T (19)
ETM’I%,Q,pHuOH%{?ﬁHQ + H”V%”LP(QT;WI’OO(BR)) <a,

where we recall that & = max(|vg|,1), R > max(2|ag|,4) and C > 4, then assump-
tion (18) is satisfied.

Eventually, in order to end the proof of Lemma 3.1, we only have to check that
z = ¢(u) belongs to B,. We take u € Be and we will prove here that

d?z

ﬁ < a.

z=¢(u) € WHH0,7)  with ‘

L'(0,7)
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We already have z € C([0,7]) and R is such that ||z c(o,-) < R. We recall equa-
tion (14):

d? _
m%j = /]Rdu(‘T)|2|;C_Z:Z|3 de —VVi(z) = f(z) = VVi(2)

and since f € L°°(0,T; W1>) and VV; € L?(0,T; Wli)’coo), we obtain % € L*0,7),
thus z € W22(0,7) € W21(0, 7). Moreover,

1
do 4+ — | VVi (L, 2(0))

2 1 2
ol L[ luGen)
dt? m Jgs |z — 2(t)[2

4 1
IVl ey + - [TViOllws (5

IN

Using Cauchy-Schwarz inequality and the fact that u € B, we get

&
dt?

4 1 /(7
< el Vule )+ 5 [ IVl

\/,7_

m

Lt(0,7)
4
S;%THVUH%meJP)+ IVVillLz(0,0:w1. (BR))

16 N
< MR oz, + IVl 20 mws ()

and if we choose 7 > 0 small enough to have (19), we obtain H % HLl(o o Sa which

means z € B, and the proof of Lemma 3.1 is complete. O

3.3. Nonlinear Schrédinger equation, proof of Lemma 3.2

We already proved in section 2 that under assumption (4) for V; and if a belongs to
W21(0,T), then equation (3):

1 .
iatu+Au+L+V1u: lul? * = |u in R3 x (0,7)
|z —a(t)] x
has a unique solution

u € L>®(0,T; H* N Hy) N WH(0,T; L?)

such that u(0) = ug € H? N H, for any arbitrary time 7' > 0. The proof is based
upon an existence and regularity result for the linear equation and on a fixed point
argument. Fortunately, if y € B, then y € W21(0, 7) and we obtain that equation (15)
with initial condition u(0) = ug € H? N Ho

1 .
i@w—kAu—FL—l—Vlu: (|u|2*)u in R* x (0,7)
|z —y(t)| x
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has a unique solution u € L>(0,7; H?> N Hy) N W1°°(0, 7; L?).
Following the proof of the local existence of a solution to equation (3) in para-
graph 2.1, since y € B, implies
dy
dt

3 2
then, as soon as 87Cr My, luollF2qp, < 1, we get

<«

= &
Lo (0,7)

lull oo (0,720 H2) < 2M7 0 pllU0l 20 H, -

This means u € B, if 7 is small enough. Hence the proof of Lemma 3.2. O

3.4. Continuity and compactness, proof of Lemma 3.3

First step. Continuity of G. We consider y € B, and a sequence (Y )nen Of
elements of B, such that

yn "S5y in w210, 7).
We aim at proving that
Glya) "=57 Gy) i WELO,7).

We recall that G = ¢ o ¢b where

d):Be—)Bn ’l/):Bn—>Be
Uz, Yy—u
and we set
u=P(y),
z=G(y) = é(u),
Up = ¢(yn)a Vn € N,
Zn = g(yn) = ¢(Un), Vn € N.

Then, z and z,, satisfy on (0, 7) the equations

d*z 9 1
d*z, 9 1
m-y = /]12{3 —|un ()] V<7> dx — VVi(zn),

|z — 2]

and we will prove that z, "=5° z in W20, 7).
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Since y and y, belong to B, for all n € N, then u and wu, belong to B, for all
n € N. It implies that (uy)nen is bounded in L*°(0,7; H2 N Hy) NW1H°°(0, 75 L?) and
thus, up to a subsequence, we get the strong convergence

up "5 in L0, 7 H). (20)
We use here the following result of J. Simon [10, Theorem 5]:

Lemma 3.6. Let X, B and Y be Banach spaces and p € [1,00]. We assume that
X — B — Y with compact embedding X — B. If {f,,n € N} is bounded in
L?(0,T; X) and if {0 fn,n € N} is bounded in LP(0,T;Y) then {fn,n € N} is rela-
tively compact in LP(0,T; B) (and in C([0,T]; B) if p = 00).

