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ABSTRACT

The standard Berezin and Berezin-Toeplitz quantizations on a Kähler man-
ifold are based on operator symbols and on Toeplitz operators, respectively,
on weighted L2-spaces of holomorphic functions (weighted Bergman spaces).
In both cases, the construction basically uses only the fact that these spaces
have a reproducing kernel. We explore the possibilities of using other func-
tion spaces with reproducing kernels instead, such as L2-spaces of harmonic
functions, Sobolev spaces, Sobolev spaces of holomorphic functions, and so on.
Both positive and negative results are obtained.
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Introduction

Let (Ω, ω) be a symplectic manifold, C∞(Ω) the usual space of smooth complex valued
functions on Ω, and C∞(Ω)[[h]] the ring of all power series with C∞(Ω) coefficients
in a formal parameter h. Recall that a star-product on Ω is a C[[h]]-bilinear mapping
∗ : C∞(Ω)[[h]]× C∞(Ω)[[h]] → C∞(Ω)[[h]] such that:

(i) ∗ is associative;
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(ii) there exist bilinear operators Cj : C∞(Ω) × C∞(Ω) → C∞(Ω) (j = 0, 1, . . .)
such that ∀f, g ∈ C∞(Ω),

f ∗ g =
∞∑

j=0

Cj(f, g)hj ; (1)

(iii) the operators Cj satisfy

C0(f, g) = fg, (2)

C1(f, g)− C1(g, f) =
i

2π
{f, g} (3)

where {·, ·} is the Poisson bracket with respect to ω, and

Cj(1, ·) = Cj(·,1) = 0 ∀j ≥ 1. (4)

Note that the last requirement means precisely that 1 is the identity element for ∗.
A star-product is called differential if Cj are bidifferential operators, i.e., in terms

of local coordinates can be expressed as finite sums

Cj(f, g) =
∑

α,β multiindices

cjαβ · (Dαf) · (Dβg)
(
Dα :=

∂α1+···+αm

∂xα1 · · · ∂xαm

)
, (5)

with some coefficient functions cjαβ (which must then belong to C∞(Ω)). Two star-
products ∗, ∗′ are called equivalent if there exists a formal power series of operators
M = I + M1h + M2h

2 + · · · such that Mf ∗′ Mg = M(f ∗ g). Finally, if Ω has
complex structure, a star-product is said to have the property of separation of vari-
ables (or to be of anti-Wick type) if f ∗ g = fg at every point in a neighborhood
of which either f or ḡ is holomorphic; and to have the property of the separation of
variables in the reverse order (or to be of Wick type) if f ∗ g = fg at every point
in a neighborhood of which either f̄ or g is holomorphic. In other words, a star
product is of Wick type if the operators (5) contain only holomorphic derivatives
of f and anti-holomorphic derivatives of g, and of anti-Wick type if they contain only
anti-holomorphic derivatives of f and holomorphic derivatives of g.

Due to a role which they play in Hochschild cohomology, the bilinear operators Cj

are sometimes called cochains; we will occasionally use this terminology too.
Construction of star-products is the subject of deformation quantization. In con-

trast to the conventional schemes, in which one assigns to real-valued functions
f ∈ C∞(Ω) (the classical observables) self-adjoint operators Qf on some fixed Hilbert
space (the quantum observables) in some appropriate way, in deformation quantiza-
tion one instead defines the spectrum of an element f ∈ C∞(Ω)[[h]] using the so-called
star-exponential, and then uses it as a substitute for the spectrum of the operators
quantum Qf ; see, e.g., the recent survey [1] for more information.
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On the algebraic (i.e., formal power series) level, the question of existence of star
products and their classification has been resolved completely: they exist on any
symplectic (even Poisson) manifold, and their classes up to equivalence are classified
by formal power series with coefficients in the second de Rham cohomology group
H2(Ω,R). See, e.g., the recent survey [19] for further details. Classification of star
products with separation of variables is also available [20].

However, it has also turned out that equivalent (hence, mathematically isomor-
phic) star-products may lead to different spectra for the same observable. For this
reason, there has been increased interest in various particular star-products which
are “more canonical” than others, in the sense that they are in some way related to
some analytic or geometric objects on Ω. For Kähler manifolds, such examples are
furnished by the Berezin and the Berezin-Toeplitz star-products.

Let us briefly recall the definition of these. (More details can be found in sec-
tion 1 below). Let Φ be a real-valued Kähler potential for ω (so that ω = i

2∂∂̄Φ).
Assume, for simplicity, that Φ exists globally, and for each h > 0 let L2

h,hol be the
weighted Bergman space of all holomorphic functions on Ω with respect to the mea-
sure dµh(x) := e−Φ(x)/h dµ(x), where µ =

∧d
ω (d = dimC Ω) is the Riemannian

volume element on Ω. Denote by K(h)(x, y) the reproducing kernel of L2
h,hol, and for

each bounded linear operator T on L2
h,hol define its symbol T̃ by

T̃ (x) :=
〈TK(h)(·, x),K(h)(·, x)〉

K(h)(x, x)
.

It can be shown that the correspondence T ↔ T̃ is one-to-one; thus one can transfer
the operator multiplication into an associative product ∗h on functions by declaring
that

T̃ ∗h S̃ = T̃ S, ∀T, S ∈ B(L2
h,hol).

Consider now functions f on Ω×R+ such that f(·, h) = T̃h for some Th ∈ B(L2
h,hol),

for each h; and define the multiplication of two such functions by (f ∗ g)(·, h) :=
f(·, h) ∗h g(·, h). If it happens that the product ∗ so defined can actually be extended
to all of C∞(Ω)[[h]] and satisfies (2)–(4), then it defines a differential star-product
with separation of variables. That’s the Berezin star-product.

The definition of the Berezin-Toeplitz star-product runs as follows. Keeping the
above notation, one defines for each f ∈ L∞(Ω) the associated Toeplitz operator Th

f

on L2
h,hol by the formula

Th
f φ := Ph(fφ), φ ∈ L2

h,hol,

where Ph is the orthogonal projection in L2(Ω, dµh) onto its holomorphic subspace
L2

h,hol. If it happens that

lim
h→0

T̃h
f (x) = 0 ∀x implies f = 0,
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and that the product of two Toeplitz operators admits an asymptotic expansion

Th
f T

h
g =

∞∑
j=0

hjTh
Cj(f,g),

in the sense that∥∥∥∥Th
f T

h
g −

N∑
j=0

hjTh
Cj(f,g)

∥∥∥∥ = O(hN+1) as h→ 0, ∀N = 0, 1, 2, . . . , (6)

for all f, g ∈ C∞(Ω) with compact support, with some bidifferential operators Cj

(independent of f and g) satisfying (2)–(4), then these operators Cj define, via the
recipe (1), a differential star-product with separation of variables in the reverse order
— the Berezin-Toeplitz star-product.

We see that both these star-products originate from the Bergman spaces — i.e.,
spaces of square-integrable holomorphic functions. It seems therefore very natural to
ask if other function spaces with reproducing kernels can be used instead. In particu-
lar, it would be very nice to have such spaces which, unlike the spaces of holomorphic
functions, do not require that Ω have complex structure, so that the quantization pro-
cedures are applicable not only to Kähler manifolds but to an arbitrary symplectic
manifold.

For instance, instead of spaces of holomorphic functions, one might try spaces of
square-integrable harmonic functions, i.e., the subspaces L2

harm of all harmonic func-
tions in L2. More generally, one can even consider the subspace L2

A of all functions
annihilated by a given (fixed) hypoelliptic partial differential operator A. [Recall that
a linear partial differential operator A is called hypoelliptic if every distribution annihi-
lated by A is automatically C∞; examples of hypoelliptic operators are ∂̄ (holomorphic
functions), the Laplace operator ∆ (harmonic functions), ∂

∂t −∆ (caloric functions),
or elliptic operators.] Then the value of a function f ∈ L2

A at a point makes sense,
and usually depends continuously on f , so there exists a reproducing kernel KA(x, y).
Hence one can define operator symbols, as well as the Toeplitz operators, and ask
about their usability for quantization.

Another example are the Sobolev spaces. These are defined, for a nonnegative
integer order s, by

Hs(Ω) := { f : Dαf ∈ L2(Ω) ∀|α| ≤ s },

for negative integers s by duality, and for s ∈ R \ Z by interpolation [25]. By the
Sobolev theorem, Hs(Ω) has a reproducing kernel if s > n

2 . Consequently, in this case
we can still define the operator symbols as before. (However, it is no longer possible
to define Toeplitz operators.)

One can also combine the ideas in the last two paragraphs, and consider the sub-
spaces Hs

A of functions in the Sobolev spaces Hs annihilated by a given (hypo)elliptic
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linear partial differential operator A (for instance, Sobolev spaces of holomorphic or
harmonic functions). These spaces have reproducing kernels even for all real s [24].
This time we can again define the operator symbols without problems, and the Toep-
litz operators Tf can be defined at least for those f which are multipliers of the
spaces Hs

A into the corresponding spaces Hs (the role of the Bergman projections Ph

being taken over by the orthogonal projections of Hs onto Hs
A).

Can one make either the Berezin or the Berezin-Toeplitz quantization still work
in any of the above-mentioned settings?

The aim of the present paper is to give answers to this question. After reviewing
some preliminaries in section 1, we begin with the negative ones by showing in section 2
that the Berezin quantization based on the harmonic Bergman spaces L2

harm does
not work. (Hence it cannot work for a general L2

A either, unless the hypoelliptic
operator A is subject to some conditions.) Similarly, the Berezin quantization based
on the Sobolev spaces Hs(Ω) breaks down. Negative answers continue in section 3,
where we prove that also the Berezin-Toeplitz quantization based on the harmonic
Bergman spaces does not work, even for the simplest case of the harmonic analogues
of the standard weighted Bergman spaces on the unit disc. This also means that
the corresponding quantizations based on the harmonic Sobolev spaces Hs

harm cannot
work (since they do not work already for s = 0), and probably indicates that it is
not very reasonable to expect them to work for the spaces L2

A with other hypoelliptic
operators A more general than ∂̄.

Finally, results in the positive direction begin to appear in section 4, where it is
shown that the Berezin quantization works on holomorphic Sobolev spaces, and even
on certain more general Hilbert spaces of holomorphic functions (see there for the
precise statements). Our method is based on representing the inner product in these
spaces as a deformation of the ordinary Bergman space product, and then deducing
the results from those for the Bergman spaces. Some concrete examples are also given.

The remaining case of the Berezin-Toeplitz quantization on holomorphic Sobolev
spaces is discussed in section 5, where it is shown to work for the Sobolev analogues
of the Fock space on the complex plane. Whether it works also in more general
situations is a question which remains open as of this writing.

The final section 6 contains a small table conveniently summarizing our findings,
and a few concluding comments.

Some of the results of the present paper were announced on the 3rd Conference
on Contemporary Problems in Mathematical Physics (COPROMAPH3) in Cotonou,
Benin, in November 2003 [13].

Notation. Throughout the paper, we use the usual notational conventions con-
cerning multiindices, e.g., zα = zα1

1 · · · zαd

d or α! = α1! · · ·αd! if α = (α1, . . . , αd).
The symbol ∂ will denote the operator of holomorphic differentiation, that is, ∂α =
∂|α|/∂zα1

1 · · · ∂zαd

d for z ∈ Cd; similarly for ∂̄. Abusing notation slightly, we will
sometimes also use ∂ for the holomorphic part of the exterior derivative on differen-
tial forms. Similarly, dz will denote the Lebesgue measure, but in a few instances will
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also stand for the differential 1-form. The symbol Dα will denote partial derivative
with respect to real variables.

Finally, we will use a somewhat nonstandard definition of the Laplace operator
on Cd,

∆ :=
d∑

j=1

∂2

∂zj∂z̄j

which differs from the usual one by a factor of 4.

1. Hilbert spaces with reproducing kernels

We begin by reviewing in more detail the constructions of the Berezin and the Berezin-
Toeplitz quantizations, sketched above, so as to make it clearer which properties of
the Bergman spaces are really needed to make things work.

1.1. Reproducing kernels

Consider, quite generally, a Hilbert space H whose elements are functions on some
set S. Assume that

∀y ∈ S, the evaluation functional f 7→ f(y) is continuous on H. (7)

Then, by the Riesz-Fischer theorem, there exist Ky ∈ H such that

f(y) = 〈f,Ky〉H ∀f ∈ H.

The function K(x, y) := 〈Ky,Kx〉H = Ky(x) is called the reproducing kernel of H.
It satisfies K(y, x) = K(x, y), and K(x, x) = ‖Kx‖2 ≥ 0 (with equality occurring if
and only if f(x) = 0 ∀f ∈ H).

