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of the pair (g, K)
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In memoriam Atilio Bauchiero

ABSTRACT. Let g=f@ p be the complexification of a Cartan decomposition of a
real semisimple Lie algebra g, and let K be the analytic subgroup of the adjoint group
of g with Lie algebra ad (). Let L be an algebraic connected linear reductive complex
group acting on a finite dimensional vector space V. In the study of the orbits of this
sort of actions, there are some criteria of «non complicatedness»: e.g., «cofreeness»
(the ring of all polynomial functions on V is a free module over the ring of all L-
invariants), etc. From this viewpoint, we show that the pair (g, K) is complicated, at
least when g, is not a product of copies of so(n, 1) or su(n, 1).

1. INTRODUCTION

Let g, =f, ®p, be a Cartan decomposition of a real semisimple Lie
algebra g and let g=f@p be the corresponding complexification. Let 6 be
the associated Cartan involution. Also let az be a maximal abelian subspace
of p and let a be its complexification. Now let G be the adjoint group of g
and let K be analytic subgroup of G with Lie algebra ad, (f). Also let M be
the centralizer of a in K. This paper is concerned with the action of KX in ¢
given by the restriction of the Adjoint representation. If " (g) denotes the
ring of all polynomial functions on g then clearly S’ (g) is a G-module and a
fortiori a K-module.

If L is a reductive complex linear algebraic group, V is a finite
dimensional complex vector space and a:L— GL(V) is a representation
then, concerning the classification of the L-orbits in V, there are some criteria
of «non-complicatedness». (See [K] or [M 1], p. 160). To state them, let us
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recall that 7/ L is the notation for the affine variety associated to §’ (V) and
V& V/L is the projection corresponding to the inclusion of rings. Let
N=N(V, L) be the fiber 7! (7 (0)). The criteria are:

A. M is a finite union of orbits. Currently (¥, L) is visible.

B. All the fibres of 7 are of the same dimension.

C. S'(V)is a S (V)L -free module. Currently (V, L) is cofree.
D. §’(V)Lis a polynomial ring. Currently (¥, L) is coregular.
E. The isotropy subgroup L* is non trivial for every xeV.

In this paper we work out the classification of the pairs (g, K) as above for
which each criteria is satisfied; see propositions A, B, C, D, E below.

If L, and L, are groups acting on finite dimensional vector spaces V; and
V, respectively, and if we look L;x L, acting on V;x ¥, in the obvious way
then it is trivial that

S’ (Vix Vy)lxl=8§" (V) )lh @ §' (V)"
so (VxV,, Ly xL,) is coregular (resp., cofree) iff (V;, L,) and (V,, L,) are.

Furthermore, the isotropy subgroup (L;xL,)*»=L;*xLy, the orbit
(LixLy) (x, y)= Lixx Lyy (Vix V) [(LixLy)= V)| Lix V5| L, and if € Vi/ L,
then 71 (&, &)= m-1(&) x m=1(&). So (VxV,, Ly x L,) satisfies A (resp., B,
E) iff (V,,L,) and (V,, L;) do. Thus we can restrict our attention to the
irreducible pairs (g, K). As a synthesis, we get for irreducible g, :

Theorem: (3, K) never satisfies criteria B nor E; it satisfies criteria A, C, D
if and only if g, =s0 (p, 1) or su (p, 1).

We will use the application of the Luna’s Slice Etale Theorem to the
Invariant theory developped in [KPV] and also used in [Sch 1] to classify all
the (V, L) coregular with L simple. Note that we can replace K by any
connected algebraic group K’ with Lie algebra f acting on g with the same
infinitesimal action as K. Being a case by case analysis, we will follow E.
Cartan’s list as it appears in [He], chapter IX. Furthermore, it is clear that it
suffices to look at the types I and II, see [He] p. 327.

We want to express our thanks to Jorge Vargas, Alejandro Tiraboschi,
Oscar Brega and, specially, to Juan Tirao for helpful conversations.

2. PRELIMINARIES

Let ¥, L be as in the introduction, meaning of course by a representation
a morphism of algebraic groups. ForxeV, the conjugacy class of the
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isotropy subgroup L* is called an isotropy class. If the orbit Lx is closed, L~
is reductive and the representation of L* in T, (V)/ T, (Lx) is called the slice
representation at x, where T, notes the tangent space at x. We say that (L*)
is a closed isotropy class.

