On the complicatedness of the pair (g, K) NICOLAS ANDRUSKIEWITSCH¹ In memoriam Atilio Bauchiero **ABSTRACT.** Let $g = f \oplus p$ be the complexification of a Cartan decomposition of a real semisimple Lie algebra g_R and let K be the analytic subgroup of the adjoint group of g with Lie algebra $ad_g(f)$. Let L be an algebraic connected linear reductive complex group acting on a finite dimensional vector space V. In the study of the orbits of this sort of actions, there are some criteria of «non complicatedness»: e.g., «cofreeness» (the ring of all polynomial functions on V is a free module over the ring of all L-invariants), etc. From this viewpoint, we show that the pair (g, K) is complicated, at least when g_R is not a product of copies of so(n, 1) or su(n, 1). ## 1. INTRODUCTION Let $g_R = f_R \oplus p_R$ be a Cartan decomposition of a real semisimple Lie algebra g and let $g = f \oplus p$ be the corresponding complexification. Let θ be the associated Cartan involution. Also let a_R be a maximal abelian subspace of p and let a be its complexification. Now let G be the adjoint group of G and let G be analytic subgroup of G with Lie algebra G and let G be the centralizer of G in G. This paper is concerned with the action of G in G given by the restriction of the Adjoint representation. If G (G) denotes the ring of all polynomial functions on G then clearly G (G) is a G-module and a fortior G and G-module. If L is a reductive complex linear algebraic group, V is a finite dimensional complex vector space and $\alpha:L \to GL(V)$ is a representation then, concerning the classification of the L-orbits in V, there are some criteria of «non-complicatedness». (See [K] or [M1], p. 160). To state them, let us This work was supported by CONICET. ¹⁹⁸⁰ Mathematics Subject Classification (1985 revision): 14D25, 14L30. Editorial de la Universidad Complutense. Madrid, 1989. recall that V/L is the notation for the affine variety associated to $S'(V)^L$ and $V \xrightarrow{\pi} V/L$ is the projection corresponding to the inclusion of rings. Let $\Re = \Re(V, L)$ be the fiber $\pi^{-1}(\pi(0))$. The criteria are: - A. \mathbf{R} is a finite union of orbits. Currently (V, L) is visible. - B. All the fibres of π are of the same dimension. - C. S'(V) is a $S'(V)^L$ -free module. Currently (V, L) is cofree. - D. $S'(V)^L$ is a polynomial ring. Currently (V, L) is coregular. - E. The isotropy subgroup L^x is non trivial for every $x \in V$. In this paper we work out the classification of the pairs (g, K) as above for which each criteria is satisfied; see propositions A, B, C, D, E below. If L_1 and L_2 are groups acting on finite dimensional vector spaces V_1 and V_2 respectively, and if we look $L_1 \times L_2$ acting on $V_1 \times V_2$ in the obvious way then it is trivial that $$S'(V_1 \times V_2)^{L_1 \times L_2} \cong S'(V_1)^{L_1} \otimes S'(V_2)^{L_2}$$ so $(V_1 \times V_2, L_1 \times L_2)$ is coregular (resp., cofree) iff (V_1, L_1) and (V_2, L_2) are. Furthermore, the isotropy subgroup $(L_1 \times L_2)^{(x,y)} \cong L_1^x \times L_2^y$, the orbit $(L_1 \times L_2)(x,y) \cong L_1 \times L_2 y$ $(V_1 \times V_2)/(L_1 \times L_2) \cong V_1/L_1 \times V_2/L_2$ and if $\xi_i \in V_i/L_i$, then $\pi^{-1}(\xi_1,\xi_2) = \pi^{-1}(\xi_1) \times \pi^{-1}(\xi_2)$. So $(V_1 \times V_2, L_1 \times L_2)$ satisfies A (resp., B, E) iff (V_1,L_1) and (V_2,L_2) do. Thus we can restrict our attention to the irreducible pairs (\mathfrak{g},K) . As a synthesis, we get for irreducible $\mathfrak{g}_{\mathfrak{g}}$: **Theorem:** (\mathfrak{g} , K) never satisfies criteria B nor E; it satisfies criteria A, C, D if and only if $\mathfrak{g}_R = \mathfrak{so}(p, 1)$ or $\mathfrak{su}(p, 1)$. We will use the application of the Luna's Slice Etale Theorem to the Invariant theory developped in [KPV] and also used in [Sch 1] to classify all the (V, L) coregular with L simple. Note that we can replace K by any connected algebraic group K' with Lie algebra f acting on g with the same infinitesimal action as K. Being a case by case analysis, we will follow E. Cartan's list as it appears in [He], chapter IX. Furthermore, it is clear that it suffices to look at the types I and II, see [He] p. 327. We want to express our thanks to Jorge Vargas, Alejandro Tiraboschi, Oscar Brega and, specially, to Juan Tirao for helpful conversations. #### 2. PRELIMINARIES Let V, L be as in the introduction, meaning of course by a representation a morphism of algebraic groups. For $x \in V$, the conjugacy class of the isotropy subgroup L^x is called an isotropy class. If the orbit Lx is closed, L^x is reductive and the representation of L^x in $T_x(V)/T_x(Lx)$ is called the slice representation at x, where T_x notes the tangent space at x. We say that (L^x) is a closed isotropy class. **Lemma 1** ([KPV], [Sch 1]): Let $V = V_1 \oplus V_2$ be a direct sum of finite dimensional L-modules. Then: - i) If (V, L) is coregulat then (V_1, L) and (V_2, L) are. - ii) If (V, L) is coregular then every its slice representation is. - iii) If (H) is a closed isotropy class of V_1 then (V, L) coregular implies (V_2, H) is. - iv) In particular, if the image of H in $GL(V_2)$ is a non-trivial finite subgroup of $SL(V_2)$ then (V, L) is not coregular. **Proof:** i) is easy and ii) follows from Luna's Theorem (see [KPV]). iii) is an application of i) and ii); iv) is a consequence of the well known Chevalley-Sheppard-Todd Theorem, as it was pointed out in [Sch 1]. The unique minimal closed isotropy class is called the principal isotropy class. For the Adjoint representation, it is a maximal torus. If V has a L-invariant non-degenerate bilinear symmetric form (V is L-orthogonalizable, for short) then the set of those $x \in V$ such that (L^x) is principal contains an open dense subset of V (see [L] and [R]). The hypothesis is certainly fulfilled for the pairs (\mathfrak{g} , K), (\mathfrak{p} , K), (\mathfrak{g} , G) taking the Killing form. It is obvious that $\mathfrak{g} = \mathfrak{f} \oplus \mathfrak{p}$ is a K-module decomposition. **Lemma 2:** The principal isotropy class of (p, K) is (M). **Proof:** By Lemma 20, in p. 803, of [K R] and in the notation therein, $M_{\theta} = (K_{\theta})^x$ for all x «regular» in **a**. But $M = M_{\theta} \cap K$, and $K^x = (K_{\theta})^x \cap K$, $\forall x$ in the open dense subset of «regular» elements in **a**. We denote by $\Pi(V)$ or $\Pi_L(V, \mathbf{b})$ the set of weights associated to the representation of L in V and a fixed Cartan subalgebra \mathbf{b} of \mathbf{l} , the Lie algebra of L. The following result is a well-known consequence of the graded version of the Nakayama Lemma and in the present form is useful to establish that some graded ring is not regular. **Lemma 3:** Let $A = A_0 \oplus A_1 \oplus ...