Note that we have not made any assumptions whatsoever on the set S or on
the functions in H. However, if it happens that S is not only a set but a (smooth,
complex, . . . ) manifold and the elements ofH are continuous (C∞, holomorphic, . . . ),
then the inclusion Ky ∈ H and the equality K(y, x) = K(x, y) imply that K(x, ȳ) is
also continuous (C∞, holomorphic) in each variable. In particular, if S is a complex
manifold and the elements of H are holomorphic functions, then K(x, y) will be
holomorphic in x and ȳ.

Let B(H) denote the algebra of all (bounded linear) operators on H. Then for
any T ∈ B(H), we can write

Tf(x) = 〈Tf,Kx〉 = 〈f, T ∗Kx〉.

Thus T is uniquely determined by the function T ∗Kx(y) on S × S; hence, also by
the function

T (x, y) := T ∗Kx(y)/Kx(y) =
〈TKy,Kx〉
〈Ky,Kx〉

=
TKy(x)
K(x, y)

.
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defined at all points where K(x, y) 6= 0.
It follows from the definition that the mapping T 7→ T (x, y) is linear, T ∗(x, y) =

T (y, x), and I(·, ·) = 1, where I is the identity operator and 1 the function con-
stant one. Also, if the elements of H are continuous (smooth, holomorphic), then so
is T (x, ȳ) in each variable, at all points where K(x, ȳ) 6= 0.

A function g : S → C is called a multiplier of H if the operator Mg : f 7→ gf of
multiplication by g maps H into itself. By the Closed Graph Theorem, Mg is then
a bounded linear operator on H. The set of all multipliers of H is an algebra, which
will be denoted by MH . Clearly, for each g ∈MH ,

Mg(x, y) = g(x) ∀x, y ∈ S. (8)

For any g ∈MH , we further have the important relation

M∗
gKx = g(x)Kx ∀x ∈ S (9)

(i.e., each Kx is an eigenvector of M∗
g ). Indeed, by the reproducing property of Kx,

〈f,M∗
gKx〉 = 〈Mgf,Kx〉 = 〈gf,Kx〉 = g(x)f(x) = g(x)〈f,Kx〉

for any f ∈ H, and the assertion follows.

1.2. Operator symbols

Assume now that, in fact,

the functions T (x, y) are uniquely determined by their
restrictions T (x, x) to the diagonal. (10)

This is the case, for instance, whenever the functions T (x, y) are holomorphic in
x and ȳ, by a well-known theorem in complex analysis. Then also each operator
T ∈ B(H) is uniquely determined by the said restriction, which we denote by

T̃ (x) := T (x, x) =
〈TKx,Kx〉
K(x, x)

=
TKx(x)
K(x, x)

. (11)

One calls T̃ the symbol of the operator T . The mapping T 7→ T̃ is linear, T̃ ∗ = ¯̃
T and

Ĩ = 1. Further, by the Schwarz inequality we have |T̃ (x)| ≤ ‖T‖, hence T̃ is actually
a bounded function on S. Finally, if the elements of H are holomorphic functions,
then T̃ is Cω (:=real-analytic).

Of course, for (11) to be defined it is necessary that

K(x, x) > 0 ∀x, i.e., Kx 6= 0 ∀x, (12)

which we will assume to be fulfilled from now on.

391 Revista Matemática Complutense
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Now let
AH := {T̃ : T ∈ B(H)}

be the vector space of symbols of all bounded linear operators on H (which is a space
of bounded functions on S by the last remark), and let us define a multiplication ∗H

on AH by
T̃ ∗H S̃ := T̃ S.

Note that this makes sense since the correspondence T ↔ T̃ is 1-to-1 by assumption.
Then (AH , ∗H) is a (noncommutative, associative) algebra of bounded functions on Ω.
(It is isomorphic to the algebra B(H) of all bounded linear operators on H.)

Observe that if g is a multiplier of H, then by (8) M̃g = g. Thus for any T ∈ B(H)

(g ∗H T̃ )(x) = (M̃g ∗H T̃ )(x) = M̃gT (x)

= K(x, x)−1(MgTKx)(x)

= K(x, x)−1g(x)(TKx)(x)

= g(x)T̃ (x). (13)

Consequently, left ∗H -multiplication by g coincides with the pointwise multiplication,
for any g ∈MH .

Similarly, by (9), M̃∗
g = ḡ, and thus

(T̃ ∗H ḡ)(x) = (T̃ ∗H M̃∗
g )(x) = T̃M∗

g (x)

= K(x, x)−1〈TM∗
gKx,Kx〉

= K(x, x)−1〈Tg(x)Kx,Kx〉

= g(x)T̃ (x), (14)

so the right ∗H -multiplication by ḡ coincides with pointwise multiplication.
Note that (14) can also be obtained from (13) — or vice versa — by means of the

following symmetry property of the ∗H -multiplication,

g ∗H f = f̄ ∗H ḡ ∀f, g ∈ AH , (15)

which is a consequence of the fact that ST = (T ∗S∗)∗.

1.3. Berezin quantization

Let us now return to our Kähler manifold Ω from the Introduction. As before let Φ
be a real-valued potential for the Kähler form ω; let us assume, for simplicity, that
Φ exists globally (otherwise one just has to replace functions by sections of certain
line bundles), and let us apply the construction from §1.2 to the weighted Bergman
space H = L2

h,hol = L2
hol(Ω, dµh). The mean-value theorem for holomorphic functions
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implies that (7) is fulfilled, hence the space has a reproducing kernel K(h)(x, y). Since
the elements of L2

h,hol are holomorphic functions, (10) is also satisfied in view of the
remarks above, and thus we can introduce the algebras AH =: Ah with the products
∗H =: ∗h. For each h, the elements of Ah are bounded real-analytic functions on Ω.
Further, by (13) and (14), the product f ∗h g reduces to the pointwise product fg
whenever either f or ḡ is a bounded holomorphic function.

The idea of the Berezin quantization is now to glue together the noncommutative
products ∗h in such a way as to obtain a star-product.

More precisely, consider the direct sum (A, ∗) of all the algebras (Ah, ∗h), h > 0.

Definition. We will say that an element f = {fh(x)}h ∈ A, or more generally any
family of functions fh ∈ C∞(Ω) indexed by h > 0, admits an asymptotic expansion in
nonnegative powers of h as h↘ 0 (or just admits an asymptotic expansion as h↘ 0
for short) if

fh(x) =
∞∑

j=0

hj fj(x) as h→ 0 (16)

with some fj ∈ C∞(Ω).

Definition. We will say that a linear subset A0 ⊂ A is total if for any m > 0, x ∈ Ω
and complex numbers cjα, there exists f ∈ A0 having the asymptotic expansion (16)
and such that Dαfj(x) = cjα for all multiindices |α| ≤ m and j = 0, 1, . . . ,m.

Suppose now that we can find a linear subset A0 of A such that

• each f ∈ A0 admits an asymptotic expansion as h↘ 0;

• A0 is total;

• for any f, g ∈ A0 and x ∈ Ω, the product f ∗ g admits an asymptotic expansion
as h↘ 0

(f ∗ g)h(x) =
∑

i,j,k≥0

hi+j+k Ck(fi, gj)(x) as h→ 0, (17)

where Ck : C∞(Ω)×C∞(Ω) → C∞(Ω) are bidifferential operators satisfying (2)
and (3).

Then Ck define, via the recipe (1), a differential star-product on Ω. This is the Berezin
star product (Berezin [3], Englǐs [11]).

Remark. Note that owing to the second condition, the bidifferential operators Cj

in (17) are uniquely determined. (This was precisely the motivation behind the defi-
nition of a total set.)
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Finally, since f ∗ g = fg whenever either f or ḡ is bounded holomorphic, this
star-product usually has the property of separation of variables. Namely, suppose
that Ω is such that

for anym ≥ 0, x0 ∈ Ω and complex numbers cα, |α| ≤ m, there exists
a bounded holomorphic function f ∈ H∞(Ω) such that ∂αf(x0) = cα
for all multiindices α with |α| ≤ m.

(18)

Since we know that Ck(f, g) = 0 ∀k ≥ 1 whenever f ∈ H∞, and since each Ck, being
a differential operator, involves only finitely many derivatives of f , it then follows that
Ck(f, g) = 0 ∀k ≥ 1 even for any holomorphic f (not necessarily bounded). Similarly
for Ck(f, g) with ḡ holomorphic. Thus the star-product has the property of separation
of variables.

Observe that the condition (18) is obviously fulfilled, e.g., whenever Ω is a bounded
domain in Cd, since then the polynomials are contained in H∞(Ω).

Motivated by the condition (18), we make one more definition.

Definition. We will say that a family Hh of reproducing kernel Hilbert spaces on Ω,
indexed by h > 0, has sufficiently many holomorphic multipliers if for each x0 ∈ Ω,
m ≥ 0 and complex numbers cα, |α| ≥ m, there exists a holomorphic function f such
that ∂αf(x0) = cα for all multiindices α with |α| ≤ m, and f is a multiplier of Hh for
all h > 0.

As the argument above shows, a star product arising from any such family Hh

will automatically have the property of separation of variables.
In situations when there are not sufficiently many holomorphic multipliers, one

has to check the property of separation of variables directly on a case-by-case basis.

Remark. Note that in view of (16), the Berezin star-product inherits the symmetry
property

g ∗ f = f̄ ∗ ḡ,

i.e., Cj(g, f) = Cj(f̄ , ḡ) for any j.

1.4. Toeplitz operators

Let us now come back to the end of §1.1, and continue by introducing instead of (10)
the assumption

the space H is a closed subspace of a larger Hilbert space K,
whose elements are also functions on S. (19)

Let M(H,K) ≡ M be the set of all multipliers of H into K, i.e., functions m on S
such thatmf ∈ K ∀f ∈ H. No matter whatH andK are,M(H,K) is always a vector
space containing the constant functions, as well as the subspaces M(H,H) ≡ MH

and M(K,K) ≡ MK of all self-multipliers of H and K, respectively. (In fact, MH
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and MK are algebras, under pointwise multiplication, and M(H,K) is a module
over both MH and MK .) For m ∈ M, the associated Toeplitz operator Tm on H is
defined by

Tmf = P (mf),

where P : K → H is the orthogonal projection. Explicitly,

Tmf(x) = 〈mf,Kx〉K .

Clearly, Tm depends linearly onm, and Tg = Mg if g is a multiplier ofH; in particular,
T1 = I and

TmTg = Tmg whenever g ∈MH .

(However, Tm1Tm2 6= Tm1m2 and 6= Tm1Tm2 for general m1,m2 ∈ M.) Also, if the
multiplierm is bounded as operator fromH intoK (with the norm denoted by ‖m‖M),
then ‖Tm‖ ≤ ‖m‖M.

Finally, if in addition
K = L2(S, dν) (20)

for some measure ν on S, then m ∈M implies m̄ ∈M and

(Tm)∗ = Tm̄; (21)

hence also
TḡTm = Tḡm whenever g ∈MH . (22)

Note also that in this case MK = L∞(S, dν) (hence also M ⊃ L∞(S, dν)) and
‖Tm‖ ≤ ‖m‖∞.

Remark. In principle, one can take for K the space H itself. Then the Toeplitz
operators will be just the multipliers of H and, in particular, will satisfy TfTg =
TgTf = Tfg ∀f, g ∈ M. Unfortunately, this last property makes these Toeplitz
operators rather uninteresting from our point of view.

1.5. Berezin-Toeplitz quantization

Let us now again apply the preceding paragraph to the particular case of the weighted
Bergman spaces L2

h,hol. Clearly, (19) and (20) are then satisfied for K = L2(Ω, dµh).
The corresponding Toeplitz operators Tm =: Th

m are therefore defined for any m ∈
MK = L∞(Ω) (for the most part, though, we will use them only for m smooth and
with compact support), and

Th
mT

h
g = Th

mg, Th
ḡ T

h
m = Th

ḡm, (23)

whenever g is a bounded holomorphic function.
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Definition. Let us call a linear subset V ⊂ C∞(Ω) total if for any m ≥ 0, x ∈ Ω, and
complex numbers cα there exists f ∈ V such that Dαf(x) = cα for all multiindices α
with |α| ≤ m.

This definition should not cause confusion with the previous definition of total set,
as one of them pertains to subsets of C∞(Ω) while the other to subsets the algebra A
consisting of functions of x and h.

Suppose now that we can show that for any f in some total set V ⊂ C∞(Ω),

lim
h↘0

T̃h
f (x) = 0 ∀x implies f = 0, (24)

and that for any f, g ∈ V there exists an asymptotic expansion

Th
f T

h
g =

∞∑
j=0

hjTh
Cj(f,g) as h↘ 0 (25)

for some bidifferential operators Cj (independent of f and g) satisfying (2)–(4).
Then the operators Cj define, via the recipe (1), a differential star-product on Ω.
This is the Berezin-Toeplitz star-product. Here (25) is to be understood in the sense
of operator norms, i.e., as in (6).