In the same way, we have z and z, belonging to B, for all n € N (since ¢(B.) = B,)
and (zy,)nen bounded in W21(0,7) implies, up to a subsequence, that

2y "S5 2 in W0, 7). (21)
We notice that z, — z satisfies

d*(zn —2) 1 9 1 9 1
—a = (|u(:c) V|x — lun ()] V) dx

m Jgrs |1‘_Zn|

+ % (VVi(2) = VVi(zn)) -

We first remark that since VV; € L2(0,T; I/Vli)coo ), then for almost every t in
[0, 7], VVi(t) is locally Lipschitz. And since there exists R > 0 such that we have
Izllcqo,,) < R and for all n € N, [|z,]|c(o,-)) < R (as z and z, belong to B,), we
obtain

IVV1(2) = VVi(z)| < IVVI@) w8y 20 (E) — 2()]-

We also have

1 1
/ uth V——m— dm—/ Up Uy V—— dx
RS |z — =z RS |z — 2y
1

1
:/ (u — Up) Uy Vidx—/ utly, V dx
R3 |z — 2] R3 |z — 2]

D E— 1 1
+/ (u—up)u Vidx—i—/ Upu V———dx
RS |z — 2| R3 |

:/ (u—up)u V#dx—i—/ (u—un)uv#daz
R3 R3

n
|z — 2] |z — 2|

+/ uun<V L -V 1 )dx.
R3 |z — 2| |z — zn|
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On the one hand, we can prove that there exists a constant C' > 0 such that

1 1

JRCRLACD (V FEEO T zn<t>|) o

Indeed, using Lemma 3.5, since g is Lipschitz (here, u; = u(t) and ug = un(t)), we
have for all ¢ in [0, 7],

/W(I—Zn(t))dx—/ M(x—z(t))da:
R3 R

|z = 2n(D)]? [z —2(t)°
= 19(zn (1)) = g(z(O)| < Cllu(®)l|z2[lun ()]l a2 1(zn = 2) ()],

< Clzn(t) = 2(t)].

and since u and wu,, belong to Be, ||u(t)|| g2z and ||u,(t)|| g2 are bounded independently
of n.

On the other hand, we can deal with both of the two other terms in the same way.
For instance, we have in fact for any R > 0, from Hardy’s inequality,

_ 1
[(u — un) (@, 1) |un (2, 1)] |(u — un) (2, 1) ||un (2, 1)]
= /B(O,R) |z — zn(t)[? ot /B(O,R)C |z — zn(t)[2 i

< Cll(u = un) )1 (0.0 tn (8) |1 + %Hun(t)llm(llun(t)llm + lu(®)llz2)

and since u and u,, belong to B, for all n € N, then

< Cllu = unllzo=o.r1 (B0 RY) + 13-

1
/ (U — Up) Uy Vi——dzx
R3 |z — 2]

Thus, for all € > 0, there exists R > 0 such that % < 5 and from (20) there exists
Ny € N such that

vn > N().

DN ™

Cllu — un| Lo 0,751 (BO,R)) <

We get

Ve >0, dNy €N, Vn> N,

1
/ (v — up), V dz| <e.
R3 |z — 2n|
Eventually, we obtain that for all ¢ in (0,7) and for all £ > 0,

d?z, d*z
2 an O < CA+VVA®) lwroe(Bg)) l2n(t) — 2(t)| + 2,
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Therefore, since we have the strong convergence (21) and W1(0,7) — L*>(0,7), we
obtain

then

P i
dt2 dt?

S CT(1+||VV1||L2(07T;W1,W(BR))) ||Zn — ZHLOO(O,T) —+ 25.

L*(0,7)

d2zn n——4o0o d2Z .
dt2 — @ 1m L1(07’7—),

what means G(y,) "—5° G(y) in W21(0,7) and § is continuous.

Second step. Compactness of G(B,) in B,. We consider a sequence (¥ )nen of
elements of B, and we aim at proving that z, = G(y,,) is precompact in B,. If we set

Fult2) = /Rgun(t,x)F;_;((tI;)'?) dz,

then we have
d?z,
dt?