$ be a graded ring with $A_0 = F$ a field; $A_+ = A_1 \oplus ...$ is the maximal homogeneous ideal. i) A is regular iff dim Krull $A = \dim_F A_+ / A_+^2$. In such case, if $t_1, ..., t_n$ are homogeneous elements of A such that their images in A_+ / A_+^2 form an F-basis, then they are algebraically independent over F. - ii) If $A_1 = 0$ and $t_1, ..., t_s$ are F-linearly independent in A_2 , then A regular implies $t_1, ..., t_s$ are F-a.i. - iii) If $A_1 = A_3 = 0$, $t_1, ..., t_s$ is an F-basis of A_2 and $t_{s+1}, ..., t_r$ are F-1.i. in A_4 such that $A_2^2 \cap \langle t_{s+1}, ..., t_r \rangle = 0$ then A regular implies $t_1, ..., t_s$, $t_{s+1}, ..., t_r$ are F-a.i. The non-coregularity of (\mathfrak{g}, K) will follow in some cases from the following fact: **Lemma 4:** Assume that rank $\mathfrak{g} = \operatorname{rank} \mathfrak{f}$; that $\mathfrak{f} = \mathfrak{f}_1 \oplus \mathfrak{f}_2$ is a direct sum of Lie algebras where $\mathfrak{f}_2 \cong \mathfrak{sl}(2, \mathbb{C})$; and that as \mathfrak{f} -module, \mathfrak{p} is $\rho_1 \otimes \rho_2$ where ρ_2 is the natural representation of \mathfrak{f}_2 in \mathbb{C}^2 and dim $\rho_1 \geq 4$. Then (\mathfrak{g}, K) is not coregular. **Proof:** It is clear from Lemma 1 that it suffices to show that (\mathfrak{p}, H) is not coregular, where H is a maximal torus of K, whose Lie algebra is isomorphic to $\mathbf{b} = \mathbf{b}_1 \oplus \mathbf{b}_2$, a Cartan subalgebra of \mathbf{f} , \mathbf{b}_j a Cartan subalgebra of \mathbf{f}_j . Our first task is to descript $\Pi(\mathfrak{p}, \mathbf{b})$. If σ is the weight of \mathbf{f}_2 such that $\rho_2 \cong V(\sigma)$, then $\Pi(\rho_2) = \{\pm \sigma\}$ Then $\Pi(\mathfrak{p}, \mathbf{b}) = \{\alpha \pm \sigma: \alpha \in \Pi(\rho_1)\}$ by abuse of notation. But \mathbf{b} is also a Cartan subalgebra of \mathbf{g} and then if $\lambda \in \Pi(\mathfrak{p}, \mathbf{b})$, λ is a non-compact root in $\Phi(\mathbf{g}, \mathbf{b})$; so $-\lambda \in (\mathfrak{p}, \mathbf{b})$. Thus if $\alpha \in \Pi(\rho_1)$, $-\alpha$ too. Next, let $\{t_{\alpha,\sigma}, t_{\alpha,-\sigma}: \alpha \in \Pi(\rho_1)\}$ be a basis of \mathfrak{p} such that $t_{\alpha,\pm\sigma}$ is a vector of weight $\alpha \pm \sigma$ and let $\{T_{\alpha,\sigma}, T_{\alpha,-\sigma}\}$ be the corresponding dual basis. Thus: $$S'(\mathfrak{p})^H = \bigoplus_{j \geq o} S'(\mathfrak{p})^H_j = \bigoplus_{j \geq o} < \text{monomials in } T_{\alpha, \pm \sigma} \text{ of weight } 0 > = \bigoplus_{j \geq o} A_j$$ Clearly, if j is odd then $A_j = 0$. Also if $U_{\alpha} = T_{\alpha,\sigma}$. $T_{-\alpha,-\sigma}$, then $\{U_{\alpha}: \alpha \in \Pi(\rho_1)\}$ is a basis of A_2 . As dim $\rho_1 \ge 4$, there exist α , $\beta \in \Pi(\rho_1)$ such that $\alpha \ne \pm \beta$. Put $S_{\alpha,\beta} = T_{\alpha,\sigma} T_{-\alpha,\sigma} T_{\beta,-\sigma} T_{-\beta,-\sigma}$. Obviously, $A_2^2 \cap \langle S_{\alpha,\beta}, S_{\beta,\alpha} \rangle = 0$. But U_{α} , $S_{\alpha,\beta}, S_{\beta,\alpha}$ are not a.i. because $S_{\alpha,\beta}, S_{\beta,\alpha} = U_{\alpha}, U_{\alpha}, U_{\beta}, U_{-\beta}$ and Lemma 3 applies. ## 3. THE CASE BY CASE ANALYSIS OF COREGULARITY **Types II, IV:** Here l is a simple Lie algebra over \mathbb{C} , $g=l\times l$ and $\theta(x,y)=(y,x)$. Then it is easy to see that $f\simeq l$ and as f-module, g is $Ad\oplus Ad$. Looking at Schwarz tables in [Sch 1], we see that (g,K) is coregular iff $l=si(2,\mathbb{C})$ (table 1.a.18). # Types I, III: The Classical Structures Type AI: Here $g=s1(n, \mathbb{C})$, $f=so(n, \mathbb{C})$ with $n \ge 3$. (For n=2, it is isomorphic to BDI, p=2, q=1). If (g, K) were coregular, then by [Sch 1], table 3a, p must be φ_1 , the natural action in \mathbb{C}^n . We get a contradiction computing dim $p = (n^2 + n)/2 - 1$. **Type AII:** Here $g=s1(2n, \mathbb{C})$, $f \approx sp(n, \mathbb{C})$ with $n \geq 3$. (For n=2, it is isomorphic to BDI, p=6, q=1). The Schwarz notation for Ad is φ_1^2 so that if (g, K) were coregular, by Table 4a, \mathfrak{p} must be φ_1 , the natural action on \mathbb{C}^{2n} . As dim $\mathfrak{p}=2n^2-n-1$, we get a contradiction. **Type AIII:** Here $g = sl(p+q, \mathbb{C})$, $f = \{ \begin{pmatrix} A & O \\ O & B \end{pmatrix} \in g : A \in \mathbb{C}^{p \times p} \}$, $p = \{ \begin{pmatrix} O & C \\ O & O \end{pmatrix} \in g \}$. When q = 1, corregularity of (g, K) was proved by Cooper in [C]. So, let $q \ge 2$. We can choose **a** as in [He], p. 368. As it was pointed out in the Introduction, we may assume that $K = \{ \begin{pmatrix} A & O \\ O & B \end{pmatrix} \in SL(p+q, \mathbb{C}), A \in \mathbb{C}^{p \times p} \}$ and then it is easy to see that $M = \{ \begin{pmatrix} A & O \\ O & B \end{pmatrix} \in K : B$ is diagonal, $A = \{ \begin{pmatrix} B & O \\ O & C \end{pmatrix} \}$. If we can show that (f, M) is non-coregular, we are done. Now, $f = f_1 \oplus f_2 \oplus f_3$, where $f_1 = \{ \begin{pmatrix} A & O \\ O & O \end{pmatrix} \in \mathfrak{g} \} \cong \mathfrak{sl}(p, \mathbb{C})$, $f_2 \cong \mathfrak{sl}(q, \mathbb{C})$, and $f_3 \cong \mathbb{C}$ is the center of f. As M-module, f_1 admits a submodule isomorphic to $f_2: \{ \begin{pmatrix} A & O \\ O & O \end{pmatrix} \in \mathfrak{g}: A = \begin{pmatrix} C & O \\ O & O \end{pmatrix}$, with $c \in \mathfrak{sl}(q, \mathbb{C})$ and the action of M in f_2 is given by $B.