Proof. As the last claim is not so standard, we indicate the proof here. Thus let ∗
be defined by (1) and let us, for instance, check the associativity. In terms of the
cochains Cj , this amounts to∑

j+k=N

Cj(Ck(e, f), g) =
∑

j+k=N

Cj(e, Ck(f, g)) ∀N = 0, 1, 2, . . . ,

for any e, f, g ∈ V. However, denoting, for a moment, the left-hand side by lN and
the right-hand side by rN , it follows from (6) that

(Th
e T

h
f )Th

g =
∞∑

j=0

Th
ljh

j , Th
e (Th

f T
h
g ) =

∞∑
j=0

Th
rj
hj ,

asymptotically as h↘ 0 (as always, in the sense of operator norms). Since multipli-
cation of operators in B(L2

h,hol) is associative, it is thus enough to check that∥∥∥∥ N∑
j=0

Th
lj−rj

hj

∥∥∥∥ = O(hN+1) ∀N

can only hold if lj = rj ∀j. However, as |T̃ (x)| ≤ ‖T‖ for any operator T and any
x ∈ Ω, the last equality implies that

N∑
j=0

T̃h
lj−rj

hj = O(hN+1) ∀N,
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and the claim follows by (24) and a straightforward induction on N .
The other items in the definition of star-product can be checked similarly.

Remark. The last proof is implicit, e.g., in [28], where, however, the assumption

lim
h↘0

‖Th
f ‖ = ‖f‖∞

was employed instead of (24).

Comparing the property (23) of the Toeplitz operators with (6), we also see that
the Berezin-Toeplitz star product satisfies f ∗ g = fg whenever either f̄ or g belong
to MH , i.e., are bounded holomorphic. That is, if the spaces L2

h,hol have sufficiently
many holomorphic multipliers, then the Berezin-Toeplitz star-product has the prop-
erty of separation of variables in the reverse order.

Remark. Note that in view of (21), the Berezin-Toeplitz star-product also has the
symmetry property (15).

1.6. The Berezin transform

Assume now that both the assumption (10) of §1.2 and the assumption (19) of §1.4
are satisfied. Thus we have both the operator symbols and the Toeplitz operators.
Consequently, we can form for any m ∈M the symbol of the Toeplitz operator Tm:

BHm(x) := T̃m(x) =
〈mKx,Kx〉
K(x, x)

.

The operator BH is called the Berezin transform. Clearly, BH is linear, ‖BHm‖∞ ≤
‖m‖M, and, by the reproducing property of Kx, BHg = g whenever g ∈ MH .
(In particular, BH1 = 1.)

If also (20) holds, then further BHm̄ = BHm for any m ∈ M, and BH ḡ = ḡ for
all g ∈MH .

1.7. Karabegov’s alternative approach

The Berezin transform is actually related to the Berezin star product in a rather
nice way, first noted by Karabegov [20]. Namely, consider the setup from §§1.3 and 1.5,
i.e., the weighted Bergman spaces L2

h,hol, the associated products ∗h, and the Toeplitz
operators Th

f ; and further denote, for each h > 0, by Bh the corresponding Berezin
transform. Note that the property of separation of variables of the Berezin star-
product,

f ∗ g = fg if f or ḡ is holomorphic,

means precisely that the coordinate expressions (5) for the corresponding bidifferential
operators Cj involve only holomorphic derivatives of g and anti-holomorphic deriva-
tives of f . Consequently, the Cj are uniquely determined by their values Cj(f̄ , g) for
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holomorphic f and g. Since in that case

f̄ ∗h g = (̃Th
f )∗ ∗h T̃h

g = T̃h
f̄
∗h T̃h

g = T̃h
f̄
Th

g = T̃h
f̄g

= Bh(f̄g), (26)

we see that we can recover the coefficients Cj of the Berezin star-product by the
following simple recipe.

Assume that we can establish the asymptotic expansion

Bh = I +Q1h+Q2h
2 + · · · as h↘ 0, (27)

for the Berezin transforms Bh, where Qj are some differential operators. Denote by
cjαβ the coefficients of Qj :

Qjf =
∑

α,β multiindices

cjαβ ∂
α∂̄βf.

Then the coefficients of the Berezin star-product are given by

Cj(f, g) :=
∑
α,β

cjαβ (∂̄βf)(∂αg). (28)

Here the asymptotic expansion (27) is meant pointwise, i.e.,

Bhf(x) =
N∑

j=0

Qjf(x) +O(hN+1), Q0 = I, as h↘ 0, ∀N = 0, 1, . . . , (29)

for all x ∈ Ω; and in order that the cochains Cj be uniquely determined, we should
require this to hold for all f in some total subset of C∞(Ω).
Remark. It is another idea from [20] that the above formula

f̄ ∗H g = BH(f̄g), ∀f, g ∈MH , (30)

can also be used in the other direction, i.e., to define the Berezin transform BH in
situations when the ordinary definition does not apply. We will have more to say
about this in section 4.

1.8. Applicability

The situations when (17), (27), and (6) are known to hold (for the Bergman spaces
L2

h,hol) are Ω = Cd with the Euclidean Kähler structure [9], Ω a bounded symmetric
domain with the invariant Kähler form [6], compact Kähler manifolds Ω [4] (here one
has to use sections of line bundles instead of functions, because the potential Φ does
not exist globally; and Ω has to satisfy a certain cohomology integrality condition —
see below) and pseudoconvex domains Ω ⊂ Cd satisfying certain assumptions [11].
Since not all details have appeared in the literature, and also for later reference,
we now review these examples in more detail.
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1.8.1. The Fock space

Let Ω = Cd ∼= R2d with the standard Euclidean Kähler structure, i.e., ω =
i
2

∑d
j=1 dzj ∧ dz̄j . One can take Φ(z) = ‖z‖2 as the Kähler potential, and the volume

element µ =
∧d

ω coincides with the Lebesgue measure dz (up to normalization).
Thus the spaces L2

h,hol are

L2
h,hol = L2

hol(C
d, e−‖z‖

2/h(πh)−ddz) (31)

where, for convenience, we have introduced the normalization factor (πh)−d ensuring
that ‖1‖h = 1 for all h. The monomials {zα}, with α a multiindex, form an orthogonal
basis of (31), with norms

‖zα‖2h = α!hα.

Consequently, the reproducing kernel is given by

K(h)(x, y) = e〈x,y〉/h,

and the Berezin transform becomes

Bhf(x) =
∫
Cd

f(y)
|K(h)(x, y)|2

K(h)(x, x)
dµh(y)

= (πh)−d

∫
Cd

f(y) e−‖x−y‖2/h dx, (32)

that is, just the well-known heat semigroup, i.e., Bh = eh∆. Thus formally

Bh = I + h∆ +
h2

2!
∆2 + · · · . (33)

The last formula can be made rigorous using the familiar stationary phase (WJKB)
method. Recall that the latter tells us that if S is a complex-valued C∞ function
on a domain in Cd having a unique critical point x0 (i.e., S′(x0) = 0) which is
nondegenerate (i.e., detS′′(x0) 6= 0) and is a global maximum for ReS, then for any
smooth function φ with compact support, the integral

(πh)−de−S(x0)/h

∫
φ(x) eS(x)/h dx (34)

has the asymptotic expansion

∞∑
j=0

hj Ljφ(x0) as h↘ 0.

(In particular, if x0 /∈ suppφ then the integral decays faster than any power of h.) Here
Lj are certain differential operators (independent of φ) whose coefficients involve only
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Miroslav Englǐs Berezin and Berezin-Toeplitz quantizations

the phase function S and its derivatives; the formula for Lj is quite complicated, but
simplifies if the phase function S is quadratic: namely, if S(x) = −〈Q(x−x0), x−x0〉Cd

for some matrix Q with positive real part, then x0 is a (unique) critical point of S
and

Lj =
1
j!
Qj , (35)

where Q = 〈Q−1∂, ∂〉.
In particular, for the integral (32), we thus obtain

Bhf(x) =
∞∑

j=0

hj

j!
∆jf(x) as h↘ 0, (36)

for any f ∈ C∞(Cd) with compact support.
Let us now attend to each of the quantization methods discussed in the preceding

sections.
For the Berezin quantization, we claim that we can use the total set

A0 =
{ ∑

j∈finite

hnj T̃h
fj

: nj ≥ 0, fj ∈ D(Cd)
}

≡
{ ∑

j∈finite

hnjBhfj : nj ≥ 0, fj ∈ D(Cd)
}
. (37)

(Here
∑

j∈finite means that the summation is over j in some finite set.) Indeed, let us
verify that the three items in §1.3 hold:

• By virtue of (36), for any f ∈ D(Cd) and n ≥ 0,

hnT̃h
f =

∞∑
r≥0

hr+n 1
r!

∆rf ;

thus indeed any function in A0 has an asymptotic expansion as h↘ 0.

• Fix an integer m ≥ 0, multiindices α, β, and function ψ ∈ C∞(R) such that
ψ(t) = 1 for |t| ≤ 1 and ψ(t) = 0 for |t| ≥ 2, and let f(z) = 1

α!β! (z − z0)α

(z̄ − z̄0)βψ(‖z − z0‖). Then hmBhf ∈ A0 and, by (36), Bhf(z) = 1
α!β! (z − z0)

α

(z̄− z̄0)β +O(h) for ‖z−z0‖ < 1, so ∂γ ∂̄η(hmBhf)(z0) = δαγδβηh
m +O(hm+1).

By an easy induction argument (attending first to coefficients at h0, then at h1,
and so on), it therefore follows that the set A0 is total.
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• Finally, for any f, g ∈ D(Cd),

(T̃h
f ∗h T̃hg)(z) = T̃h

f T
h
g (z)

=
∫
Cd

∫
Cd

f(x)g(y)
K(h)(z, x)K(h)(x, y)K(h)(y, z)

K(h)(z, z)
dµh(x) dµh(y)

= (πh)−2d

∫
Cd

∫
Cd

f(x)g(y) e(〈z,x〉+〈x,y〉+〈y,z〉−‖x‖2−‖y‖2−‖z‖2)/h dx dy.

The stationary phase method again shows that this has the asymptotic expan-
sion

∞∑
r=0

hr Mr(f, g)(z) as h↘ 0,

where

Mr(f, g)(z) =
1
r!

[
∆x + ∆y +

d∑
j=1

∂2

∂xj∂yj

]r

f(x)g(y)
∣∣∣∣
x=y=z

.

In particular,

M0(f, g) = fg, M1(f, g) = g∆f + f∆g +
d∑

j=1

∂f

∂z̄j

∂g

∂zj
,

M1(f, g)−M1(g, f) =
i

2π
{f, g}.

Thus u ∗ v has an asymptotic expansion as h ↘ 0 for any u, v ∈ A0, and (2),
(3), and (4) are fulfilled.

Furthermore, if f is holomorphic on some open set U ⊂ Ω, then by (36) Bhf =
f+O(h∞) on U , while the formula for Mr shows that Mr(f, g) = f · 1

r!∆
rg on U ; thus,

modulo O(h∞), f ∗h Bhg = Bhf ∗h Bhg =
∑∞

r=0 h
rf 1

r!∆
rg = f · Bhg on U ; that is,

f ∗ v = fv on U for all v ∈ A0. Similarly (or by (15)) for v ∗ g with ḡ holomorphic.
Thus we see that the Berezin star-product has the separation of variables.

Remark. We had to establish the separation of variables by a direct argument, since
the spaces L2

hol(C
d, e−‖z‖

2/h(πh)−ddz) do not have sufficiently many holomorphic
multipliers in the sense of §1.3 — in fact, the only holomorphic multipliers turn out
to be the constant functions.

The validity of the Berezin-Toeplitz quantization on the Fock space has been
settled by Coburn [9] and also Borthwick [5]; it turns out that (24) and (25) hold
for V = BC∞(Cd), the space of all smooth functions whose partial derivatives of all
orders are bounded.
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Finally, the asymptotics of the Berezin transform are given by (33) or (36), for any
f ∈ BC∞(Cd). In particular, (28) tells us that the cochains Cj in (17) are given by

Cj(f, g) =
∑
|α|=j

1
α!
∂αf

∂z̄α

∂αg

∂zα
.

The cochains for the Berezin-Toeplitz star-product turn out to be given by the similar
formula

Cj(f, g) =
∑
|α|=j

(−1)|α|

α!
∂αf

∂zα

∂αg

∂z̄α
. (38)

Remark. Actually, (6) was proved in [5,9] only for N ≤ 1, but their argument in fact
yields the conclusion in full generality.