Lemma 1 ([KPV], [Sch 1]): Ler V=V @V, be a direct sum of finite
dimensional L-modules. Then:

i) If (V, L) is coregulat then (V,L) and (V,, L) are.

ii) If (V, L) is coregular then every its slice representation is.

iii) If (H) is a closed isotropy class of V| then (V, L) coregular implies
(Vo, H) is. '

iv) Inparticular, if the image of H in GL (V,) is a non-trivial finite subgroup
of SL(V,) then (V, L) is not coregular.

Proof: i) is easy and ii) follows from Luna’s Theorem (see [KPV]). iii) is
an application of i) and ii); iv) is a consequence of the well known Chevalley-
Sheppard-Todd Theorem, as it was pointed out in [Sch 1].m

The unique minimal closed isotropy class is called the principal isotropy
class. For the Adjoint representation, it is a maximal torus. If ¥ has a
L-invariant non-degenerate bilinear symmetric form (¥ is L-orthogonaliza-
ble, for short) then the set of those x <V such that (L*) is principal contains
an open dense subset of V (see [L] and [R]). The hypothesis is certainly
fulfilled for the pairs (g, K), (p, K), (g, G) taking the Killing form. It is obvious
that g=f@p is a K-module decomposition.

Lemma 2: The principal isotropy class of (p, K) is (M).

Proof: By Lemma 20, in p. 803, of [K R] and in the notation therein,
My=(Kp)* for all x «regular» in a. But M= M,;N K, and K*=(Ky)NK, Vx
in the open dense subset of «regular» elements in a.m

We denote by II(V) or II;(V,b) the set of weights associated to the
representation of L in ¥ and a fixed Cartan subalgebra b of 1, the Lie algebra
of L.

The following result is a well-known consequence of the graded version
of the Nakayama Lemma and in the present form is useful to establish that
some graded ring is not regular.

Lemma 3: Let A=Ay@ A\ @ ... be a graded ring with Ay=F a field;
A=A, @ ... is the maximal homogeneous ideal.
i) A isregular iff dim Krull A=dimg A+| A2 In such case, if 1y, ..., 1, are
homogeneous elements of A such that their images in Ay| A2 form an
F-basis, then they are algebraically independent over F.
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ii) If A;=0and t,,...,t; are F-linearly independent in A,, then A regular
implies t,, ..., t; are F-a.i.

iii) If Ay=A3=0, t,,...t; is an F-basis of A; and t;y,,...,t, are F-1.i. in A4
such that A2N<tyy,....t1,>=0 then A regular implies t,,...,1,
Lot 1s..05 L, Are F-aim

The non-coregularity of (g, K) will follow in some cases from the following
fact:

Lemma 4: Assume that rank ¢ = rank f; that f=Ff,®f, is a direct sum of
Lie algebras where f,=51(2, C); and that as f-module, p is p, ® p, where p, is
the natural representation of f, in €2 and dim p,=4. Then (g, K) is not
coregular.

Proof: It is clear from Lemma 1 that it suffices to show that (p, H) is not
coregular, where H is a maximal torus of K, whose Lie algebra is isomorphic
to b=b, @ b,, a Cartan subalgebra of f, b; a Cartan subalgebra of ;. Our first
task is to descript II(p, b). If o is the weight of f, such that p,= ¥V (¢), then
O(p))={*0o} Then II(p,b)={ato:acIl(p,) } by abuse of notation. But b
is also a Cartan subalgebra of g and then if AeII(p,b), A is a non-compact
root in ®(g,b); so —A € (p,b). Thus if aell(p;), —a too.

Next, let {#, 6, ta,—o: ®EI1(p;) } be a basis of p such that ¢, 4, is a vector
of weight a+ o and let {T, ,, T, _,} be the corresponding dual basis. Thus:

S’ (PY=@ §(p) =@ <monomials in T, +, of weight 0>=@ 4;
Jj=o j=o j=o
Clearly, if j is odd then 4,=0. Also if Uy,=T,, ;. T_ _,, then {U,: 2 €1l(p)) }
is a basis of A4,. As dim p; =4, there exist a, B€II(p;) such that a7+ 8. Put
Sap=Too T-oyo Tp,—o T_p,—o- Obviously, A?N<S, g, Spo>=0. But U,,
S, 8> Sp,a aT€ NOL a.l. because S, g Sp o= U, U_, Ug U_gand Lemma 3 applies.n

3. THE CASE BY CASE ANALYSIS OF COREGULARITY

Types II, IV: Here 1 is a simple Lie algebra over €, g=1x1 and
0 (x, y)=(, x). Then it is easy to see that f=1and as f-module, g is Ad @ Ad.
Looking at Schwarz tables in [Sch 1], we see that (g, K) is coregular iff
1=5i(2, C) (table 1.a.18).