(a_{ij}) = (b_i b_j^{-1} a_{ij})$ if B is the diagonal $(b_1, ..., b_q)$. Let V be the M-submodule of $\mathfrak{sl}(q, \mathbb{C})$, $V = \{(a_{ij}): a_{ii} = 0 \ \forall i\}$. Clearly, it suffices to show that $(V \oplus V, M)$ is not coregular. Note that $q \neq 1$ implies $V \neq 0$. Putting $S'(V)^M = A_0 \oplus A_1 \oplus ..., a_{ij}, b_{ij}$ the canonical coordinates of the first and the second copy of V, respectively, then $A_1 = 0$ and $A_2 = \langle a_{ij} a_{ji}, b_{ij} b_{ji}, a_{ij} b_{ji} \rangle$. Thus Lemma 3 applies. **Type BDI:** Here $g = so(p+q, \mathbb{C})$, $f = so(p, \mathbb{C}) \oplus so(q, \mathbb{C}) = f_1 \oplus f_2$ and $\mathfrak{p} = \{ \begin{pmatrix} 0 & B \\ C & O \end{pmatrix} : B \in \mathbb{C}^{p \times q}, B + {}^{t}C = 0 \}$. We can choose $\mathbf{a} = \{ \begin{pmatrix} 0 & B \\ C & O \end{pmatrix} : B$ is «diagonal», i.e. $b_{ij} = 0$ if $i \neq j \}$. We may assume that $K = SO(p, \mathbb{C}) \times SO(q, \mathbb{C})$ and then it is easy to see that $M = \{(A, B) \in K: B \text{ is the diagonal } (\epsilon_1, ..., \epsilon_q) \text{ with } \epsilon_i^2 = 1, \Pi \epsilon_i = 1, \text{ and } A = \begin{pmatrix} B & O \\ O & C \end{pmatrix}$ with $C \in SO(p-q, \mathbb{C})$. q = 1: Then (\mathfrak{g}, K) is coregular by Cooper [C], Benabdallah [B], or [Sch 1], Table 3 a.2. $q \ge 3$: It follows from Lemmas 1 and 2 that (\mathfrak{g}, K) coregular implies (\mathfrak{f}_2, M) coregular. Note that the morphism $M \to GL(\mathfrak{f}_2)$, say ρ , depends clearly only on $B = (\epsilon_1, ..., \epsilon_q)$ and $\rho(B)(X_{ij}) = (\epsilon_i \epsilon_j X_{ij})$. Then det $\rho(B) = \prod_{i < j} \epsilon_i \epsilon_j = (\prod_i \epsilon_i)^{q-1} = 1$. For B = (1, -1, -1, 1, ..., 1), $\rho(B) \ne \mathrm{Id}$; therefore $\rho(M)$ is a finite, non trivial subgroup of $SL(\mathfrak{f}_2)$ and Lemma 1 applies. q=2: Here $M\cong SO(p-2, \mathbb{C}) \times \{\pm I_2\}$, where I_2 is the identity of $GL(2, \mathbb{C})$. Now, as M-module, $f_1 \cong \mathfrak{so}(p-2, \mathbb{C}) \oplus \mathfrak{so}(2, \mathbb{C}) \oplus \mathbb{C}^{p-2} \oplus \mathbb{C}^{p-2}$; where $\mathfrak{so}(p-2, \mathbb{C}) \cong \{ \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix} \in f_1 \colon A \in \mathfrak{so}(p-2, \mathbb{C}) \}$, $\mathfrak{so}(2, \mathbb{C})$ similarly $\mathbb{C}^{p-2} \oplus \mathbb{C}^{p-2} \cong \{ \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix} \in f_1 \colon Y \in \mathbb{C}^{(p-2)\times 2}, x = -^t Y \} = V$. If $x \in \mathfrak{so}(p-2, \mathbb{C})$ is semisimple regular, then $M^x = T \times \{ \pm I_2 \}$ where T is a maximal torus of $\mathfrak{so}(p-2, \mathbb{C})$. Thus it suffices to show that $(V, T \times \{ \pm I_2 \})$ is not coregular. If $(A, \epsilon I) \in M^x$ and $(Y_1, Y_2) \in V$, the action is given by $(\epsilon A Y_1, \epsilon A Y_2)$. Then $$S'(V)^{TX\{\pm I\}} = \bigoplus_{j, even} S'(V)_j^T = \bigoplus_{j, even} S'(V)_j^t$$ where using an appropriate characterization of so $(p-2, \mathbb{C})$, the Cartan subalgebra t can be chosen $\{\begin{pmatrix} D & O \\ O & -B \end{pmatrix}: D \text{ is a diagonal } (d_1, ..., d_k)\}$, if p-2=k is even. (The argument when p is odd is similar). If $v_1, ..., v_{2k}, w_1, ..., w_{2k}$ is the dual basis associated with $\{(e_j, 0), (0, e_j)\}$ then $S'(V)_2^T = \langle v_i v_{k+i}, w_i w_{k+i}, v_i w_{k+i}, v_{k+i}, w_i \rangle$ and Lemma 3 applies. Note that k must be ≥ 1 , i.e. $p \geq 4$. The remaining cases are (3,2) and (2,2); respectively, $\mathfrak{sp}(2, \mathbb{R})$ (type CI) and $\mathfrak{sl}(2, \mathbb{R}) \times \mathfrak{sl}(2, \mathbb{R})$ (type AI \times type AI). **Type DIII:** Here $g = so(2n, \mathbb{C})$, $f \simeq gl(n, \mathbb{R})$ and as f-module, $p = p_1 \oplus p_2$ where $p_i \simeq so(n, \mathbb{C})$ with actions $\sigma_1(Z)(U) = ZU + U^i Z$, $\sigma_2(Z)(U) = ZU + U^i Z$. We can choose $\mathbf{a} = \{(V, V): V = \sum \lambda_j (e_{2j-1, 2j} - e_{2j, 2j-1}), \lambda_j \in \mathbb{C}\}$. We can assume that $K = GL(n, \mathbb{C})$ and then it easy to show that $M \approx SL(2, \mathbb{C}) \times ... \times SL(2, \mathbb{C})$, h times, if n = 2h is even and $M \approx SL(2, \mathbb{C})^h \times \mathbb{C}^*$ if n = 2h+1 is odd. The isomorphism is realized by «blocks in the diagonal». By Lemmas 1 and 2 it suffices to study the pair (f, M). Consider the M-submodule of f $$V = \{ Z \in \mathcal{F}: Z_{ij} = 0 \text{ if } i \geq 4 \text{ or } j \geq 4 \}$$ Obviously $(V, M) \simeq (Ad \oplus V_1 \oplus V_2, \mathfrak{sl}(2, \mathbb{C}) \times \mathfrak{sl}(2, \mathbb{C}))$. Thus we look at $(V_1 \oplus V_2, T)$, where T is a maximal torus of $\mathfrak{sl}(2, \mathbb{C}) \times \mathfrak{sl}(2, \mathbb{C})$ and the action is given by $(t, r)(A, B) = (tAr^{-1}, rBt^{-1})$. Let a_i, b_i be the canonical basis of V_j , j = 1, 2. If $S'(V_1 \oplus V_2)^T = A_0 \oplus A_1 \oplus ...$, then $A_1 = 0$, $A_2 = \langle a_1 a_4, a_2 a_3, b_1 b_4, b_2 b_3, a_1 b_1, a_2 b_3, a_3 b_2, a_4 b_4 \rangle$. Thus Lemma 3 applies. This method works for $n \ge 4$. But for n = 2, $3 g_R$ is isomorphic to AIII and AI \times AI, respectively. Type CI: Here $g = \mathfrak{sp}(n, \mathbb{C})$, $f \simeq \mathfrak{gl}(n, \mathbb{C})$ and as f-module, $\mathfrak{p} \simeq \mathfrak{p}_1 \oplus \mathfrak{p}_2$ where $\mathfrak{p}_i = \{A \in \mathfrak{gl}(n, \mathbb{C}) : A = {}^tA\}$ with actions $\sigma_1(Z)(A) = ZA + A{}^tZ$, σ_2 the dual of σ_1 . We can choose $\mathfrak{a} = \{(D, D) : D \text{ is diagonal}\}$ and if we assume that $K = GL(n, \mathbb{C})$, it is easy to see that $M = \{X \in K : X \text{ is a diagonal } (\epsilon_1, ..., \epsilon_n) \text{ with } \epsilon_i = \pm 1\}$. Looking at the pair (f, M) it is immediately that det Ad $m = \prod_{i,j} (\epsilon_i \epsilon_j) = 1$, if $m = (\epsilon_1, ..., \epsilon_n) \in M$. But m = (-1, 1, ..., 1) acts non trivially so that Lemma 1 iv) applies. This method works for n>1. For $n=1, sp(1, \mathbb{C}) \simeq