Remark. An alternative to using the set A0 in (37) above is to extend Berezin’s
procedure from §1.3 by admitting unbounded operators. Namely, let Oh, for each
h > 0, be the set of all linear combinations of operators Th

zαTh
z̄β , where α, β range

over all multiindices. Note that Th
zα are just the operators of multiplication by zα,

while Th
z̄β coincide with the differentiation h|β|∂β ; in particular, all operators in Oh

have a common dense domain consisting of all functions of the form∑
j∈finite

pj(x) e〈x,aj〉, pj polynomials, aj ∈ Cd; (39)

and we have the commutation relations [Th
z̄k
, Th

zj
] = hδjkI. It follows that each Oh is

an associative algebra, with an involution given by Th
zαTh

z̄β 7→ Th
zβT

h
z̄α ; further, since

the reproducing kernels belong to (39), the operator symbols T̃ are defined for all

T ∈ Oh, and, by a short computation, T̃h
zαTh

z̄β = zαz̄β . Thus we may use Oh instead
of Ah in §1.3 to define the Berezin star-product, and the advantage is that instead

of A0 we can take simply O0 := {
∑

j∈finite h
nj T̃h

pj
Th

qj
} = {

∑
j∈finite h

njpjqj }, with
nj ≥ 0 and pj , qj polynomials, as the total set.

We remark that in principle it is possible to define the operator symbols (11) even
for any unbounded operator whose domain contains Kx for all x ∈ Ω; furthermore,
if we in addition require that the operators be closed then the mapping T 7→ T̃ will
still be one-to-one. However, there are difficulties when one attempts to define the
∗H -multiplication of these symbols by the formula S̃ ∗H T̃ = S̃T , since the domain
of the composition ST need not contain the Kx any longer and thus S̃T need not be
defined in general.

1.8.2. The unit disc

Let Ω = D = { z ∈ C : |z| < 1 } with the Poincaré metric, i.e., ω = i
2 (1− |z|2)−2dz ∧

dz̄, corresponding to the Kähler potential Φ(z) = − log(1−|z|2). The volume element
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µ is the invariant measure dµ(z) = (1− |z|2)−2dz. Thus, we arrive at the spaces

L2
h,hol = L2

hol(D,
ν−1

π (1− |z|2)ν−2dz) (40)

where we have again introduced the normalization factor ν−1
π ensuring that ‖1‖ν = 1,

and denoted
ν =

1
h

for typographic reasons. Again, the monomials zk, k = 0, 1, 2, . . ., form an orthogonal
basis of (40), with

‖zk‖2ν =
k!

(ν)k
,

where
(ν)k := ν(ν + 1) · · · (ν + k − 1) (41)

is the Pochhammer symbol. Consequently, the reproducing kernel and the Berezin
transform are given by

Kν(x, y) = (1− xy)−ν ,

Bνf(x) =
ν − 1
π

∫
D

f(y)
(1− |x|2)ν

|1− xȳ|2ν
(1− |y|2)ν−2 dy

=
ν − 1
π

∫
D

f
( x− y

1− x̄y

)
(1− |y|2)ν−2 dy.

An application of the stationary phase again implies that Bν has an asymptotic
expansion of the required form as ν → +∞. This time the phase function S(y) =
log(1 − |y|2) is not quadratic, so some effort is needed to compute the coefficients
explicitly; the first two terms of the expansion are

Bνf(z) = f(z) + ν−1 (1− |z|2)2∆f(z) +O(ν−2). (42)

Let us now again attend, in turn, to our three quantization methods.
For the Berezin quantization, we claim that (16) and (17) are satisfied for the

total set
A0 =

{ ∑
j∈finite

hnj T̃h
pj
Th

qj
: nj ≥ 0, pj , qj polynomials

}
. (43)

Indeed, as T̃h
pj
Th

qj
= pjqj by (13) or (14), (16) trivially holds. Further, the function

f(z) = hn 1
j!k! (z−z0)

j(z̄−z̄0)k ∈ A0 satisfies ∂l∂̄mf(z0) = δjlδkmh
n, implying that A0

is total. Finally, since D is a bounded domain and thus polynomials are automatically
bounded on D, the validity of (17) follows from Berezin [3, Theorem 2.2] (only the
coefficients at h0 and h1) and [11, Theorem 12]. For the same reason, the spaces (40)
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have sufficiently many holomorphic multipliers and thus the Berezin star-product has
the property of separation of variables.

The validity of the Berezin-Toeplitz quantization has been established by Klimek
and Lesniewski [22]; this time, with the total set V = C∞(D). (Again, they only
proved (6) for N ≤ 1, but their argument easily extends to arbitrary N .)

Finally, the asymptotic expansion of the Berezin transform is given by (42), for any
f ∈ L∞ ∩ C∞(D). The higher order terms turn out to be of the form Qj = pj(∆̃),
where ∆̃ = (1 − |z|2)2∆ is the invariant Laplacian on D, and pj are polynomials
involving Bernoulli numbers etc.; see [10]. Note that, in view of (28), this implies
that the coefficients of the cochains Cj of the Berezin star-product are polynomials;
and using (50) below, it follows that, likewise,

the coefficients of the cochains Cj of the Berezin-Toeplitz
star-product are polynomials. (44)

Remark. In (43), one might even allow A0 to contain some infinite sums, namely,

A0 =
{∑

j

hnjpjqj :
∑

hnj‖pj‖∞‖qj‖∞ <∞ for h sufficiently small
}
.

The proofs will work without change.

Remark. Alternatively, one can also use for A0 the same set as for the Fock space:

A0 =
{ ∑

j∈finite

hnj T̃h
fj

: nj ≥ 0, fj ∈ D(D)
}

; (45)

the required assertions then follow again by application of the stationary phase
method, see Theorem 1.2 below. However, for bounded domains it seems simpler
to use (43).

This remark applies also to §§1.8.3 and 1.8.4 below.

1.8.3. Bounded symmetric domains

The preceding example generalizes to arbitrary bounded symmetric domains Ω ⊂ Cd

with the invariant metric, i.e., given by the potential Φ(z) = logK(z, z), whereK(x, y)
is the unweighted Bergman kernel of Ω. The volume element turns out to beK(z, z) dz
(up to a constant factor), and

L2
h,hol = L2

hol(Ω,K(z, z)1−αdz), α =
1
h
.

The reproducing kernels are

Kα(x, y) = cαK(x, y)α
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with some constants cα, and

Bαf(x) = cα

∫
Ω

f(y)
[

|K(x, y)|2

K(x, x)K(y, y)

]α

K(y, y) dy.

An application of the stationary phase again implies that the Berezin transform has
an asymptotic expansion I+α−1∆̃+ · · · as h↘ 0, where ∆̃ is the invariant Laplacian
on Ω; the higher-order coefficients have been computed explicitly by Unterberger and
Upmeier [30]. For the Berezin quantization, the same total set (43) can be used as
in the preceding example (with the same proof). The validity of the Berezin-Toeplitz
quantization is due to Borthwick, Lesniewski, and Upmeier [6], for f, g ∈ D(Ω).
(Once more, (6) was proved in [6] only for N ≤ 1, but their argument in fact yields
the conclusion in full generality; see [14], where an extension to a class of functions
f, g ∈ C∞(Ω) not necessarily with compact support is also derived.) The asymptotic
expansion of the Berezin transform is again valid for any f ∈ L∞ ∩ C∞(Ω).

1.8.4. Pseudoconvex domains

Our last example concerns bounded strictly pseudoconvex domains Ω ⊂ Cd, d ≥ 1,
with smooth boundary, and a smooth strictly plurisubharmonic function Φ on Ω,
so that ω = i

2∂∂̄Φ makes Ω into a Kähler manifold. In this case, there is no explicit
formula for the reproducing kernels K(h)(x, y) of L2

h,hol = L2
hol(Ω, e

−Φ/hdµ); however,
it has been shown in [11] that there is an asymptotic expansion

K(h)(x, y) = eΦ(x,y)/hh−d
∞∑

j=0

hjβj(x, y) as h↘ 0, (46)

for (x, y) near the diagonal, where βj are some coefficient functions and Φ(x, y) is
a kind of “sesquianalytic extension” of Φ(x) = Φ(x, x) to a neighborhood of the
diagonal. (In particular, (12) holds as soon as h is sufficiently small.) If Φ(x) behaves
reasonably at the boundary, then one can estimate K(h)(x, y) also away from the
diagonal, and apply the stationary phase method as before to get asymptotics of the
Berezin transform and to establish the validity of the Berezin and the Berezin-Toeplitz
quantizations. (For the former, one can take again either (43) or (45) as the total set;
and for the latter, one can again allow any f, g ∈ C∞(Ω). The asymptotics of the
Berezin transform again hold for any f ∈ C∞(Ω) ∩ L∞(Ω). See [11] for the details.

1.8.5. Manifolds

The previous example can be generalized from domains Ω with the plurisubharmonic
function Φ to Kähler manifolds (Ω, ω) for which there exists a holomorphic Hermitian
line bundle L with compatible connection whose curvature form coincides with ω.
For this line bundle to exist, it is necessary and sufficient that ω satisfy the integrality
condition, well known from geometric quantization. One can then consider, for each
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m = 1, 2, 3, . . ., the space L2
h,hol = L2

hol(Ω,Lm) of all square-integrable holomorphic
sections of the m-th tensor power Lm of L, where h = 1

m . Reproducing kernels and
operator symbols can be defined more or less in the same way as before, as well as the
Toeplitz operators and the Berezin transform (see Peetre [27]); and everything what
has been said in §§1.3, 1.5, and 1.7 extends also to this setting. For compact manifolds,
the asymptotics (46) of the reproducing kernels were established by Catlin [7], and the
Berezin-Toeplitz quantization by Bordemann, Meinrenken, and Schlichenmaier [4];
the asymptotics of the Berezin transform, as well as a detailed discussion of the
separation of variables, appear in [21].

Since the extension from domains to manifolds involves only routine technicalities
(most of the work is always done in local charts), we will not say anything more
about them and restrict attention to domains Ω ⊂ Cd with globally defined Kähler
potential Φ for the rest of this paper.

1.9. Possible generalizations

Let us review our findings so far about the two quantization procedures:

(I) the Berezin quantization, described in §1.3, uses only the symbols of operators,
cf. (17), and needs the assumptions (10) and (12);

(II) the Berezin-Toeplitz quantization, described in §1.5, uses only the Toeplitz op-
erators, cf. (6), and needs the assumption (19).

Moreover, the Berezin star-product usually has the property of separation of vari-
ables (for instance, if there are sufficiently many holomorphic multipliers), and so
has the Berezin-Toeplitz (in the reverse order) provided that in addition (20) holds.
Furthermore,

(III) if the Berezin quantization has the property of separation of variables, then we
can recover the coefficients Cj using solely the Berezin transform, as described
in §1.7, cf. (27); for this we need both operator symbols and Toeplitz operators
— hence, both the assumptions (10), (12) and the assumption (19) — and,
further, for the latter the ambient space must be L2 — i.e., (20) must hold.
((20) is needed to ensure that T ∗f = Tf̄ in (26).)

Of course, all the time we are also tacitly assuming (7), which guarantees the existence
of the reproducing kernel in the first place.

Summarizing, we thus see that what is really needed for these quantization pro-
cedures is just a family Lh of Hilbert spaces, indexed by a small positive parameter
h > 0, such that

I. for the Berezin quantization,

(a) each Lh is a reproducing kernel space of functions on Ω satisfying (12);
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(b) for each h, the correspondence T 7→ T̃ is one-to-one; hence one can transfer
the operator multiplication into the noncommutative products ∗h in the
algebras Ah of operator symbols;

(c) there exists a total subset A0 of the direct sum A =
⊕

h>0Ah such that
(16) and (17) hold.

Further, the spaces Lh have sufficiently many holomorphic multipliers, then the
resulting Berezin star-product has the property of separation of variables.

II. for the Berezin-Toeplitz quantization,

(a) each Lh is a reproducing kernel space and a subspace of another Hilbert
space Kh of functions on Ω; hence we can define, for each h, Toeplitz
operators on Lh by Th

g f := Ph(gf), where Ph : Kh → Lh is the orthogonal
projection;

(b) there exists a total subset V of C∞(Ω) such that for any f, g ∈ V, the
Toeplitz operators Th

f and Th
g satisfy (24) and (6), where the bidifferential

operators Cj satisfy (2)–(4).

Further, if the spaces Lh have sufficiently many holomorphic multipliers and
Kh = L2(Ω, dνh) for some measures νh, then the resulting Berezin-Toeplitz
star-product has the property of separation of variables (in the reverse order).

Moreover,

III. for Karabegov’s approach,

(a) the items I(a)–I(c) and II(a) above should be satisfied, the last with Kh =
L2(Ω, dνh) for some measures νh; thus we can define, for each h, the asso-
ciated Berezin transform Bh;

(b) the spaces Lh have sufficiently many holomorphic multipliers; thus the
Berezin star-product has the property of separation of variables;

(c) there exists a total subset V ⊂ C∞(Ω) such that for any f ∈ V, the asymp-
totic expansion (29) holds.

Then the coefficients of the Berezin star-product can be recovered from the
recipe (28).