() = fult, 2n(t) = VVA(E, 2n(1))-
We will first prove that fy, : t — fu(t, zn(t)) = fn(t) is bounded in C%2([0,7]) as

soon as z, € By. Let t, h in [0, 7] be such that ¢t + h € [0, 7]. Using again Lemma 3.5,
we can write

falt +h) — fn(t)‘ = [f(t+ R, 20t + 1)) = f(t 2n(1))]

i 1
< /R3(un(t Fh) = un(O)in(t +h) Vg de
+ /Rg(an(t + h) — @ (t))un (t) Vm du
* /]Rs un (D)t +h) (le -z V|x = 2n(t h)|> "

[tn, (t + R) — wp (8)]|un(t + h)]
< /R3 dx

- | — zn(t + h)|?
(4 ) — i (8) 1 (8]
*/Rz FEPRO

+ Cllun (@)l m2llunt + W)l g2](zn(t + h) = 20(2)]
< Cllun|| oo 0,rim) 1un (4 h) = wn (8)]| 1
+ CllnlL (0,702 | (2 (t + h) = 2a(1)].
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Moreover, on the one hand, since (zp,)nen belongs By, we have

[(zn(t+ h) — 2, ()] < h‘ dzn

|

< Cr,ahz

~ ol dt {0,

and on the other hand, using the Fourier transform, we can prove that

[un (t +h) = un(t)l[z2 < hl|Osun| Lo 0,7;:L2),
un(t +h) = un ()2 < 2||unl[Lo(0,7;12)
imply
[un(t +h) = un(t)l|2 < CF, 0
where C(T)a > 0 only depends on 7, |luo| g2nm,, p, and a. Therefore,
1

|fult+h) = fut)| <C2, k% and  f, € C%%([0,7])

and we obtain (f,)nen bounded in C%2 ([0, 7]). In addition, since (2, )nen is bounded
in W21(0,7) and since (u,)nen is bounded in Be, we have, up to a subsequence,

2 25 2 in WY, 7) N C([0,T))

and
n—-+o0o .
w, "5 w in L°°(0, 15 HL,).

Thereafter, the fact that we have the compact injection
C(0,7) = C([0,7))

(from Ascoli’s theorem), implies, up to a subsequence, the strong convergence

F U ) where fo) = [ Juth o) an

Finally, since VVi € L2(0,T; W,2>°) and 2, "2 2 in L%°(0,7), we also obtain,
from

IVVi(zn) — VVI(2) |20,y < IVVA(E) | L200,7,w 105 (B(0,0)) |20 — 2]l L5 (0,7

that
VVi(z) "=5° VVi(z) in L%(0,7).

Eventually, (%)HGN converges in L2(0,7) as the sum of (f,)nen and
(VVi(21))nen- Then, (2, = G(yn))nen is precompact in W22(0, 1) thus in B,.
Hence the end of the proof of Lemma 3.3. O
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4. Global existence of solutions

We recall the coupled system (1) for an arbitrary time T

1 1
i0u + Au + P ‘u + Viu = <|u|2 * H)u, in R® x (0,7, (22)
T

u(0) = wo, on R3,

a [ Py e - i) in (0,7) (23)
m-——= = — U T — a 11
dt? RS v |z — a R T

a(0) = ay, 0ra(0) = v,

and we consider a solution (u,a) in W% (0, T; L?)N L>(0,T; H> N Hy) x W0, T).
We will prove here Proposition 1.2.

The global approach is the same as for the a priori estimate of the energy for
the nonlinear Schrodinger equation with a(t) known. Indeed, on the one hand, using
equation (22) we have

d 2, 1 2, 1 2_/ 1 2
dt(/w'v“' *2/@('“ *|x|>'“ s \Jz—a V1)1
1

o\ al

and on the other hand, since V|z ol = I; T when we multiply (23) by d‘t‘ we get
m d (|da|? pda  x—a da
——|=] | = ————dr — VVi(a) - —. 25
2 dt( dt > G e R A Ol (25)

Now 8t(\;c al) = % - =% and the sum of (24) and (25) gives

|lz—al?