sl(2, \mathbb{C})$, trivially coregular. **Type CII:** Here $\mathfrak{g} = \mathfrak{sp}(p+q, \mathbb{C})$; $\mathfrak{f} \simeq \mathfrak{sp}(p, \mathbb{C}) \oplus \mathfrak{sp}(\mathfrak{q}, \mathbb{C})$ and $\mathfrak{p} \simeq \mathbb{C}^{2p \times 2q}$ with the action $(Z_1, Z_2) X = Z_1 X - X Z_2$. We can choose $\alpha = \{ \begin{pmatrix} A & O \\ O & A \end{pmatrix} : A \in \mathbb{C}^{p \times q}, \ A = \sum \lambda_i e_{ii} \}$. We can assume that $K = SP(q, \mathbb{C}) \times SP(q, \mathbb{C})$ and then it is easy to see that $M = \{(X_1, X_2) \in K: X_2 = \begin{pmatrix} A^1 & A^2 \\ A^3 & A^4 \end{pmatrix}$ with A^j diagonal in $GL(q, \mathbb{C}), \ A^1_{ii}A^4_{ii} - A^3_{ii}A^2_{ii} = 1$ and $X_1 = \begin{pmatrix} B^1 & B^2 \\ B^3 & B^4 \end{pmatrix}$ with $B^j = \begin{pmatrix} A^j & O \\ O & C \end{pmatrix}, \begin{pmatrix} C^1 & C^2 \\ C^3 & C^4 \end{pmatrix} \in SP(p-q, \mathbb{C}) \}$. That is, $M \simeq SL(2, \mathbb{C})^q \times SP(p-q, \mathbb{C})$. Now we can assume q > 1 because for $q = 1, p \ge 2$ we are in the situation of Lemma 4 and $g_R = sp(1,1) \simeq so(4,1)$, implies (g, K) coregular. It is clear that f_1 has a *M*-submodule isomorphic to f_2 , so we are done proving the non coregularity of $(f_2 \oplus f_2, SL(2, \mathbb{C})^q)$. Put $$V_{ij} = \langle e_{i,j} - e_{q+j,\,q+i}, e_{j,i} - e_{q+i,\,q+j}, e_{i,\,q+j} + e_{j,\,q+i}, e_{q+i,\,j} + e_{q+j,\,i} \rangle$$ if $i \neq j$ and $W_i = \langle e_{i,i} - e_{q+i,\,q+i}, e_{q+i,\,i}, e_{i,\,q+i} \rangle$; then $$\int_{2} = (\bigoplus_{i} W_i) \oplus (\bigoplus_{i < j} V_{ij}) \text{ and } \bigoplus_{i} W_i \simeq \text{Ad}(SL(2, \overline{\mathbb{C}})^q).$$ So we can restrict our attention to the pair $(V_{12} \oplus V_{12}, T)$ where $T = \{(X_1, ..., X_q) : X_j \text{ is a diagonal in sl}(2, \mathbb{C})\}$. If α_s , β_r are the dual basis to the descripted above, and $S'(V_{12} \oplus V_{12})^T = A_0 \oplus A_1 \oplus ...$ then $A_1 = 0$, $A_2 = \langle \alpha_1 \alpha_2, \alpha_3 \alpha_4, \beta_1 \beta_2, \beta_3 \beta_4, \alpha_1 \beta_2, \alpha_2 \beta_1, \alpha_3 \beta_4, \alpha_4 \beta_3 \rangle$ and Lemma 3 applies. ## The Exceptional Structures Most of the cases follows from Schwarz tables [Sch 1] or from Lemma 4. So we list them. The reference for the K-module structure of \mathfrak{p} is [F de V]. | Type | g | f | p | Method | |--------------|---------------|------------------------------------------------------------------|---------------------------|-------------------------------------| | EI | e_6 | sp (4, C) | 42 | Table 4a.3, dim $p \neq 8$ | | EIV | e_6 | $f_{\mathbf{A}}$ | | " 5a.4 | | EV | e_7 | sl (8, C) | 70 | " 1a.20, $\dim \mathfrak{p} \neq 8$ | | EVIII | $e_8^{'}$ | so (16, C) | 128 | " $3a.2$, $\dim p \neq 16$ | | FII | f_4 | so (9, C) | 16 | " $3a.5$, $\dim p \neq 9$ | | EII | e_6 | $\mathfrak{si}(6,\mathbb{C})\times\mathfrak{sl}(2,\mathbb{C})$ | $\Lambda^3(\mathbb{C}^6)$ | Lemma 4 | | EVI | e_7 | $\mathfrak{so}(12,\mathbb{C})\times\mathfrak{sl}(2,\mathbb{C})$ | λ_5 (spin) | " | | EIX | $e_8^{'}$ | $e_7 \times \mathfrak{sl}(2,\mathbb{C})$ | λ_7 | . 11 | | FI | f_4° | $\mathfrak{sp}(3,\mathbb{C})\times\mathfrak{sl}(2,\mathbb{C})$ | λ_3 | ** | | G | g_2 | $\mathfrak{sl}(2,\mathbb{C}) \times \mathfrak{sl}(2,\mathbb{C})$ | $V(3) = 3\lambda_1$ | " | *Note:* under «p» we have listed dim p for [Sch 1], ρ_1 for Lemma 4. Here λ_j means the j-fundamental weight, as in [Hu]. There are two remaining cases: Type EIII: Here $g = e_6$, $f = so(10, \mathbb{C}) \oplus \mathbb{C}$, $p = p_+ \oplus p_-$. As K-module, p_- is dual to p_+ ; p_+ is λ_5 (spin) as [f, f]-module and \mathbb{C} = center of f acts by nontrivial scalars. Type EVII: Here $g = e_7$, $f = e_6 \oplus \mathbb{C}$, $p = p_+ \oplus p_-$, p_+ is λ_1 , etc. Then $\Pi(\mathfrak{p}_+,\mathfrak{b}) = \{\lambda + \sigma: \lambda \in \Pi(\mathfrak{p}_+,\mathfrak{t})\}$. As usual, let $\{x_{\lambda}\}$ be the basis of \mathfrak{p}_+ where x_{λ} is a vector of weight $\lambda + \sigma$, $\lambda \in \Pi(\mathfrak{p}_+,\mathfrak{t})$; let $\{y_{\lambda}\}$ be the basis of \mathfrak{p}_- where y_{λ} is a vector of weight $-\lambda - \sigma$, and let $\{X_{\lambda}, Y_{\lambda}\}$ be the corresponding dual basis. If $S'(\mathfrak{p}, H) = \bigoplus_{i \geq 0} A_i$ then $A_m = \langle X_{\lambda_1} ... X_{\lambda_r}, X_{\lambda_{r+1}} ... X_{\lambda_m} : \sum_{i \geq r} (\lambda_i + \sigma) + \sum_{i > r} (-\lambda_i - \sigma) = 0 >$. Thus $A_m = 0$ if m is odd and $A_2 = \langle X_{\lambda}, Y_{\lambda} \rangle$. Now assume that there are some $\lambda_1, ..., \lambda_4$ in $\Pi(\mathfrak{p}_+, \mathfrak{t})$ such that $\lambda_1 + \lambda_2 = \lambda_3 + \lambda_4$ and $\lambda_1 \neq \lambda_3, \lambda_4$. Then $X_{\lambda_1} X_{\lambda_2} Y_{\lambda_3} Y_{\lambda_4}, X_{\lambda_3} X_{\lambda_4} Y_{\lambda_1} Y_{\lambda_2}$ do not belong to A_2^2 and Lemma 3 applies. The preceding hypothesis is fulfilled in both cases, as we can see easily; note that, as rank g = rank f, we may look at the non-compact roots in p_+ . From the preceding analysis, we have: **Proposition D:** (g, K) is coregular if and only if it corresponds to $g_R = so(p, 1)$ or su(p, 1). ## 4. THE OTHER CRITERIA Here we assume that L is a semisimple complex algebraic group, and that V is L-orthogonalizable; see section 2. **Proposition E:** i) If every root it in the \mathbb{Z} -span of $\Pi(V)$, then the principal isotropy class of $(Ad \oplus V, L)$ is (the class of) $$Ker (L \rightarrow GL(Ad \oplus V)).