Clearly, the last item (III) requires much stronger hypotheses than I or II.
Let us now analyze which of the above items are satisfied when instead of the

weighted Bergman spaces L2
h,hol one tries for Lh the various alternatives mentioned

at the end of the Introduction. (And if they are satisfied, whether they lead to
interesting star-products.)

At the moment, we have fairly complete results for I, and also for II when the
spaces Kh are taken to be L2(Ω, dνh) for some measures νh. No results at all will be
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offered for III, and only a single one for II with other spaces Kh (namely, for Kh the
Sobolev spaces Hs, and Lh the subspaces Hs

hol of all holomorphic functions therein);
as has already been remarked above, all this has to wait for future work.

In the rest of this paper, we will call the quantizations based on the spaces L2
h,hol

from §§1.3 and 1.5 the traditional Berezin and Berezin-Toeplitz quantization, respec-
tively, in order to distinguish them from their generalizations based on the spaces Lh

as in I–III above.

1.10. Some more technicalities

Before continuing with the main line of exposition, we pause to collect here various
additional material; some of it will be needed in §4. We start with a simple ob-
servation concerning the relationship between the Berezin and the Berezin-Toeplitz
quantization.

Proposition 1.1. Assume that for some spaces Lh as in §1.9,

• the Berezin-Toeplitz quantization works on Ω, with total set V;

• the Berezin transform Bhf has the asymptotic expansion (29) for any f ∈ V;
and

• the correspondence between operators and their symbols is one-to-one.

(That is, the items I (a), I (b), II (a), II (b), and III (c) from §1.9 hold.)
Then the Berezin quantization also works on Ω for the total set

A0 =
{ ∑

j∈finite

hnj T̃h
fj

: nj ≥ 0, fj ∈ V
}
.

Proof. We need to check I(c), i.e., (16), (17), and the totality of the set A0. Since
T̃h

f = Bhf , the validity of (16) is evident from (29). Likewise, the totality of A0

follows from the fact that Bhf = f + O(h) and the totality of V. Finally, since
|T̃ (x)| ≤ ‖T‖ for any point x and any bounded linear operator T , taking operator
symbols in (6) we get

T̃h
f ∗h T̃h

g =
∞∑

j=0

hj T̃h
Cj(f,g)

=
∞∑

j=0

hjBhCj(f, g) =
∞∑

j,k=0

hj+kQkCj(f, g) (47)

for all f, g ∈ V; this settles (17). Further, expanding the left-hand side Bhf ∗ Bhg
of (47) and comparing the coefficients at h0 and h1 with the right-hand side shows
that, as formal power series in h,

f ∗ g + h[Q1f ∗ g + f ∗Q1g] +O(h2) = fg + h[C1(f, g) +Q1(fg)] +O(h2),
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that is (writing temporarily CB
j and CBT

j to distinguish the cochains Cj for the
Berezin and Berezin-Toeplitz star-products, respectively),

CB
0 (f, g) + hCB

1 (f, g) + h[CB
0 (Q1f, g) + CB

0 (f,Q1g)] = fg + hCBT
1 (f, g) + hQ1(fg).

Thus
CB

0 (f, g) = fg (48)

and, upon interchanging f and g and subtracting,

CB
1 (f, g)− CB

1 (g, f) = CBT
1 (f, g)− CBT

1 (g, f), (49)

proving (2) and (3). Finally, since Bh1 = 1, (47) implies that Bhf ∗ 1 = Bhf and
1 ∗Bhg = Bhg for all f and g, thus proving (4). This completes the proof.

Remark. Viewing Bh as a formal series of operators (27) on C∞(Ω), (47) implies that

Bf ∗Bg = B(f ∗ g) (50)

where the ∗ on the left is the Berezin star-product, and the one on the right is the
Berezin-Toeplitz star-product; thus these two star-products are equivalent and the
Berezin transform mediates the equivalence (cf. [20], or [11, page 239]).

We continue by a definition. We will say that Ω admits Berezin quantization
in the strong form (based on the family of spaces Lh) if in addition to the items (16)
and (17), we even have the following strengthening of (17):

for any k ≥ 1 and f1, f2, . . . , fk ∈ A0, the star product
f1 ∗ f2 ∗ · · · ∗ fk also admits an asymptotic expansion as
h↘ 0 (which for k = 2 specializes to (17)).

(51)

It follows from the above proof (upon applying (47) repeatedly) that if

CBT
j (f, g) ∈ V ∀f, g ∈ V (52)

then Ω even admits Berezin quantization in the strong form. In particular, in view of
(38) and (44), the Fock spaces from §1.8.1 as well as the unit disc from §1.8.2 admit
Berezin quantization in the strong form. Unfortunately, (52) is not always fulfilled in
practice, so we establish this directly.

Theorem 1.2. Consider the spaces L2
h,hol on the domains Ω from §§1.8.1–1.8.3.

Then Ω admits the traditional Berezin quantization in the strong form with total set

A0 =
{ ∑

j∈finite

hnj T̃h
fj

: nj ≥ 0, fj ∈ C∞(Ω) ∩ L∞(Ω)
}
.
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Proof. We present the proof for the Fock spaces from §1.8.1; the other cases are
similar. It suffices to show that for any k ≥ 1 and f1, . . . , fk ∈ L∞ ∩ C∞,

T̃h
f1
∗h T̃h

f2
∗h · · · ∗h T̃h

fk
= [Th

f1
Th

f2
· · ·Th

fk
]∼

has an asymptotic expansion as h ↘ 0, with leading term h0 · f1f2 . . . fk. Indeed,
taking k = 1 this implies first of all that (16) holds, with T̃h

f = f + O(h); from the
latter it also follows (as in §1.8.1) that A0 is total. From §1.8.1 we also know that for
k = 2 and f1, f2 ∈ D(Ω), the coefficients Cj have the desired properties (2)–(4); since
differential operators are uniquely determined by their restrictions to D(Ω), (2)–(4)
remain in force also for any f, g ∈ C∞(Ω) ∩ L∞(Ω). Finally, for k ≥ 2 the existence
of the asymptotic expansion is precisely what is required by (51), and the proof will
be complete.

By the definition of the Toeplitz operator,

Th
f φ(x) = 〈φ,K(h)

x 〉 =
∫

Ω

φ(y)f(y)K(h)(x, y) dµh(y),

i.e., Th
f is an integral operator with kernel f(y)K(h)(x, y). Consequently,

[Th
f1
· · ·Th

fk
]∼(z) = K(h)(z, z)−1〈Th

f1
. . . Th

fk
K(h)

z,K
(h)

z〉

=
∫

Ω

∫
Ω

· · ·
∫

Ω

f1(y1) · · · fk(yk)

× K(h)(z, y1)K(h)(y1, y2)K(h)(y2, y3) · · ·K(h)(yk, z)
K(h)(z, z)

× dµh(y1) · · · dµh(yk)

=
∫
Cd

∫
Cd

· · ·
∫
Cd

f1(y1) · · · fk(yk) e(〈z,y1〉+〈y1,y2〉+···+〈yk,z〉)/h

× e−(‖y1‖2+···+‖yk‖2+‖z‖2)/h dy1 · · · dyk

(πh)kd
. (53)

Now recall that in the stationary phase method, concerning the asymptotics of the
integral (34), the hypothesis of the compact support of φ can be relaxed: it is enough
that φ be such that the integral exists for some h = h0, and that the maximum of
ReS at the critical point x0 dominate also the values of ReS at the boundary or at
infinity, in the sense that ReS(x) → ReS(x0) =⇒ x → x0. The latter condition
is obviously fulfilled whenever S is a quadratic form, hence also for the integral (53);
and the former condition is likewise satisfied in our case since the existence of the
integral (53) for all h follows from the boundedness of Th

fj
for any fj ∈ L∞(Ω). Thus

the stationary phase applies, and the existence of the asymptotic expansion as h↘ 0
follows, with leading term equal to h0 · f1(z) · · · fk(z) by virtue of (35). This settles
the claim.
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Remark. Under some extra assumptions, the last proof works without change also
for the pseudoconvex domains from §1.8.4. We have stated the theorem only for
situations in which we will need it later in §4.3.

We conclude this section by elaborating on one more of the ideas above. Namely,
assume that (12) holds and that the Berezin-Toeplitz quantization works on Ω, i.e.,
the items I(a), II(a), and II(b) from §1.9 are fulfilled. Upon taking operator symbols
on both sides of (6) and recalling that ‖T̃‖∞ ≤ ‖T‖, we obtain the equality (47), viz.,

Bhf ∗h Bhg =
∞∑

j=0

hjBhCj(f, g) ∀f, g ∈ A0. (54)

We might call this a weak Berezin-Toeplitz quantization. It turns out that this is often
something that we are already familiar with.

Proposition 1.3. Assume that the items I (a), I (b), I (c), and III (c) from §1.9 are
fulfilled. Then the weak Berezin-Toeplitz quantization (54) holds for all f , g in a
total set V ⊂ C∞(Ω) if and only if the Berezin quantization holds with the total set
A0 = {

∑
j∈finite h

njBhfj : nj ≥ 0, fj ∈ V }.

Proof. Immediate upon comparing (29) with (16), and (54) with (17); the fact that
A0 is total if and only if V is follows again from the fact that the leading term in (29)
is the identity operator.

2. Berezin quantization via spaces of nonholomorphic functions

Returning to the main line of exposition, let us now analyze if the Berezin quantization
can be accomplished using other spaces than the traditional L2

h,hol. We start with the
case of the Berezin quantization based on the subspaces L2

A of functions in some L2

annihilated by a given hypoelliptic operator A, or more generally on the analogous
subspaces Hs

A of the Sobolev space Hs with arbitrary s ∈ R (of course, the former
are just the special case s = 0 of the latter), as well as on the Sobolev spaces Hs

themselves.
We thus need to check the three items I(a)–I(c) in §1.9: namely, that (a) the point

evaluations f 7→ f(y) are continuous; (b) the correspondence T 7→ T̃ is one-to-one;
and, finally, (c) if the space is made to vary with the Planck parameter h in a suitable
way, we can find a total subset such that (17) holds.

Consider first the simplest case among the above (apart from the holomorphic
functions, corresponding to A = ∂̄), namely, the spaces L2

harm of harmonic functions,
obtained for the choice A = ∆. From the point of view of practical applications,
these spaces would have the obvious advantage over L2

hol in that they do not require
Ω to have complex structure.

Thus let L2
harm(Ω, dν) be the subspace of all harmonic functions in L2(Ω, dν) for

some measure ν on Ω. The first item (a) presents no problem: from the mean value
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property of harmonic functions, it is immediate that point evaluations are continuous
on L2

harm, for instance, whenever dν has a continuous positive density with respect
to the Lebesgue measure. The associated reproducing kernel, the (weighted) har-
monic Bergman kernel H(x, y), is then a function harmonic in both x and y, and in
distinction to the usual Bergman kernel is real-valued. Indeed, for any f ∈ L2

harm,

〈f,Hx〉 = f(x) = 〈f̄ , Hx〉 = 〈f,Hx〉,

implying that Hx = Hx. Thus H(x, y) = H(y, x) = H(x, y).

Example. For L2
harm(C, e−|z|

2/h(πh)−1dz), we have H(x, y) = 2Re exȳ − 1; and for
L2

harm(D, dz), H(x, y) = 2 Re(1−xȳ)−2− 1. For the analogous space on the unit ball
in Rn, the kernel is already much more complicated; see [2].

Unfortunately, however, the item (b) breaks down completely. Indeed, consider
the operator

T = 〈·, f̄〉g − 〈·, ḡ〉f
for some linearly independent f, g ∈ L2

harm. Then by the reproducing property of Hx,

〈THx,Hx〉 = 〈Hx, f̄〉〈g,Hx〉 − 〈Hx, ḡ〉〈f,Hx〉 = f(x)g(x)− g(x)f(x) = 0.

Thus T̃ = 0, yet T 6= 0.
More generally, defining a “complex conjugate” of an operator by

Tf := T f̄ ,

the same argument shows that

(T − T ∗)∼ = 0, for any T. (55)

Thus there is no hope of performing the Berezin quantization in this case.
Remark. A possible solution to this problem might be to find a (noncommutative)
subalgebra X of B(L2

harm) such that T 7→ T̃ is injective on X , yet X is “total” in some
sense. Currently, this is an open problem.
Remark. It is possible to define Toeplitz operators Tf on L2

harm as in §1.4 (taking
K = L2, and f ∈ L∞). One can then show that in several standard situations
(like Ω = C with the Gaussian measure, or Ω = D with the measures as in (40)),
the mapping T 7→ T̃ on B(L2

harm) is, nonetheless, one-to-one when restricted to the
Toeplitz operators; i.e., T̃f = 0 implies f = 0. (The same is likewise true for the
analogous spaces L2

ph(Ω, dν) of pluriharmonic functions for any bounded rotation-
invariant domain Ω and finite rotation-invariant measure ν; see [15] for the proofs of
all these facts.) This seems quite remarkable, since already for commutators [Tf , Tg]
of two Toeplitz operators this is no longer true: indeed, since (TfTg)∗ = TḡTf̄ , while
TfTg = Tf̄Tḡ, applying (55) to T = Tf̄Tḡ, we see that

(TfTg − TgTf )∼ = 0, ∀f, g ∈ L∞. (56)

Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 385–430

412
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On the other hand, it is easy to choose f, g so that TfTg − TgTf 6= 0. For instance,
if Ω admits a nonconstant bounded holomorphic function f , then

〈TfTf̄f, f〉 = ‖Tf̄f‖2 = ‖P |f |2‖2,

while
〈Tf̄Tff, f〉 = ‖Tff‖2 = ‖f2‖2 = ‖ |f |2 ‖2.