d m|dal® 1 1 1
Bl \v4 2 i bt - 2 2 _/ - Vi 2
dt (/n@' u e /RS(|U ' |$|>|u| R? Iw— a i
=-VVi(a / 0 Vi |ul?
_av 9
= o Vi(a A%
dt( + 9 Vi ( / Vilul®.
Moreover, from assumption (2), V; satisfies H_t‘vlp € LY(0,T; L>°(R3)) and we have
0 Vi (1)
O Vi(a O Vilu? < 1 t)|? t)3
it - [ omal < | RG] (sl + i)
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and in order to get an Hi-estimate of u, we then calculate the imaginary part of the
product of equation (22) by (1 + |z|*)u(z), integrated over R3. This gives

d
G(Lavipie) < [ v [ e
R3 R3 R3

We define E at time t of [0,7] by

da(t) |?

dt

E(t):/ \Vu(t,x)|2da:+)\/ 1+ fef?)hutt, @) do +
R3 R3

v /R (|u(t,a:)|2 " él) lu(t, 2)2 do

where ) is a non-negative constant to be precised later. We obviously have a constant
C > 0 depending on A such that

450 < (Z(—Vl(t,a(t)) 4 /R (96_1a(t)| + %(t)) u(t)IQ)

8tV1 (t) ) 81&‘/1@) 2
+C(1+ E(t) + 1+ |a(t
( ‘L+m2m O O
and if we set 8 = ||1‘?;|7‘;1‘2 HLOO € L1(0,T) and integrate over (0,t), we obtain

B0) < B0) +Vi0a0) + [ (o + O] ol

|z — ag
#Wita®)l+ [ (= MO )P
+C /Ot (1 + ﬁ(s)>E(s) + 8(s)(1 + |a(s)]*) ds

Then, as shown in subsection 2.2, we have

u(t, z)|? 1
A'<>|dx<wvwwﬁrgmwﬂ%,Vn>m

s | — a(t)]
2 ‘/1 2
Vi(t, z)u(t, z)* do < || 3 @)%, ,
R3 + 12 || Lo (0,7 xR?)
and
A 2 4z < |Juo|2
+ [Vi(0,2)[ ) Juo(@)]” do < [uoll g, -
rs \ [T — ao
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Moreover, for all ¢ in [0, T,

Vi 9
T+ 2P (1 +[a(®)])

Loo(0,T5L°)

Vitt.a) < |

and we also notice that

m
E(0) < Clluoll i, + % [vol® + Clluolla fluoll72-

Then, if we set n = % and \ = we get

Vi
3+ a2 HLw((o,T)st)
m
E(t) < Clluollfm, + glvo\2 + Clluol| 1 luol| 72 + C(1 + |aol?)
1 2 1 2 2
+ 5@+ (A= 3) @), +C+ la(®)?) (26)
t
+ c/ (14 B(s))E(s) + B(s)(L + |a(s)[?) ds.
0
We define F at time ¢ of [0,7] by

da 2

F = [ Va0 e+ [ e at )P e+ m

+ [ (o« 2 )lute o

and it is easy to deduce from (26) that we have, for all ¢ in [0, T,

F(t) < O+ |luoll3pam, + laol® + [vol® + lluollm lluollZ2)
+C(1+|a(lﬁ)l2)+C/0 (1+B(s))F(s) + B(s)(L + la(s)|?) ds.

Then, we set

U(t) = (1 + la(®)*) + /0 (L+B(s)F(s) + B(s)(L + |a(s)[*) ds
+ 14 Juoll i, +laol* + vol® + lluoll s [luol 72

and we have F(t) < CU(¢), ¥(0) = 1+ ||UOH?L[IQH1 +lag|® +|vo|? + ||luo|| 2 ||u0||3i2 and
since C' > 0 denotes a generic constant,

dv da

o O = 2la(®)] dt(t)‘ +(L+B®)E) + AL +a(®)?)

S COVU@)VE®) +C+B(1)¥(E) + B(1)¥(t)
< C(1+ B(1)¥(t).
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From Gronwall’s lemma, we then get

W(t) < Cpexp ( /0 t ﬂ(s)ds) w(0).