$$ - ii) If L is simple and V is non trivial, then every root is in the \mathbb{Z} -span of $\Pi(V)$. - iii) If \mathfrak{g} is simple, the principal isotropy class of (\mathfrak{g}, K) is trivial, discarding the trivial case when $\mathfrak{p} = 0$. - iv) (g, K) never satisfies criteria E. **Proof:** i) Let H be the maximal torus of L whose Lie algebra is h and pick any element $x \in h$ such that $L^x = H$. As $V = \bigoplus_{\lambda \in \Pi(V)} V_{\lambda}$, we can choose $y = \sum_{\lambda} y_{\lambda}$, $y_{\lambda} \in V_{\lambda} - 0$. It follows that $$L^{x+y} = L^x \cap L^y = H \cap L^y = \{A \in H: Ay_\lambda = y_\lambda \text{ for all } \lambda \in \Pi(V)\}$$ Now such $A = \exp a$, for some $a \in \mathbf{h}$, and $$(Ad_L A) y_{\lambda} = (\exp a) y_{\lambda} = e^{\lambda(a)} y_{\lambda} = y_{\lambda}$$ Then $\lambda(a) \in 2\pi i \mathbb{Z}$ for all $\lambda \in \Pi(V)$, because $y_{\lambda} \neq 0$. By hypothesis, $\mu(a) \in 2\pi i \mathbb{Z}$ for every root μ and then $A \in \text{Ker Ad } L$. As V is L-orthogonalizable, the same is true for $Ad \oplus V$. So, it only remains to show that the set $\{Z \in \mathbb{I} \oplus V : L^Z = \text{Ker Ad } L\}$ is dense in $\mathbb{I} \oplus V$. Let U be a Zariski open non empty subset of $l \oplus V$; its image under the projection map $l \oplus V \longrightarrow l$ is open so it exists x regular semisimple such that for some $y \in V$, $x+y \in U$. Now l^x , the centralizer of x in l, is a Cartan subalgebra of l. From the conjugacy theorem, it follows that $\Phi(l, l^x)$ is contained in the \mathbb{Z} -span of $\Pi(V, l^x)$. $\{y \in V: x+y \in U\}$ and $\{y \in V: y_\lambda \neq 0 \}$ $\forall \lambda \in \Pi(V, l^x)$ are both open non empty; taking y in the intersection, $x+y \in U$ and $L^{x+y} = \text{Ker Ad}$. ii) Let W be the subgroup of h^* generated by $\Pi(V)$ and let $\Phi = \Phi(l, h)$. We claim that $\Phi = (\Phi \cap W) \cup (\Phi \cap W^{\perp})$. It suffices to show that $\Phi - W^{\perp} \subset W$. If $\alpha \in \Phi - W^{\perp}$, there is some $\mu \in \Pi(V)$ such that $(\alpha, \mu) \neq 0$. The α -string through μ is μ - $r\alpha$, ..., μ + $q\alpha$ with r-q = $(\alpha, \mu) \neq 0$; thus $\mu \pm \alpha \in \Pi(V)$ and $\alpha \in W$. Since 1 is simple, Φ is irreducible; as $V \neq 0$, $W \neq 0$ and $\Phi = \Phi \cap W$. iii) Let L be the connected subgroup of K with Lie algebra l = [f, f], let $V = \mathfrak{p}$ and let \mathfrak{h} , W, Φ be as in the proof of ii). Then $\Phi = (\Phi \cap W) \cup (\Phi \cap W^{\perp})$. Let f_1 and f_2 be the ideals of l such that: if h_j is a Cartan subalgebra of f_j given by $h_j = h \cap f_j$, then the root systems $\Phi(f_1, h_1)$ and $\Phi(f_2, h_2)$ are identified with $\Phi \cap W$ and $\Phi \cap W^{\perp}$ respectively. If $\lambda \in \Pi(\mathfrak{p}, h)$, $\lambda(h_2) = 0$. Thus the action of f_2 in \mathfrak{p} is trivial. Now Jacobi implies that $[\mathfrak{p}, \mathfrak{p}]$ is an ideal of f and that $[f_2, [\mathfrak{p}, \mathfrak{p}]] = 0$. Then if $\delta = \text{center}$ of f, $[f_1 + \delta + \mathfrak{p}, f_2] = 0$ and $f_1 + \delta + \mathfrak{p}$, f_2 are ideals of g. By hypothesis $f_2 = 0$ and $\Phi = \Phi \cap W$. Assume here that dim $\delta = 1$; as f-module, $\mathfrak{p} = \mathfrak{p}_+ \oplus \mathfrak{p}_-$ and δ acts in \mathfrak{p}_+ (in \mathfrak{p}_-) via $\sigma \neq 0$ (via $-\sigma$). Also $\Pi(\mathfrak{p}_-, h) = -\Pi(\mathfrak{p}_+, h)$. Recalling that $\Phi \cup (\Pi(\mathfrak{p}_+, h) \times \{\sigma\}) \cup (\Pi(\mathfrak{p}_-, h) \times \{-\sigma\}) = \Phi(g, h + \delta)$ it is also true that $\{\alpha \in \Phi: (\alpha, \Pi(\mathfrak{p}_+, h)) > 0\} = \Phi_+$ for some choice of a base Δ . Pick $x \in \mathfrak{f}$, $c \in \mathfrak{d}$, $y \in \mathfrak{p}$ such that $K^{x+c} = H \times Z$ is a maximal torus of K. We want to show that $K^{x+c+y} = K^{x+c} \cap K^y = \operatorname{Ker} \operatorname{Ad}_{\mathfrak{g}}(K)$. Let $H_1 \in \mathfrak{h}$, $H_2 \in \mathfrak{d}$ such that $\exp(H_1 + H_2) \in K^y$. Then $\forall \lambda \in \Pi(\mathfrak{p}_+, \mathfrak{h})$ $\lambda(H_1) + \sigma(H_2) \in 2\pi i$. If $\alpha \in \Phi_+$, $\alpha = \lambda_1 - \lambda_2$, for some $\lambda_i \in \Pi(\mathfrak{p}_+, \mathfrak{h})$ (look at the α -string). Then $\alpha(H_1) \in 2\pi i \mathbb{Z}$. If $\alpha \in \Phi_+$, $\alpha = \lambda_1 - \lambda_2$, for some $\lambda_i \in \Pi(\mathfrak{p}_+, \mathfrak{h})$ (look at the α -string). Then $\alpha(H_1) \in 2\pi i \mathbb{Z}$ and we can follow the line of the proof of i). iv) For types II-IV it follows from ii); in other case from iii). Next we will study the dimension of \mathfrak{g}/K . We return to the assumption: «L reductive». From Algebraic Geometry we know, for $\zeta \in V/L$: $$\dim \pi^{-1}(\zeta) + V/L \ge \dim V.$$ [1] Furthermore, there exists an open dense subset U of V such that $\forall \zeta \in \pi(U)$, the equality in [1] holds. # Lemma 5: $\dim \mathfrak{g}/K = \dim \mathfrak{p}$ **Proof:** If V/L has generically closed orbits (i.e., the union of the closed orbits contains a non empty open set) then it is follows from [1] that dim $V/L = \dim V - \dim L + \dim H$, where (H) is a principal isotropy class. Being dim H=0 from Proposition E, dim $\mathfrak{g}/K = \dim \mathfrak{g}/K = \dim \mathfrak{g}$ —dim $K=\dim \mathfrak{p}.$ Our following task is to compute the dimension of \mathfrak{A} , the cone of unstable points in Mumford's terminology, using the ideas exposed in [Sch 2], via the Hilbert-Mumford criterion. For convenience, we will summaryze them. See also [M 1], Ch. II or [M 2], p. 41. Let $\Lambda: \mathbb{C}^* \to L$ be a morphism of algebraic groups, briefly a 1-PS. Put $Z_{\Lambda} = \{ v \in V : \Lambda(z)v \to 0 \text{ if } z \to 0 \}$. From the well known characterization $\mathfrak{N}(V,L) = \{ v \in V : f(v) = 0 \,\forall f \in S'(V)^L \text{ homogeneous of positive degree} \}$ it follows that \mathfrak{N} contains the various Z_{Λ} . In fact, the Hilbert-Mumford criterion insures that $\mathfrak{N}(V,L) = \bigcup_{\Lambda,1-PS} Z_{\Lambda}$. Now if T is a maximal torus of L and Λ is a 1-PS, IM Λ is conjugated to a subgroup of T and $$\mathfrak{R}(V,L) = \bigcup_{\Lambda,1-\mathrm{PS}\,in\,T} L.\,Z_{\Lambda}.$$ Let ${\bf t}$ be the Cartan subalgebra of the Lie algebra of L, ${\bf l}$, corresponding to T. If Λ is a 1-PS in T, note by λ its infinitesimal generator. If $V=\oplus_{\mu\in\Pi(V,{\bf t})}V_{\mu}$, then $\mu(\lambda)\in {\bf Z}$ and $\forall v\in V_{\mu},\ z\in {\bf C}^*: \Lambda(z)v=z^{\mu(\lambda)}v$. So $Z_{\Lambda}=\oplus_{\mu:\mu(\lambda)>0}V_{\mu}$; thus ${\bf T}(V,L)$ is union of a finite number of L. Z_{Λ} . Call $c_{\Lambda}=\operatorname{codim} L$. Z_{Λ} ; then codim $$\Re = \inf\{c_{\Lambda}: \Lambda \text{ is a } 1-PS \text{ in } T\}.