Since ‖P |f |2‖ = ‖ |f |2 ‖ ⇐⇒ |f |2 is harmonic ⇐⇒ f ≡ const., we see that
TfTf̄ − Tf̄Tf 6= 0.

Currently, very little seems to be known about these Toeplitz operators [8,18,23,
26,29], and even less about the corresponding Berezin transforms [15].

The same argument also shows that the Berezin quantization must break down
if we try to use, instead of L2

harm, the Sobolev spaces Hs, their harmonic subspaces
Hs

harm, etc. — more generally, any function space which contains the complex con-
jugate f̄ whenever it contains f and on which the complex conjugation f 7→ f̄ is an
isometry.
Remark. In the holomorphic case, the injectivity of the map T 7→ T̃ stemmed from
the fact that any function f(x, y) holomorphic in x and conjugate-holomorphic in y is
uniquely determined by its values on the diagonal x = y. Similarly, for the spaces L2

A

and Hs
A defined by a hypoelliptic operator A, the symbol map T 7→ T̃ will be injective

as soon as A has the following property: any function f(x, y) satisfying Axf(x, ȳ) =
Ayf(x, ȳ) = 0 ∀x, y and f(x, x) = 0 ∀x, vanishes identically. The characterization of
such operators A, however, remains rather elusive as of this writing.

3. Berezin-Toeplitz quantization via harmonic Bergman spaces

Let us now turn to the Berezin-Toeplitz quantization based on the spaces L2
A. The

Toeplitz operators, of course, are defined using K = L2, so the assumption (19) is
fulfilled, as well as (20). From the item II at the end of §1.9 we know that we need
to verify the property (24) and the asymptotic expansion (6) for the product of two
such Toeplitz operators. We are going to show that, unfortunately, this again fails
already in what one would, apparently, expect to be the simplest generalization of
the classical case, namely, for Toeplitz operators on the harmonic Bergman spaces

L2
harm(D, ν−1

π (1− |z|2)ν−2 dz)

on the unit disc D, where we again use the notation ν := 1
h . These are the harmonic

counterparts of the Bergman spaces occurring in the traditional Berezin-Toeplitz
quantization on D from §1.8.2.

These spaces have an orthogonal basis {z[m]}m∈Z, where

z[m] =

{
zm m ≥ 0,
z̄−m m ≤ 0.
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The norm of z[m] is easily computed to be |m|!/(ν)|m|. It follows that e(h)
m :=√

(ν)|m|/|m|! z[m] is an orthonormal basis. Since

〈Th
zk z̄lz

[m], z[n]〉 =
ν − 1
π

∫
D

zkz̄lz[m]z[−n](1− |z|2)ν−2 dz

=
ν − 1
π

∫ 1

0

∫ 2π

0

rk+l+|m|+|n|e(k−l+m−n)iθ(1− r2)ν−2 dθ r dr

= δk+m,l+n (ν − 1)
∫ 1

0

t(k+l+|m|+|n|)/2(1− t)ν−2 dt

= δk+m,l+n

(k+l+|m|+|n|
2

)
!

(ν) k+l+|m|+|n|
2

,

we have

〈Th
zk z̄le

(h)
m, e

(h)
n〉 =

√
(ν)|m|(ν)|n|
|m|!|n|!

δk+m,l+n

(k+l+|m|+|n|
2

)
!

(ν) k+l+|m|+|n|
2

.

Consequently,

Th
zk z̄le

(h)
m =

√
(ν)|m|(ν)|m+k−l|

|m|!|m+ k − l|!

(k+l+|m|+|m+k−l|
2

)
!

(ν) k+l+|m|+|m+k−l|
2

e(h)
m+k−l. (57)

Now if (6) were true, we would have asymptotically,

‖Th
f T

h
g − Th

fg − hTh
C1(f,g)‖ = O(h2)

as h ↘ 0. Applying this to f = z, g = z̄, then vice versa, and subtracting and
using (3), we get

‖ν(Th
z T

h
z̄ − Th

z̄ T
h
z )− Th

φ ‖ → 0 (58)

as ν = 1/h → +∞, where φ = i
2π{z, z̄} = −(1 − |z|2)2. Now from (57) it follows

that the operator ν(Th
z T

h
z̄ −Th

z̄ T
h
z ) is diagonal with respect to the basis {e(h)

m}, with
eigenvalues

cm(ν) : = ν · (‖Th
z̄ e

(h)
m‖2 − ‖Th

z e
(h)

m‖2)

= ν

[
(ν)|m|(ν)|m−1|

|m|!|m− 1|!

( |m|+1+|m−1|
2

)
!2

(ν)2|m|+1+|m−1|
2

−
(ν)|m|(ν)|m+1|

|m|!|m+ 1|!

( |m|+1+|m+1|
2

)
!2

(ν)2|m|+1+|m+1|
2

]
,

which are easily seen to satisfy (using Stirling’s formula)

lim
ν→+∞

cm(ν) =


−1 m ≥ 1
0 m = 0
+1 m ≤ −1

.
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Observe that the right-hand side is an odd (and nonzero) function of m. On the other
hand, Th

φ is also diagonal with respect to the same basis, but with eigenvalues

dm(ν) := 〈Th
φ e

(h)
m, e

(h)
m〉 =

(ν)|m|
|m|!

ν − 1
π

∫
D

φ(z)|z|2|m|(1− |z|2)ν−2 dz

which depend only on |m|. Thus (58) cannot hold. (Actually, it is not difficult to
show that dm(ν) = −(ν− 1)|m|+1/(ν+ 1)|m|+1, whence limν→+∞ dm(ν) = −1 ∀m, so
lim infh→0 ‖ 1

h [Th
z , T

h
z̄ ]− Th

φ ‖ ≥ 2.)
Another way of seeing that either (24) or (6) must fail is by using (56): namely,

(6) and (3) imply that

Th
f T

h
g − Th

g T
h
f =

∞∑
j=1

hj Th
Cj(f,g)−Cj(g,f) =

ih

2π
Th{f, g}+O(h2)

(in operator norm). Taking operator symbols and dividing by h, we thus get

1
h

(Th
f T

h
g − Th

g T
h
f )∼ =

i

2π
T̃h
{f,g} +O(h) as h↘ 0.

However, by (56), (Th
f T

h
g − Th

g T
h
f )∼ = 0, so

T̃h
{f,g} → 0 as h↘ 0.

Thus (24) implies that {f, g} = 0 ∀f, g ∈ V, which is absurd.
Again, the last argument also works for any other subspace of L2 in the place of

L2
harm as long as it is preserved by complex conjugation (i.e., contains f̄ whenever it

contains f) and the complex conjugation is an isometry on it.

4. Berezin quantization on general Hilbert spaces of holomor-
phic functions

Here by “general” we mean that the scalar product need not come from plain inte-
gration; i.e., (20) need not hold. (They need not be the holomorphic subspaces of
some L2.) Thus we can still define operator symbols, and the correspondence between
the operators and their symbols is still one-to-one, but in general there are no Toep-
litz operators, and no Berezin transform. (Sometimes the Toeplitz operators and the
Berezin transform can also be defined, but some care is needed; see section 5.)

The simplest example of such spaces are the Sobolev spaces of holomorphic func-
tions Hs

hol. Another important example is the analytic continuation of the weighted
Bergman spaces on a bounded symmetric domain Ω ⊂ Cd (i.e., Hermitian symmetric
space Ω ∼= G/K of non-compact type) from §1.8.3. Namely, let K(x, y) stand for the
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ordinary Bergman kernel of Ω with respect to the Lebesgue measure dx. Then the
weighted Bergman spaces

L2
hol(Ω,K(x, x)−α dx)

are well-defined for α > −1/p and have reproducing kernels Kα(x, y) = const ·
K(x, y)α+1, where p is an integer called the genus of Ω. (These spaces are known in
representation theory as the holomorphic discrete series of G.) It was shown by Rossi
and Vergne [31] that these spaces admit an analytic continuation to smaller values
of ν; and for these values, with a few exceptions, they are not subspaces of any L2

space.
For instance, for the unit disc D, the analytic continuation of the weighted Berg-

man spaces
Lν := L2

hol(D,
ν−1

π (1− |z|2)ν−2 dz), ν > 1,

is given by Lν = {f holomorphic on D: ‖f‖ν <∞}, where

‖f‖2ν =
∞∑

j=0

j!
(ν)j

|fj |2 if f(z) =
∞∑

j=0

fjz
j ,

for any ν > 0; here (ν)j is the Pochhammer symbol (41). For ν = 1, this is the Hardy
space on the unit circle T; for 0 < ν < 1, these spaces are not subspaces of any L2

space.

4.1. New scalar product

Our idea will be to get such spaces from “known” ones by a deformation of the scalar
product.

Consider, quite generally, a Hilbert space H of functions on Ω, and let M be any
self-adjoint operator on H (usually unbounded) which is positive in the sense that

〈Mx, x〉 > 0 ∀x ∈ domM, x 6= 0. (59)

Define a new scalar product on domM by

〈f, g〉M := 〈Mf, g〉

and let HM be the completion of domM with respect to the corresponding norm.
Note that if M is bounded (so that domM = H), then HM ⊃ H; on the other hand,
if M−1 is bounded, then HM is contained in H and coincides (as a set) with the
domain of M1/2. (In our applications, either M or M−1 will always be bounded.)

Examples. For H = L2(Rn) and M = (I −∆)s, with ∆ the Laplace operator, we get
the familiar Sobolev spaces HM = Hs(Rn), s ∈ R.

For H = L2
hol(Ω) and M = (I+D∗D)s, where D : f 7→ ( ∂f

∂zj
)d
j=1 is the operator of

holomorphic differentiation from L2
hol into

⊕d
L2

hol, we get the holomorphic Sobolev
spaces HM = Hs

hol(Ω).
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Now assume that H has a reproducing kernel K(x, y). Then we have

f(x) = 〈f,Kx〉 = 〈Mf,M−1Kx〉 = 〈f,M−1Kx〉M .

Thus if Ky ∈ domM−1 for all y, then we see that HM has also a reproducing kernel,
L(x, y), given by

Ly = M−1Ky, or L(x, y) = 〈M−1Ky,Kx〉.

(This also shows, in particular, that HM is again a space of functions on Ω.)

Remark. The condition Ky ∈ domM−1 can in fact be relaxed to

Ky ∈ domM−1/2. (60)

See [16, section 4] for the details.

Clearly, if H is a space of holomorphic functions, then so will be HM (since Ly

depends anti-holomorphically on y if Ky does). Further, the condition (12) will be
satisfied for HM if it is satisfied for H.

The operator symbols on HM can be expressed in terms of those on H:

T̃M (x) =
〈TLx, Lx〉M
〈Lx, Lx〉M

=

=
〈MTM−1Kx,M

−1Kx〉
〈MM−1Kx,M−1Kx〉

=
T̃M−1(x)

M̃−1(x)
. (61)

(In particular, T is uniquely determined by T̃M whenever it is uniquely determined
by T̃ .) This implies also the relation between the associated products ∗H =: ∗ and

∗HM
=: ∗M : by definition, T̃M ∗M S̃M = T̃ S

M
, which translates into

f ∗M g =
qf ∗H M̃ ∗H qg

q
, (62)

where we have denoted, for the sake of brevity,

q := M̃−1.

An operator T on H is bounded on HM if and only if 〈MTx, Tx〉 ≤ c〈Mx, x〉
∀x ∈ domM , for some finite c; that is, if and only if M1/2TM−1/2 is bounded on H.
The mapping T 7→ M−1/2TM1/2 is thus an isomorphism (except that it does not
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preserve involution) from B(H) onto B(HM ), and the algebra AHM
of all symbols of

bounded operators on HM is related to AH by

AHM
= {(M̃−1/2 ∗H f ∗H M̃−1/2)/q; f ∈ AH}. (63)

Finally, if ∗H has the property of separation of variables, then so has ∗M .
In particular, if H is one of our weighted holomorphic Bergman spaces L2

h,hol,
which we will assume from now on, and M any positive selfadjoint operator thereon
such that (60) holds, then HM will always be a reproducing kernel Hilbert space of
holomorphic functions and ∗M will have the separation of variables.