Therefore, there exists a non-negative constant K% 0o depending on the time T, on
the initial data ||ug||ginm,, |ao| and |ve| and on pg > 0, where

Vi
< po,

1+ [z Hlel(O,T,LOO)

such that for all ¢ in [0, T7,

1
2
o, -+ G0+ ([ (1a0P )R ) < Kb,y 21
R? || :
Notice that this estimate does not use any assumption on VVj. Of course, we also
obtain that a is bounded on [0,7] which means that there exists R > 0, depending
on T, po, |wollginm, s laol, and |vg|, such that for all ¢ in [0, 7], |a(t)] < R.
Moreover, from equation (23) and since a is bounded, we have

a ult o) )
m| o @g/ﬂ@ T ot [TVt a(t)

< Afu®) |3 + [VVA(E) e (B

and if we define p; > 0 such that

+IVVil| L2 0,m;wre (BR)) < p1,

H i vV
L1(0,T,L°°)

1+ |z[? le,l(o,T,Loc) H 1+ [zf?

we obtain from (27) that there exists a constant K%pl > 0 depending on T, ||uo|| g1, 5
lao|, |vo|, and py such that

d?a

el <AT|ull 3 0.1y + VIV VA L2 0,150 (B )

L1(0,T)
<AT(KY )2 + VT | VVill 200w (Bry) < K9,

m ’

Now, we can use estimate (27) and equation (22) to obtain the estimate of Propo-
sition 1.2. Indeed, since equations (22) is equivalent to the integral equation

u(t) = U(t,0)ug — i/o Ul(t,s)F(u(s))ds,
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we have, from Theorem 2.1 and from Lemma 2.3,
t
lu) | o2nb, < Mraplluollg2nm, + MT,a,p/ 1E (u(s)) | a2, ds
0

t
< Mra,plluoll 2, + MT,W/ ()1 ()|l 2, ds
0

0

K . .
where o = —2£1. Therefore, we can deduce from estimate (27) that there exists a

constant C7, ,~such that

t
||u(t)HH2ﬂH2 < C%,leuOHHQQHz + C%7p1 /0 ||u(8)||H20H2 ds.
Eventually, from Gronwall lemma, we get
0
Ve [0.7),  Nul)lluznm, < P luollmznm,-

It is then easy to estimate ||0zu(t)||r2 using equation (22). Hence the end of the
proof of Proposition 1.2. O

We will conclude here the proof of Theorem 1.1. We begin by setting an arbitrary
time T > 0. We already obtained the local-in-time existence of solutions for the
coupled problem. Indeed, by now, we have a solution (u,a) for the system (1) in the
class

L>®(0,7; H* N Hy) NWE°(0,7; L?) x W20, 7)

where ||a||c(0,-)) < R and 7 satisfies

Ta < 1,

87Cr M3, |luol f2nm, <1, (28)

4C JT

2 2
ETMT,QHUOHH?'QHQ + FHVVlHL?(O,T;Wl’”(BR)) <a,
where o = max(|vgl,1) and C > 4.

Let us consider the maximal time Ty such that (1) has a maximal solution defined
on [0, Tp[ in the class mentioned above. From Proposition 1.2, we have a local uniform
estimate on the following norm of (u, a):

d*a

dt?

da
dt

a2 + @et) 2 + \

o)

L1(0,T)

which means that this quantity remains bounded for t less or equal to T'. Therefore,
as one can read in [9], and in [5, 6], global existence follows. Indeed, if (u,a) is a
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maximal solution on [0, Tp[ with Ty < T, then its norm in the ad hoc class has to
blow up when ¢ reaches the maximal time Ty. However, if we consider s € [0, Tp] close
enough to Ty and if we take T as the largest 7 satisfying

7max(|vs], 1) < 1
STCFM%,l’US‘
VT

m

sl frenm, <1

4C

ETM%,\U”H%H}%I%HQ + == IVVillL2 0,15 (BR)) < max(|vs], 1),

where 44 (s) = v, and u(s) = us, then we can bound the norm of (u,a) for all ¢ in
[s, s + T™*] which brings a contradiction since Ty € [s,s + T*]. The important point
is that T* only depends on the time T since ||us||g2nm, and |vs| are bounded by the
local uniform estimate of Proposition 1.2. Thus, for any arbitrary time 7" we have a
solution (u,a) to the system (1) such that

(u,a) € L>(0,T; H* N Hy) N WH>(0,T; L*) x W*(0,T)

and the proof of Theorem 1.1 in then complete. O
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