$$ Now let \mathfrak{p}_{Λ} be the (parabolic) subalgebra of \mathfrak{l} that normalizes Z_{Λ} , \mathfrak{u}_{Λ} the subalgebra of \mathfrak{l} generated by the root vectors not in \mathfrak{p}_{Λ} , U_{Λ} the connected algebraic subgroup of L corresponding to \mathfrak{u}_{Λ} . Following [Sch 2] we have $\mathfrak{l} = \mathfrak{p}_{\Lambda} \oplus \mathfrak{u}_{\Lambda}$ and $$c_{\Lambda} = \dim V - \dim Z_{\Lambda} - \dim U_{\Lambda} + e_{\Lambda} \ge \dim V - \dim Z_{\Lambda} - \dim U_{\Lambda}$$ [2] where $e_{\Lambda} = \dim U_{\Lambda} - \sup \{ \dim (T_z(U_{\Lambda}z) + Z_{\Lambda}) / Z_{\Lambda} : z \in Z_{\Lambda} \}$ Furthermore, $\mathbf{t} = \mathbf{b} \oplus \mathbf{b}$, where **b** is a Cartan subalgebra of [1, 1]. Then $\lambda = \lambda_b + \lambda_b$ (obvious notation). Call φ_{λ} the unique element in **b*** such that $\varphi_{\lambda}(H) = \text{Killing } (\lambda_b, H) \, \forall h \in \mathbf{b}$. Now, $\forall \mu \in \Phi([1, 1], \mathbf{b}) : (\varphi_{\lambda}, \mu) = \mu(\lambda) \in \mathbf{Z}$ and then $\varphi_{\lambda} \in \mathbf{E} = \mathbb{R}$ -span of $\Phi([1, 1], \mathbf{b})$ in **b***. (See [Hu], p. 40 and p. 67). Finally, $\gamma(t) = \{\lambda \in t : \lambda = d\Lambda(1) \text{ for some } 1 - PS \Lambda \text{ in } t \}$ is isomorphic to $\Gamma(T) = \{\Lambda : \lambda \mid 1 - PS \text{ in } T\}$ via $\Lambda \to \lambda$; then it is isomorphic to \mathbb{Z}^d , $d = \dim t$. Moreover, $\gamma(t)$ is a lattice in t and then identifying $\gamma(b)$ with $\{\varphi_{\lambda} : \lambda \in \gamma(b)\}$, $\gamma(b)$ meets every open cone in E. (See [Ch], 9-06). As usual, rk denotes the rank. Lemma 6: $$codim \Re = 1/2 (dim \mathfrak{p} + rk \mathfrak{g} + rk \mathfrak{f})$$ **Proof:** Let \mathbf{t}_{g} be a θ -stable Cartan subalgebra of \mathfrak{g} such that $\mathbf{t} = \mathbf{t}_{g} \cap \mathfrak{f}$ is a Cartan subalgebra of \mathfrak{f} . As above, $\mathbf{t} = \mathbf{b} \oplus \mathbf{\delta}$, with \mathbf{b} a C. s. of $\mathfrak{f}' = [\mathfrak{f}, \mathfrak{f}]$. Put $\phi = \phi$ $(\mathfrak{g}, \mathfrak{t}_{g})$. i) Let first L = K acting on $V = \mathbf{f}$ by Ad. Let Λ be a 1 - PS in T. If λ is regular (i.e., φ_{λ} lies in the interior of some Weyl chamber) then $Z_{\Lambda} = \mathbf{f}_{+}$ for the ordering defined by φ_{λ} . If not, an easy argument shows that $Z_{\Lambda} \subseteq \mathfrak{f}_{+}$ for some \mathfrak{f}_{+} . Now the Chevalley Restriction Theorem guarantees that $\dim (\mathfrak{f}/K) = \mathrm{rk} \mathfrak{f}$. For λ regular $\mathfrak{p}_{\Lambda} = \mathfrak{f}_{+} \oplus \mathfrak{t}$, $\mathfrak{u}_{\Lambda} = \mathfrak{f}_{-}$. Then from [1] and [2]: $$\operatorname{rk} f \geq \operatorname{codim} \mathfrak{R}(f, K) \geq \dim f - \dim f_{+} - \dim f_{-} = \operatorname{rk} f.$$ All of this is well known; the profit for us is that $e_{\Lambda} = 0$; so there exists $Z \in \mathfrak{f}_+$ such that dim $(T_z(U_{\Lambda} Z) + \mathfrak{f}_+)/\mathfrak{f}_+ = \dim \mathfrak{f}_-$. ii) Let now $(V, L) = (\mathfrak{g}, K)$ and let F be the \mathbb{R} -span of ϕ . If $\mathrm{rk} \ \mathfrak{g} = \mathrm{rk} \ \mathfrak{f}$, then $\mathfrak{t}_{\mathfrak{g}} = \mathfrak{t}$ it is clear that there are $1 - \mathrm{PS}$ in T, regular in both \mathfrak{t} and $\mathfrak{t}_{\mathfrak{g}}$. We claim that the preceding is true even if $\mathrm{rk} \ \mathfrak{g}$. For $\mu \in \mathfrak{t}^*$, put $\alpha_{\mu} \in \mathfrak{t}_{\mathfrak{g}}^*$ as follows: μ in \mathfrak{t} , 0 in $\mathfrak{t}_{\mathfrak{g}} \cap \mathfrak{p}$. θ induces $\phi \to \phi$, $\alpha \to \alpha\theta$ and hence $F \to F$, called also θ . Clearly $\{x \in F: \theta x = x\} = \{x \in F: x = \alpha_{\mu} \text{ for } \mu = x_{|\mathfrak{t}}\}.$ Next for $\alpha \in \phi$, put $\beta = \alpha_{|t}$. If $\alpha = \alpha\theta$, $\alpha = \alpha_{\beta}$ and $\mathfrak{g}_{\alpha} = \mathfrak{g}_{\beta}$. If not, put $\mathfrak{s}_{\alpha} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{\alpha\theta} = \mathfrak{g}_{\beta}$; it is θ -stable and $\alpha_{\beta} = 1/2(\alpha + \alpha\theta)$. Under the above map, $\phi(\mathfrak{f}, \mathfrak{t})$ is contained in F, hence E. We identify E with its image. Now $\{x \in F: \theta x = x\}^{\perp} = \{x \in F: \theta x = -x\} = \{x \in F: x_{|t} = 0\} \supseteq \langle \{1/2(\alpha - \alpha \theta): \alpha \in \phi\} \rangle$. As the Killing form on F is non degenerate, $E = \{x \in F: \theta x = x\}$, $E \oplus E^{\perp} = F$ and the restriction of the Killing form on F to E is still non degenerate. We must prove that the Zariski open cone in E, $E \cap \{H \in F: H \text{ is regular}\}$ is non empty. If not, putting $P_{\alpha} = \{H \in F: (\alpha, H) = 0\}, \ \alpha \in \phi$, we have $E \subseteq \bigcup_{\alpha} P_{\alpha}$ and by irreducibility, $E \subseteq P_{\alpha}$ for some α . Now $\alpha = \alpha_1 + \alpha_2$, $\alpha_1 \in E$, $\alpha_2 \in E^{\perp}$. Thus $(\alpha_1, E) = 0$, hence $\alpha_1 = 0$ and $\alpha \in E^{\perp}$. That is, $\alpha_{|t} = 0$, $\alpha\theta = -\alpha$. Pick $X \in \mathfrak{s}_{\alpha} \cap \mathfrak{f}$; $X = X_+ = X_-$ with $X_+ \subset \mathfrak{g}_{\alpha}$, $X_- \in \mathfrak{g}_{-\alpha}$. $\forall H \in \mathfrak{t}[H, X] = [H, X_+] + [H, X_-] = 0$; then $\mathfrak{s}_{\alpha} \cap \mathfrak{f} \subseteq \mathfrak{s}_{\alpha} \cap \mathfrak{t} \subseteq \mathfrak{s}_{\alpha} \cap \mathfrak{t}_{\mathfrak{g}} = 0 : \mathfrak{s}_{\alpha} \subseteq \mathfrak{p}$. Then $\forall y \in \mathfrak{t}_{\mathfrak{g}} \cap \mathfrak{p}$, $[y, \mathfrak{s}_{\alpha}] \subseteq [\mathfrak{p}, \mathfrak{p}] \cap \mathfrak{s}_{\alpha} \subseteq \mathfrak{f} \cap \mathfrak{p} = 0$. Then $\alpha_2 = 0$, a contradiction. iii) From the preceeding and as in i), it can be shown that \mathbf{R} is the union of the various