Observe that for f, g holomorphic we may by (30) also define the M -Berezin
transform by

BM (f̄g) =: f̄ ∗M g =
qf̄ ∗H M̃ ∗H qg

q
, (64)

and M -Toeplitz operators by

(TM
f̄g )̃ M = BM (f̄g) (if such operator exists). (65)

Example 4.1. Take H = L2
hol(D,

1
πdz) and

M : zn 7→ (n+ 1)zn,

i.e., Mf = (zf)′. Then 〈zm, zn〉M = δnm = 〈zm, zn〉H2 , where H2 is the Hardy space
on the unit circle T. Hence HM = H2, L(x, y) = 1/(1− ȳx) (the Szegö kernel). The
Berezin transform can be computed to be

BM (znz̄m) = z[n−m] =

{
zn−m n ≥ m,

z̄m−n n ≤ m;

that is,
BMf = the Poisson extension of f |T

for any polynomial f in z, z̄. Similarly, for such f , TM
f turns out to be the usual

(Hardy space) Toeplitz operator with symbol f |T. (For more general functions f ,
BMf and TM

f need not be defined.)
Example 4.2. Take again the same H but now with

M : zn 7→ (n+ 1)!
(ν)n

zn, ν > 0.

Then HM are the analytic continuation of the weighted Bergman spaces Lν ≡
L2

hol(D,
ν−1

π (1− |z|2)ν−2 dz), ν > 1, mentioned above.
Example 4.3. Take the same H but with

M : zn 7→ (n+ 1)! · [1 + n(n+ ν − 1)]
(ν)n

zn.

Then 〈f, g〉M = 〈f, g〉ν + 〈f ′, g′〉ν , so HM coincides with the holomorphic Sobolev
space H1

hol(D,
ν−1

π (1− |z|2)ν−2 dz) := { f ∈ Lν : f ′ ∈ Lν }.
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4.2. Applications to quantization

Fix now a weighted Bergman space H, take a family of operators Mh on it, and let
Hh := HMh

, ∗h, Bh, etc., be the corresponding M -objects. Can we find Mh so that
as h → 0, the spaces Hh satisfy the conditions I(a)–I(c) from §1.9, and thus can be
used to define a Berezin star-product?

Example 4.4. Consider the weighted Bergman spaces L2
h,hol = L2

hol(Ω, µh) from the
traditional Berezin quantization, and let H := L2

h0,hol for some chosen (fixed) value
of h0. Let ιh : H → L2

h,hol stand for the identity mapping f 7→ f , considered as a
mapping from H into L2

h,hol. Assume that ιh is densely defined and has dense range
(that is, H ∩ L2

h,hol is dense in both H and L2
h,hol; except for the compact Kähler

manifolds, this is satisfied in all situations where the traditional Berezin quantization
is known to work, as soon as h0 is so small that H does not reduce to the constant
zero). Then

Mh := ι∗hιh

is a densely defined, positive selfadjoint operator, so we can apply to it our construc-
tion. Since 〈Mhf, f〉H = 〈f, f〉L2

h,hol
, we have Hh = L2

h,hol. Thus we see that the
spaces L2

h,hol from the traditional Berezin quantization can be recovered by the above
construction.

Example 4.5 (More concrete). Take Ω = C, H = L2
hol(C, e

−|z|2π−1 dz), and

Mh : zj 7→ hjzj (i.e., Mhf(z) = f(hz)).

Then we have

Hh = L2
hol(C, e

−|z|2/h(πh)−1 dz) = L2
h,hol,

M̃h(z) = e(h−1)|z|2 ,

M̃−1
h (z) = e(h

−1−1)|z|2 ,

and

f ∗h g = e(1−h−1)|z|2[e(h−1−1)|z|2f ∗H e(h−1)|z|2 ∗H e(h
−1−1)|z|2g

]
.

(Note that we had to go outside the realm of formal power series in h!)

Taking, for instance, f = zkz̄l, g = zmz̄n, m > l, an explicit computation shows
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that

zkz̄l ∗h z
mz̄n = zkz̄ne(1−h−1)|z|2[M−1

h T ∗zlMhTzmM−1
h

]∼
= zkz̄ne(1−h−1)|z|2zm−lhl m!

(m− l)!
e−|z|

2

1F1(m+ 1;m− l + 1;h−1|z|2)

= zm+kz̄n+l m!
(m− l)!

( h

|z|2
)l

e−h−1|z|2
1F1(m+ 1;m− l + 1;h−1|z|2)

= zm+kz̄n+l m!
(m− l)!

( h

|z|2
)l

1F1(−l;m− l + 1;−h−1|z|2) by [17, 6.3 (7)]

= zm+kz̄n+ll!
( h

|z|2
)l

Lm−l
l (−h−1|z|2) by [17, 6.9 (36)]

= zm+kz̄n+l
l∑

j=0

l!m!
j!(l − j)!(m− j)!

hj

|z|2j
,

where 1F1 is the confluent hypergeometric function and Lα
n are the Laguerre polyno-

mials. Thus

zkz̄l ∗h z
mz̄n =

∞∑
j=0

hj

j!
∂j

∂z̄j
(zkz̄l) · ∂

j

∂zj
(zmz̄n).

Consequently, taking for A0 the set of all polynomials f ≡ fh(z) in h, z, and z̄, we see
that ∀f, g ∈ A0

f ∗h g =
∞∑

j=0

hj Cj(f, g), with Cj(f, g) =
1
j!
∂jf

∂z̄j

∂jg

∂zj
.

Thus (17) holds. Since (16) and the totality of A0 are obvious, we thus obtain a
differential star-product on C (identical with the traditional Berezin star-product,
which in this case is equivalent to the classical Moyal product on C).

In general, proving the validity of (17) for a given family Mh is quite difficult.
(Even in the special case of the preceding two examples, it is tantamount to proving
the correct semiclassical behavior of the traditional Berezin quantization!) It is there-
fore of advantage to take another route: namely, to try to establish that if we have
one family Mh which works, then we can get another one by modifying the former in
a suitable way. Since for the former we can take the operators Mh corresponding to
the traditional Berezin quantization (Example 4.4), this will solve our problem.

Thus let as usual Ω be a domain with a Kähler metric admitting a global potential
and assume that the traditional Berezin quantization based on the weighted Bergman
spaces L2

h,hol = L2
hol(Ω, µh) works on Ω. Assume further that for each h, Uh is a

positive self-adjoint operator on L2
h,hol such that

Ũh =
∞∑

j=0

hjuj as h↘ 0
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for some uj ∈ C∞(Ω), u0 > 0. Consider the spaces

Lh := (L2
h,hol)Uh

. (66)

(Thus, in contrast to Examples 4.4 and 4.5, now both the operator M and the spaceH
vary with h.) Let us now see whether these spaces can be used instead of L2

h,hol for
performing the Berezin quantization. In view of the results in §4.1, the items I(a)
and I(b) from §1.9 are always satisfied; thus we only need to check if we can find a
total set A0 for which (16) and (17) hold.

To prevent confusion, we keep the notations ∗h, ∗,Ah and A0 for the objects
associated to L2

h,hol, and denote by ∗′h, ∗′,A′h and A0
′ the ones pertaining to the

spaces (66). We also keep the notation Cj for the bidifferential operators Cj from the
traditional Berezin quantization, denoting those corresponding to (66) (provided we
establish their existence) by C ′j .

We claim, first of all, that once a suitable total set A0
′ has been found so that (16)

and (17) hold, the resulting operators C ′j will automatically satisfy (2)–(4). Indeed,
let us denote, for brevity,

u =
∞∑

j=0

hjuj ∈ C∞(Ω)[[h]].

Let q be the inverse of u in C∞(Ω)[[h]] with respect to ∗; the latter exists since
u0 > 0 does not vanish by hypothesis, and thus is invertible as an element of C∞(Ω).
Moreover, q0 = 1/u0. Let further r be the formal square root of u in C∞(Ω)[[h]], i.e.,
r ∗ r = u; again, r exists since u0 > 0 is an element of C∞(Ω) having a smooth square
root, and r0 =

√
u0. Now from r ∗ r = u and q ∗ u = 1, together with (62) and (63),

it follows that the star-products ∗ and ∗′ on C∞(Ω)[[h]] are equivalent

V (f ∗′ g) = V f ∗ V g (67)

via the operator

V f := r ∗ qf ∗ r = f + hV1f + h2V2f + · · · .

By the same argument as in (48) and (49), the desired claim follows.
Thus to show that the spaces (66) can be used for Berezin quantization, it is

enough to find a total subset A0
′ ⊂ ⊕hA′h such that each f ∈ A0

′, as well as f ∗′ g for
each f, g ∈ A0

′, have an asymptotic expansion in nonnegative powers of h as h↘ 0.
This is accomplished by the following theorem. We formulate it only for the Fock

space and the disc, though it probably remains valid in more general situations.
Recall that a function on Cd or D is called radial if it depends only on |z1|, . . . , |zd|

or |z|, respectively. For any radial function w, the Toeplitz operators Th
w are diagonal

with respect to the standard basis of monomials; we will call the function w temperate
if the eigenvalues cα of Th

w on zα satisfy

sup
α

cα
cα+β

<∞, sup
α

cα+β

cα
<∞ (68)
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for any h and any multiindex β. (Here and below, for the unit disc “multiindex” just
means “nonnegative integer.”)

Theorem 4.6. Consider either the Fock spaces on Ω = Cd from §1.8.1, or the spaces
L2

h,hol on Ω = D from §1.8.2. Let w > 0 be a positive temperate radial function in
L∞(Ω) ∩ C∞(Ω), and for each h > 0 set

Uh = (Th
w)−1.

Denote by A0
′ the set of all linear combinations of functions of the form hn ˜Uh

Th
zlz̄mφ(z),

where n ≥ 0, l,m are multiindices (for Cd) or l,m ≥ 0 (for D), and φ ∈ D(Ω) is
radial. Then the spaces (66) with the total set A0

′ define a Berezin quantization on Ω
in the strong form.

Remark. Of course, the last theorem is a complete triviality on the level of formal
power series, in view of the equivalence (67) — one could even forget about the
complicated definitions of A0

′ and special forms of Uh. The point is to make things
work even on the rigorous (not only formal power series) level.

Proof. First of all, note that w > 0 implies that Th
w is positive:

〈Th
wf, f〉 =

∫
Ω

w|f |2 dµh ≥ 0 ∀f ∈ L2
h,hol, with equality iff f = 0. (69)

Hence Th
w is injective and its inverse (Th

w)−1 = Uh is also positive. Thus Uh satisfies
the condition (59) and the definition (66) makes sense. Also, as U−1

h is bounded, the
condition (60) is trivially fulfilled.

Second, we claim that the operators Th
zlz̄mφ(z) as above are bounded on the spaces

Lh (that was the sole reason behind such a complicated definition of A0
′). Indeed,

we know from §4.1 that this is equivalent to U
1/2
h Th

zlz̄mφ(z)U
−1/2
h being bounded

on L2
h,hol. However, the latter is clear since

〈U1/2
h Th

zlz̄mφ(z)U
−1/2
h zα, zβ〉 =

√
cα
cβ
〈Th

φ z
l+α, zm+β〉,

and the second factor on the right is nonzero only if α− β = m− l; thus the bound-
edness follows from the boundedness of Th

zlz̄mφ and (68).
Hence A0

′ ⊂ A′.
Now let k ≥ 1 and let f1, . . . , fk ∈ L∞ ∩ C∞ be any functions such that Th

fj
are

bounded on Lh. Then by the definition of ∗′h and (61),

T̃h
f1

Uh

∗′h T̃h
f2

Uh

∗′h · · · ∗′h T̃h
fk

Uh

= [Th
f1
· · ·Th

fk
]∼Uh

=
[Th

f1
· · ·Th

fk
Th

w]∼

T̃h
w

.
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(Note that T̃h
w > 0 by (69).) Since both the numerator and the denominator of the last

formula have asymptotic expansions as h↘ 0, by Theorem 1.2, so does the left-hand
side. This establishes (51), (16) (upon taking k = 1), and, in view of the discussion
preceding the theorem, also (17) (upon taking k = 2).

Finally, as, in particular,

T̃h
f

Uh

=
T̃h

f ∗ T̃h
w

T̃h
w

=
fw +O(h)
w +O(h)

= f +O(h),

the totality of the set A0
′ follows from the (evident) totality of the set of all linear

combinations of the functions hnzlz̄mφ(z).
The proof is complete.

Remark. For the Fock space and w ∈ BC∞(Cd), an alternative proof of Theorem 4.6
may be given based on the fact that bidifferential operators Cj from the tradi-
tional Berezin-Toeplitz quantization (38) obviously preserve BC∞ (i.e., (52) holds for
V = BC∞) and the observation before Theorem 1.2. Similarly for the unit disc and
w ∈ C∞(D), by (44).