Types I, III: The Classical Structures

Type Al: Here g=51(n, €), f=s0(n, C) with n=3. (For n=2, it is iso-
moprhic to BDI, p=2, g=1). If (g, K) were coregular, then by [Sch 1], table
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3a, p must be ¢, the natural action in C". We get a contradiction computing
dim p=(n?+n)/2—1.

Type AIl: Here g=s51(2n, C), f=sp(n, €) withn=3. (Forn=2, it is
isomorphic to BDI, p=6, g=1). The Schwarz notation for Ad is ¢;? so that
if (g, K) were coregular, by Table 4a, p must be ¢;, the natural action on C?".
As dim p=2n2—n—1, we get a contradiction.

Type AIIlL: Here g=5l(p+q, C), f={(g g) €g:AeCP?}, pz{(g S) egt
When g =1, corregularity of (g, K) was proved by Cooper in [C]. So, let g=2.
We can choose a as in [He], p. 368. As it was pointed out in the Introduction,
we may assume that K={ 8 g) €SL(p+q, €), Ac C”*! } and then it is easy to
see that M = { (8 ‘;) € K : Bis diagonal, 4 ={ ( ) }. If we can show that (f, M)
is non-coregular, we are done.

B O
o C

Now, f=f@f@®f;, where fl:{(g 8) eg}=sl(p, €), f,=s5l(q, C), and
fy== € is the center of f. As M-module, f; admits a submodule isomorphic to
fzz{(g 8) eg:A:(g 8), with cesl(g, €)} and the action of M in f, is given
by B.(a;)=(b;b'ay) if B is the diagonal (by,...,b,). Let V be the
M-submodule of sl(q, C), V={(a;): a;=0V i}. Clearly, it suffices to show
that (V@ V, M) is not coregular. Note that g#1 implies V#0. Putting
S(VM=A,® A\ D..., a;, b;; the canonical coordinates of the first and the
second copy of V, respectively, then A;=0 and 4,=<a;;a;;, b;;b;;, a;;b;;>.
Thus Lemma 3 applies.

Type BDI: Here g=so(p+q, C), f=s0(p,C)Pso(q C)=f,@df, and
p={(2 g): BeCP*, B+'C=0}. We can choose a _—_{( ): Bis «diagonaly, i.e.

O B
C O

We may assume that K= SO (p, €)X SO(q, C) and then it is easy to see
that M={(A,B)e K: B is the diagonal (e, ...,¢,) with =1, Il¢=1, and
A:(g %) with Ce SO (p—q, €)}. g¢=1: Then (g, K) is coregular by Cooper
[C], Benabdallah [B], or [Sch 1], Table 3 a.2.

g=3: It follows from Lemmas 1 and 2 that (g, K) coregular implies (f,, M)
coregular. Note that the morphism M — GL(f,), say p, depends clearly only
on B= (61, veey eq) and P (B) (Xl_]): (éi Einj). Then det P (B): Hi<jéi €j=
=(I,¢)'=1. For B=(1,—1,—1,1,...,1), p(B)#1d; therefore p(M) is a
finite, non trivial subgroup of SL(f,) and Lemma 1 applies.

qg=2: Here M= S0 (p—2, C) x{x L}, where I, is the identity of GL(2, ©.
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Now, as M-module, f;=s0(p—2,C)@s0(2, C)apC’2gpC 2% where
50 (p—2, a:)s{(g g) €fi: Aeso(p—2,€)}, s0(2,C) similarly €7 2g
03"‘2%{(2 é)e fi: Ye@P=22 x=—1Y} = V. If xes0(p—2,C) is semisimple
regular, then M*= T'x{* I,} where T is a maximal torus of so (p—2, C). Thus
it suffices to show that (¥, Tx{£h}) is not coregular. If (4, el) € M* and
(Y1, 7)€V, the action is given by (eAY,,eAY,). Then

S V)TXEL= @ pyen S' (V)] = @ cven S’ (V)]

where using an appropiate chafacterization of so(p—2,C), the Cartan
subalgebra t can be chosen {(g _‘;) : D is a diagonal (d,, ...,dy) }, if p—2=k is
even. (The argument when p is odd is similar).