K. Z_{Λ} with φ_{λ} in the open cone $\{X \in E: X \text{ is regular in both } \mathbf{t} \text{ and } \mathbf{t_g}\}$. Clearly, $\phi \cup 0 \longrightarrow \Pi(\mathbf{g}, \mathbf{t})$, $\alpha \longrightarrow \alpha_{|\mathbf{t}|}$ is surjective. Thus $Z_{\Lambda} = \bigoplus_{\beta:\beta(\lambda)>0} \mathbf{g}_{\beta} = \mathbf{g}_{+}$ for the order defined by λ . Even more, $Z_{\Lambda} \supseteq \bigoplus_{\beta:\beta(\lambda)>0} \mathbf{f}_{\beta} = \mathbf{f}_{+}$, $\mathbf{p}_{\Lambda} = \mathbf{f}_{+} \oplus \mathbf{t}$ and $\mathbf{u}_{\Lambda} = \mathbf{f}_{-}$. Pick $Z \in \mathfrak{f}_+$ such that dim $(T_Z(U_\Lambda Z) + \mathfrak{f}_+)/\mathfrak{f}_+ = \dim \mathfrak{f}_-$; then dim $(T_Z(U_\Lambda Z) + \mathfrak{g}_+)/\mathfrak{g}_+ = \dim \mathfrak{f}_-$; so $e_\lambda = 0$ and codim $\mathfrak{R} = \dim \mathfrak{g} - \dim \mathfrak{g}_+ - \dim \mathfrak{f}_- = 1/2$ (dim $\mathfrak{p} + \operatorname{rk} \mathfrak{g} + \operatorname{rk} \mathfrak{f}$). **Lemma 7** ([Sch 3], p. 129): (V, L) is cofree \Leftrightarrow (V, L) is coregular and codim $\Re(V/L) = \dim V/L$. **Proposition B:** (g, K) satisfies criteria $B \Leftrightarrow g_R = so(n, 1)$ or su(n, 1). **Proposition C:** (g, K) is cofree $\Leftrightarrow g_R = so(n, 1)$ or su(n, 1). **Proofs:** If (V, L) is visible, $\Re(V, L)$ is the closure of an orbit and then it codim $\Re=\dim(\mathfrak{g}/K)$ holds iff $\mathfrak{g}_{\mathbb{R}}=\mathfrak{so}(n,1)$ or $\mathfrak{su}(n,1)$. In view of Lemma 7 and Proposition D, this implies Proposition C. Also, we have \Longrightarrow in Proposition B. But cofreeness implies flatness and then all the fibres have the same dimension. Remark: The cofreeness in case so (n, 1) is also proved in [Sch 2]. **Proposition A:** (g, K) is never visible. **Proof:** If (V, L) is visible, $\Re(V, L)$ is the closure of an orbit and then it follows easily that codim $\Re=\dim(V/L)$. (See [K], Lemma 3.5). Furthermore, for L linear reductive (V/L) visible implies that the multiplicity of any non-zero weight is at most 1. ([K], 3.4). These two facts show the non-visibility of (g, K) in most the cases, in view of Lemma 6 and the following well known fact: If $rk \, g > rk \, f$, then there is some $\alpha \in \Pi_f \, (g)$ with multiplicity greather than one. (In the notation of Lemma 6, we must pick $\alpha \in \phi \, (g, t_g)$ such that $\alpha_{|t_n|} \, p \neq 0$). There are two remaining cases: $\mathbf{g}_{\mathbf{R}} = \mathbf{su}(\mathbf{n}, 1)$: Here $\mathbf{g} = \mathbf{sl}(\mathbf{n}+1, \mathbb{C})$, $\mathbf{f} = \{\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \alpha \end{pmatrix} \in \mathbf{g}$: $A \in \mathbf{gl}(\mathbf{n}, \mathbb{C})\}$ and hence we may assume that $K = \{\begin{pmatrix} \mathbf{X} & \mathbf{O} \\ \mathbf{O} & \mathbf{X} \end{pmatrix} \in SL(\mathbf{n}+1, \mathbb{C}): X \in GL(\mathbf{n}, \mathbb{C})\}$. Choosing as usual $\mathbf{b} = \{\sum_{i=1}^{n+1} H_i e_{i,i}: \sum_{i=1}^{n} H_i = \mathbf{0}\}$ as Cartan subalgebra of both \mathbf{g} and \mathbf{f} , it is well known that $\phi(\mathbf{g}, \mathbf{b}) = \{\alpha_{i,j}: \alpha_{i,j}(H) = H_i - H_j \text{ if } H = \sum_{i=1}^{n} H_i e_{i,i}, i \neq j\}$. Take $\phi_+ = \{\alpha_{i,j}: (i < j \text{ and } j \leq n \text{ or } i < n) \text{ or } (i = n+1, j = n)\}$. It corresponds to the 1-PS Λ given by $\Lambda(z)$ = the diagonal $(z, z^2, \mathbf{z}^3, ..., z^{n+1}, z^n)$. Thus, $\mathbf{g}_+ \subseteq \mathbf{N}$. Put for $c \in \mathbb{C}$: $y_c = \begin{pmatrix} \mathbf{T} & \mathbf{u} \\ \mathbf{v} & \mathbf{o} \end{pmatrix}$ where $T = \sum_i e_{i,i+1}, u = e_{n-1}$ and $v = c e_n$. We claim that: $y_c \in Ky_d \implies c = d$. Let $\binom{X \text{ o}}{\text{o} \text{ x}} \in K$ such that $\binom{X \text{ o}}{\text{o} \text{ x}} y_c = y_d$. Then XT = TX, $Xe_{n-1} = xe_{n-1}$, $cxe_n = de_n X$. Now it is easy to show that $X = xI_{n+1} + be_{1,n+1}$ and thus c = d. $\mathfrak{g}_{\mathbb{R}} = \mathfrak{so}(2n, 1)$: Here $\mathfrak{g} = \mathfrak{so}(2n+1, \mathbb{C})$; we will follow the notation of [Hu], \mathfrak{p} . 3. Then $\mathfrak{f} = \{x \in \mathfrak{g}: b_1 = b_2 = 0\}$, $\mathfrak{p} = \{x \in \mathfrak{g}: m = n = p = 0\}$ and we assume that $K = \{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in SL(2n+1, \mathbb{C}): {}^{t}XsX = s\}$ Choosing $b = \{ H \in \mathfrak{g} : H \text{ is diagonal } \}$ as Cartan subalgebra of both \mathfrak{g} and \mathfrak{f} , it is known that there is some ordering for which $\mathfrak{g}_+ = \{ x \in \mathfrak{g} : b_1 = 0, p = 0 \text{ and } m \text{ is upper triangular } \} \subseteq \mathfrak{R}$. Put for $c \in \mathbb{C}$: $y_c = (b_2 = e_n, m = T \text{ as above, } n = c (e_{n-1,n} - e_{n,n-1}))$. Then it is not so difficult to prove that $y_c = y_d$ iff $y_c \in Ky_d$. ## 5. SOME REMARKS ON THE UNSTABLE CONE As a corollary of the proof of Lemma 6, we can state: $\Re(g, K)$ is the union of the various $K.g_+$. Furthermore, codim $(\Re(g, K)) = codim\ K.g_+$ for every such g_+ . This suggests us that the irreducible components of \Re are those $K.g_+$. Actually, this follows from a general fact (as in [G], Corollary 2, p. 142). Let (V, L) be as above, P a parabolic subgroup of L, W a linear subspace of V such that $P.W \subseteq W$. Then L.W is closed (because of the completeness of L/P). The following step is to compute $c_{\mathfrak{N}}$, the number of irreducible components of \mathfrak{N} . Assume first that rank $\mathfrak{f} = \operatorname{rank} \mathfrak{g}$; then $\mathfrak{N}(\mathfrak{g}, K) = U_{\operatorname{every}\mathfrak{g}_+} K.\mathfrak{g}_+$. From ([G], Corollary 2) we also know that $K.\mathfrak{g}_+ = K.\mathfrak{g}_+$ if and only if there is some $\sigma \in W(\mathfrak{f}, \mathfrak{t})$ such that $\sigma(\mathfrak{g}_+) = \mathfrak{g}_+$. (Use Bruhat decomposition). Thus. $$c_{\mathbb{R}} = |W(\mathfrak{g}, \mathfrak{t}_{\mathfrak{q}})| / |W(\mathfrak{f}, \mathfrak{t})|$$ Assume now rank f < rank g. We prove now some easy facts in order to compute $c_{\mathfrak{N}}$. As usual $N_L(S)$ (resp. $C_L(S)$) is the normalizer (resp., the centralizer) of S in L. $$i)$$ $N_G(\mathbf{t}) \subseteq N_G(\mathbf{t}_g)$ **Proof:** Let $Z \in N_G(\mathfrak{t})$, $\beta \in \Pi(\mathfrak{g}, \mathfrak{t})$. Then $Z.