4.3. Some examples

As our first application of Theorem 4.6, consider the Fock space L2
h,hol = L2

hol(C,
e−|z|

2/h(πh)−1dz) on C and take

w(z) = (1 + |z|2)−s

with some s > 0. Then Th
w is a diagonal operator with respect to the standard

monomial orthogonal basis {zk}, with eigenvalues

ck =
〈Th

wz
k, zk〉

〈zk, zk〉
=

1
k!hk

∫ ∞

0

(1 + t)−stke−t/hh−1 dt

=
1
k!

∫ ∞

0

(1 + yh)−syke−y dy.

It follows that, for each fixed h, ck ∼ const · k−s as k → ∞. Hence, in particular,
ck

ck+1
is positive and tends to one, so w is temperate. Thus Theorem 4.6 applies, and

we obtain a Berezin quantization of C based on the spaces Lh from (66). Note that
for s an integer and k ≥ s,

〈zk, zk〉Lh
= 〈Uhz

k, zk〉L2 = 〈c−1
k zk, zk〉L2 ≈ (k + 1)s〈zk, zk〉L2

= (k + 1)sk!hk ≈
s∑

j=0

kj k!hk ≈
s∑

j=0

k!2

(k − j)!2
(k − j)!hk−j

=
s∑

j=0

〈(zk)(j), (zk)(j)〉L2 = 〈zk, zk〉Hs ,
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for each fixed h > 0; hence Lh coincides as a set with the holomorphic Sobolev space
Hs

hol(C, e
−|z|2/hdz), with equivalent norms. We have thus arrived at a Berezin star

product based on Sobolev spaces of holomorphic functions.
The same construction works also for the Fock spaces on Cd with d > 1, using the

function w(z) =
∏d

j=1(1 + |zj |2)−s.
For a second example, consider the disc D with the usual spaces L2

h,hol =
L2

hol(D,
ν−1

π (1− |z|2)ν−2dz), ν = 1
h , and take

w(z) = (1− |z|2)2s, s > 0.

Again, Th
w is a diagonal operator with respect to the standard basis, with eigenvalues

ck =
(ν)k

k!
(ν − 1)

∫ 1

0

tk(1− t)2s+ν−2 dt =
(ν − 1)k+1

(ν + 2s− 1)k+1
∼ (k + 1)−2s.

As before, it follows that w is temperate, and thus the last theorem applies and yields
a Berezin quantization of D based on the corresponding spaces (66). Note that again,
for s an integer and k ≥ s,

〈zk, zk〉Lh
= c−1

k 〈zk, zk〉L2 ≈ (k + 1)2s k!
(ν)k

≈
s∑

j=0

k2j k!
(ν)k

≈
s∑

j=0

k2j k1−ν

≈
s∑

j=0

k2j (k − j)1−ν ≈
s∑

j=0

k!2

(k − j)!2
〈zk−j , zk−j〉L2 = 〈zk, zk〉Hs ,

for each fixed ν, so that Lh again coincides with the holomorphic Sobolev space
Hs

hol(D, (1− |z|2)ν−2dz), with equivalent norms.

4.4. Concluding remarks

Remark. We have seen in Example 4.4 that for Ω = D, the unit disc, and H =
L2

hol(D, π
−1 dz), the ordinary (unweighted) Bergman space, the operators Mh corre-

sponding to the passage from H to L2
h,hol = L2

hol(D,
h−1−1

π (1 − |z|2)h−1−2 dz) of the

traditional Berezin quantization are given by Mhz
j = (j+1)!

(1/h)j
zj . Similarly, we have

seen in §4.3 that the operator M corresponding to the passage from H to the holo-
morphic s-th order Sobolev space Hs

hol(D, π
−1 dz) is given by Mzj = mjz

j , where

mj =
‖zj‖2Hs

hol

‖zj‖2H
=

1
‖zj‖2H

s∑
k=0

j!2

(j − k)!2
‖zj−k‖2H

=
s∑

j=0

j!(j + 1)!
(j − k)!(j − k + 1)!

� (j + 1)2s
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(at least for s a nonnegative integer). Since (j+1)!
(ν)j

� (j + 1)2−ν , we see that L2
h,hol

coincides with Hs
hol for s = 1− 1

2h , with equivalent norms. The Berezin quantization
h → 0 can thus be equivalently viewed as a quantization using Sobolev spaces Hs

hol

with s→ −∞ (suitably renormalized). Unfortunately, for the Fock space this analogy
breaks down.

Remark. We finish by commenting on a natural question, namely: which reproducing
kernel spaces of holomorphic functions, on a given domain Ω, can be obtained by the
“deformation” construction from the beginning of this section?

The answer is: essentially, all of them. Indeed, take H := L2
hol(C

d, e−|z|
2
dz);

this space contains all polynomials and they are dense in it. Thus if K is any other
reproducing kernel Hilbert space of holomorphic functions on a domain Ω ⊂ Cd, such
that the polynomials and contained and dense in it, then H ∩ K is dense in both H
and K. Thus the argument from Example 4.4 can be applied to show that K = (H)M

for M = ι∗ι, with ι the restriction map from H into K.

Remark. Related question: which star-products can be obtained from the Berezin
star-product using the machinery from this section?

Certainly not all, since in view of (67) they must be equivalent to the star product
we have started with, and also have separation of variables (by §4.1). Currently, the
answer to this question is unclear.

It should be noted that for a somewhat analogous problem for the Berezin-Toeplitz
quantization — namely, which star-products can be obtained from the recipe

Q
(h)
f Q(h)

g =
∞∑

j=0

hj Q
(h)

Cj(f, g)
as h→ 0

(in the sense of operator norms) where f 7→ Qf is a mapping from D(Ω) to (bounded
linear) operators on L2

h,hol — the answer is known in the case of symmetric spaces Ω
and invariant star-products: then any G-equivalent star product can be obtained in
this way. See [12, 14]. It is a conjecture that the assertion remains in force even in
general (i.e., for non-symmetric spaces).

5. Berezin-Toeplitz quantization on holomorphic Sobolev spa-
ces

We proceed to discuss the remaining case of the Berezin-Toeplitz quantization on
general spaces of holomorphic functions, and as before we start with the simplest
ones among them, the holomorphic Sobolev spaces Hs

hol. Of course, for the larger
space K in (19) we take the whole Sobolev spaces Hs, so that the Toeplitz operators
are defined by Tfφ = P (fφ) where P is the projection in Hs onto its holomorphic
subspace Hs

hol. Now one cannot take an arbitrary L∞ functions for the symbol f ,
but only those for which the multiplication by f maps Hs

hol into Hs; thus, for instance,
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any f such that all its derivatives of orders ≤ s exist and are bounded will be fine.
Note that since (20) is violated, these Toeplitz operators do not usually have properties
as nice as before; for instance, T ∗f 6= Tf̄ in general.

We actually offer only a single result, concerning the simplest case of the holomor-
phic Sobolev spaces Hs

h,hol on the complex plane C. We will also again assume that
the order s is an integer and s ≥ 0. That is, we consider the spaces

Lh = Hs
h,hol := Hs

hol(C, e
−|z|2/h(πh)−1dz),

equipped with the norm

‖f‖2s :=
s∑

j=0

‖∂jf‖2, (70)

where the norms on the right are taken in L2(C, e−|z|
2/h dz

πh ). The following result
was quite a surprise for the author.

Theorem 5.1. For any f ∈ BC∞(C) and h > 0, the Toeplitz operator Th
f on Hs

h,hol

is just the restriction to Hs
h,hol ⊂ L2

h,hol of the Toeplitz operator Th
f on L2

h,hol.

Proof. To avoid confusion, let us temporarily denote the Toeplitz operators on Hs
h,hol

by V (h)
f , while keeping the notation Th

f for the Toeplitz operators on L2
h,hol. Thus

we want to show that V (h)
f = Th

f |Hs
h,hol

. Since the monomials form an orthogonal
basis both in L2

h,hol and in Hs
h,hol, we have

V (h)
fz

k =
∞∑

j=0

〈fzk, zm〉s
〈zm, zm〉s

zm, Th
f z

k =
∞∑

j=0

〈fzk, zm〉0
〈zm, zm〉0

zm,

so it suffices to show that

〈fzk, zm〉s
〈zm, zm〉s

=
〈fzk, zm〉0
〈zm, zm〉0

, ∀k,m ≥ 0. (71)

Indeed, then V (h)
fz

k = Th
f z

k for all k, and the assertion will follow in view of the
continuity of V (h)

f and Th
f on their corresponding spaces.

Now
〈fzk, zm〉0 =

∫
C

f(z) zk z̄m e−|z|
2/h dz

πh
.

Let us integrate by parts on the right-hand side. Owing to the factor e−|z|
2/h,

the boundary term vanishes in view of the boundedness of f (it would be enough
that f = O(e|z|

2−δ

), δ > 0). We therefore obtain

〈fzk, zm〉0 =
∫
C

∂(zkf) z̄m h

z̄
e−|z|

2/h dz

πh

=
h

m

∫
C

∂(zkf) ∂zm e−|z|
2/h dz

πh
=

h

m
〈∂(zkf), ∂zm〉0.
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Repeating the partial integrations, we thus see that

〈fzk, zm〉0 =
(m− j)!hj

m!
〈∂j(zkf), ∂jzm〉0

for any f ∈ BC∞ and any j ≤ m. Consequently,

〈fzk, zm〉s =
min(m,s)∑

j=0

〈∂j(fzk), ∂jzm〉0

=
min(m,s)∑

j=0

m!
(m− j)!hj

〈fzk, zm〉0

≡ cm,s,h 〈fzk, zm〉0.

Setting f = 1, k = m, we get, in particular,

〈zm, zm〉s = cm,s,h 〈zm, zm〉0.

Since the constants cm,s,h do not depend on f and k, (71) follows, and the proof is
complete.

Corollary. For any integer order s > 0, the Berezin-Toeplitz quantization works for
the spaces Lh = Hs

hol(C, e
−|z|2/h dz

πh ) on C, with the same total set as for the tradi-
tional Berezin-Toeplitz quantization in §1.8.1; moreover, the resulting star-product is
identical to the one from §1.8.1 (coming from the spaces L2

h,hol).

The situation described in the last theorem is probably highly untypical, and it
certainly does not prevail even for the unit disc. Namely, if we consider the spaces

Lh = Hs
h,hol ≡ Hs

hol(D,
ν−1

π (1− |z|2)ν−2dz), (72)

with the norm (70) (where, as before, ν = 1
h and s ≥ 0 is an integer), then a short

computation reveals that

Th
z̄lz

j =

{
0 j < l,

qlj(s)zj−l j ≥ l,
(73)

where

qjl(s) =
j!

(j − l)!

∑s
k=0

1
(j−l−k)!(ν)j−k∑s

j=0
1

(j−l−k)!(ν)j−l−k

varies with s. (For the Fock space, the analogous expression turns out to be j!
(j−l)!h

l,
which is independent of s.)
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Remark. The formula (73) also implies that Tz̄Tz̄ 6= Tz̄2 (even though TzTz = Tz2)
and, in particular, that T ∗z 6= Tz̄ on Hs

h,hol; thus we see that the validity of (21)
and (22) is indeed restricted to subspaces of L2 in general.

Currently, we do not know whether the Berezin-Toeplitz quantization works also
on the holomorphic Sobolev spaces (72) on D, as it does on the “Fock-Sobolev”
spaces from Theorem 5.1. Computations using the formula (73) seem to indicate that
this might be the case. Needless to say, the case of holomorphic Sobolev spaces on
other domains, or even of more general spaces of holomorphic functions that are not
subspaces of an L2 space, is likewise open.

6. Other vistas?

The following table briefly summarizes our findings in this paper.

XXXXXXXXXX
Berezin quantization Berezin-Toeplitz quantization

L2
hol OK OK

L2
harm, L

2
A no no

Hs no —

Hs
hol OK OK?

Hs
harm,H

s
A no no

We should, finally, note that there might exist still other possible approaches:
for instance, in principle, one could also use the Toeplitz operators TM and the
Berezin transform BM , defined by (65) and (64) above, to carry out the Berezin-
Toeplitz quantization or Karabegov’s Berezin quantization along the lines of §§1.5
and 1.7, respectively. So far, this possibility remains unexplored.

It should be noted at this point that these Toeplitz operators and Berezin trans-
forms are in general different from those defined in §1.4 and §1.6, respectively, in sit-
uations when both definitions make sense (for instance, for the spaces Hs

hol from
Example 4.3). Indeed, the Toeplitz operators from (65) always satisfy Tf̄Tg = Tf̄g if
f or g is holomorphic, while those defined in §1.4 need not (cf. the Remark at the
end of §5). Similarly, the Berezin transform from (64) always satisfies Bf̄ = f̄ if f is
holomorphic, while for the one from §1.7 Bf̄ = T̃f̄ , which may differ from f̄ = T̃ ∗f as
T ∗f 6= Tf̄ in general (by the same Remark).
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