\mathfrak{g}_{\beta} \subseteq \mathfrak{g}_{\beta Z^{-1}}$. In particular, $Z.\mathfrak{g}_{\mathfrak{o}} = Z.\mathfrak{t}_{\mathfrak{g}} \subseteq \mathfrak{t}_{\mathfrak{g}}$. ii) $$C_K(\mathbf{t}) = N_K(\mathbf{t}) \cap C_G(\mathbf{t_g})$$ **Proof:** We only need to show $C_K(\mathfrak{t}) \subseteq C_G(\mathfrak{t}_{\mathfrak{g}})$. By i, $C_K(\mathfrak{t}) \subseteq N_G(\mathfrak{t}_{\mathfrak{g}})$. Let $Z \in C_K(\mathfrak{t})$ and call ζ its class in $N_G(\mathfrak{t}_{\mathfrak{g}})/C_G(\mathfrak{t}_{\mathfrak{g}}) = W(\mathfrak{g},\mathfrak{t}_{\mathfrak{g}})$. As ζ fixes every λ in E, regular in \mathfrak{g} , then $\zeta = \mathrm{id}$; i.e. $Z \in C_G(\mathfrak{t}_{\mathfrak{g}})$. From the preceding, we get the following injections of finite groups: $$W(\mathfrak{f},\mathfrak{t}) = N_K(\mathfrak{t})/C_K(\mathfrak{t}) \longrightarrow N_G(\mathfrak{t})/(N_G(\mathfrak{t}) \cap C_G(\mathfrak{t}_{\mathfrak{q}})) \longrightarrow N_G(\mathfrak{t}_{\mathfrak{q}})/C_G(\mathfrak{t}_{\mathfrak{q}}) = W(\mathfrak{g},\mathfrak{t}_{\mathfrak{q}})$$ Call W_1 the group in the middle. (Note that all of this can be done if rank \mathfrak{g} ; then $W_1 = W(\mathfrak{g}, \mathfrak{t}_{\mathfrak{q}})$). Pick λ , μ in the open cone of regular elements both in \mathfrak{g} and in \mathfrak{f} , included in E; call $\mathfrak{g}_{+}^{\lambda}$, \mathfrak{g}_{+}^{μ} the respective maximal nilpotent subalgebras of \mathfrak{g} . If $\sigma \in W_1$, $\sigma \mathfrak{g}_{+}^{\lambda} = \mathfrak{g}_{+}^{\sigma \lambda}$. iii) If $\sigma \in W(\mathfrak{g}, \mathfrak{t}_{\mathfrak{q}})$ sends $\mathfrak{g}_{+}^{\lambda}$ to \mathfrak{g}_{+}^{μ} then $\sigma \in W_{1}$. **Proof:** Pick $w \in W(\mathfrak{f}, \mathfrak{t})$ such that $w(\mathfrak{f}_{+}^{\lambda}) = \mathfrak{f}_{+}^{\mu}$; then σw^{-1} sends $\mathfrak{g}_{+}^{w\lambda}$ to \mathfrak{g}_{+}^{μ} so we can replace λ by $w\lambda$ and assume that $\mathfrak{f}_{+}^{\lambda} = \mathfrak{f}_{+}^{\mu}$ I.e., $\sigma(\Phi_{+}^{\lambda}(\mathfrak{f}, \mathfrak{t})) = \Phi_{+}^{\mu}(\mathfrak{f}, \mathfrak{t})$. But then $\sigma(\Phi^{\lambda}(\mathfrak{f}, \mathfrak{t})) = \Phi^{\mu}(\mathfrak{f}, \mathfrak{t})$ and σ normalizes $\mathfrak{t} = \sum_{\alpha \in \Phi^{\lambda}} [\mathfrak{f}_{\alpha}, \mathfrak{f}_{-\alpha}]$; i.e. $\sigma \in W_{1}$. We summarize the preceding in: **Lemma 8:** The irreducible components of $\mathfrak{R}(\mathfrak{g}, K)$ are the $K.\mathfrak{g}_+$ where \mathfrak{g}_+ corresponds to some $\lambda \in E$ regular both in \mathfrak{g} and in \mathfrak{f} . The number of components is $c_{\mathfrak{R}} = |W_1|/|W(\mathfrak{f},\mathfrak{t})|.\blacksquare$ Finally, we list some information about W_1 and c_n for those (g, K) satisfying rank f < rank g. We left to the reader the task to verify it. | Type | 9 | f | W_1 | $c_{\mathfrak{R}}$ | |---------|----------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------| | AI, | $\mathfrak{sl}(n+1, \mathbb{C})$ | so $(n+1, \mathbb{C})$ | $\mathbf{Z}_2^k imes_{sd} \mathbf{S}_k$ | 1 | | n=2k | | | 1 | | | AI, | $\mathfrak{sl}(n+1,\mathbb{C})$ | so $(n+1, \mathbb{C})$ | $\mathbf{Z}_2^k imes_{sd} \mathbf{S}_k$ | 2 | | n=2k+1 | | | | | | AII | $\mathfrak{sl}(2n, \mathbb{C})$ | $\mathfrak{sp}\left(2n,\mathbb{C}\right)$ | $\mathbb{Z}_2^n \times_{sd} \mathfrak{S}_n$ | 1 | | BDI, | so $(p+q, \mathbb{C})$ | so $(p, \mathbb{C}) X$ | $\mathbf{Z}_{2}^{r+s} imes_{sd} \mathbf{S}_{r+s}$ | $\binom{r+s}{s}$ | | p=2r+1, | | so (q,\mathbb{C}) | | , , , | | q=2s+1 | | | | • | | EI | e_6 | $\mathfrak{sp}\left(8,\widetilde{\mathbb{C}} ight)$ | | 3 | | EIV | e_6 | f_4 | | 1 | | II | 1×1 , 1 simple | diag (l) | $W(\mathfrak{l})$ | 1 | #### References - [B] BENABDALLAH, A. I.: Generateurs de l'algebre $\mathfrak{U}(G)^k$ avec G = SO(m) ou $SO_0(1, m-1)$ et K = SO(m-1). Bull. Soc. Math. France, 111, 1983, p. 303-326. - [C] COOPER, A.: The classifying ring of groups whose classifying ring is commutative. Doctoral Thesis, MIT. (Unpublished). - [Ch] CHEVALLEY, C.: Seminaire 1. Paris 1956/1958. - [F de V] FREUDHENTAL, H. and de VRIES, H.: Linear Lie Groups. Academic Press, 1969. - [G] GROSSHANS, F. D.: The variety of points which are not semi-stable. Illinois J. of Math. 26 (1982), p. 138-148. - [He] HELGASON, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, 1978. - [Hu] HUMPHREYS, J.: Introduction to Lie algebras and Representation Theory. Springer-Verlag, 1980. - [K] KAC, V. G.: Some Remarks on Nilpotent Orbits. Journal of Algebra, 64 (1980), p. 190-213. - [KPV] KAC, V. G., POPOV, V. L., VINBERG, E. B.: Sur les groupes lineaires algebraiques dont l'algebre des invariantes est libre. C. R. Acad. Sci. Paris 283 (1976), p. 875-878. - [K R] KOSTANT, B. and RALLIS, S.: Orbits and representations associated with symmetric spaces. Amer. J. of Math. 93 (1971), p. 753-809. - [L] LUNA, D.: Sur les orbites fermees des groupes algebriques reductifs. Inventiones Math. 16 (1972), p. 1-5. - [M 1] MUMFORD, D.: Geometric Invariant Theory. Springer-Verlag, 1980. 2nd. edition. - [M 2] MUMFORD, D.: Stability of projective varieties. L'Ens. Math. XXIII (1977), p. 39-110. - [R] RICHARDSON, R. W.: Principal Orbit Types for algebraic transformation groups in characteristic zero. Inventiones Math. 16 (1972), p. 6-14. - [Sch 1] Schwarz, G. W.: Representations of Simple Lie Groups with Regular Rings of Invariants. Inventiones Math. 49 (1978), p. 167-191. - [Sch 2] Schwarz, G. W.: Representations of Simple Lie Groups with a free Module of Covariants. Inventiones Math. 50 (1978), p. 1-12. - [Sch 3] Schwarz, G. W.: Lifting smooth homotopies of orbit spaces. Publ. Math. IHES 51 (1980), p. 37-136. Recibido: 12 de julio de 1988 Facultad de Matemática, Astronomía y Física — IMAF. Valparaiso y R. Martínez Ciudad Universitaria — 5000 Córdoba República Argentina