If vy, ..., vk, Wy, ..., Wy is the dual basis associated with {(e;, 0), (0, e)) } then
S (VI =<V, Viss WiWiii ViWgts Visiw;> and Lemma 3 applies.

Note that £k must be=1, i.e. p=4. The remaining cases are (3,2) and (2,2);
respectively, sp (2, R) (type CI) and 51(2, R) xs1(2, R) (type Al xtype Al).

Type DIII: Here g=s0(2n, C), f=gl(n, R) and as f-module, p=p,®p,
where p;=~so(n, €) with actions o,(Z)(U)=ZU+U'Z, o,(Z) (U)=
= —ZU-UZ.

We can choose a={(V, V): V=73 \;(e;_12—€2j_1), \;€C}. We can
assume that K= GL (n, C) and then it easy to show that M=SL(2,C) x ... x
SL(2,C), h times, if n=2h1is even and M= SL(2, C)"x C* if n=2h+1 is odd.
The isomorphism is realized by «blocks in the diagonal». By Lemmas 1 and
2 it suffices to study the pair (f, M).

Consider the M-submodule of f
V={Z€f: Z;=0if i=4 or j=4}

Obviously (V, M)=(Ad® V& V>, s1(2,C) xsl(2, €)). Thus we look at
(Vi@ V,, T), where T'is a maximal torus of s1(2, C) xsl(2, C) and the action
is given by (2, ) (A, B)= (tAr~!, rBt~"). Let a;, b, be the canonical basis of ¥,
j=1,2.

If S’(Vl [$5) Vz)T:Ao@Al &P..., then A] :0, A2=<a1 a,, A as, b] b4, b2 b3,
a1 by, ayb;, a3 by, a;by>. Thus Lemma 3 applies.

This method works for n=4. But for n=2, 3 g, is isomorphic to AIII and
Al xAI, respectively.
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Type CI: Here g=sp (n, C), f=gl(n, C) and as f-module, p~=p, ® p, where
pi={Aegl(n C): A="'A}with actions 0,(Z)(A)=ZA+A'Z, o, the dual of
o,. We can choose a={(D, D): D is diagonal} and if we assume that
K= GL(n, C), it is easy to see that M ={X € K: X is a diagonal (¢, ..., €,) with
==+1}. Looking at the pair (f,M) it is immediately that
det Ad m=1IL(e;¢;)=1,if m=(ey,...,e,) e M. Butm=(—1,1,..., 1) acts non
trivially so that Lemma 1 iv) applies.

This method works for n>1. For n=1,sp(1, €)=sl(2, C), trivially
coregular.

Type CII: Here g=sp (p+q, C); f=5p (p, C) @ sp (9, C) and p == C2*24 with
the action (Z, Z,) X=272, X—XZ,.

We can choose a:{(g 2) :AeCP9, A=Y \e;}. We can assume that
K=SP (g, C)xSP(q, C) and then it is easy to see that M={(X;, X))eK:
X,=(% ) with 4/ diagonal in GL(g, C), AjAf—AjAG=1and X, =(5 F)

A3 Al ; B B¢
with B'=(* 9),(C ©)eSP(p—q, ©)}.
That is, M= SL(2, C)? x SP (p—q, C). Now we can assume g> 1 because
for g=1, p=2 we are in the situation of Lemma 4 and g, =sp (1,1)=50(4,1),
implies (g, K) coregular.

It is clear that f, has a M-submodule isomorphic to f,, so we are done
proving the non coregularity of (f,®f,, SL(2, C)?).

Put V;=<e;; —€y1) g+i €,i —Cqtiq+p Cig+j +€,qti €qtij +€qtji>
ifijand W;=<e;,; —€g+;q+» €q+ii € q+i>> > then

f=(@: W)@ (@<, V) and @; W;=Ad(SL(2, C)).

So we can restrict our attention to the pair (Vi,® Vi, T) where
T={(Xi,...,X,): X;is a diagonal in 51(2, C) }. If a,, B, are the dual basis to the
descripted above, and S (V@ Vi)T=4,0A,&d..then A4,=0, A,=
<ay oy, asas, By Bz, By Bs, @y Bo, a3 By, a3 B4, a4 B3> and Lemma 3 applies.

The Exceptional Structures

Most of the cases follows from Schwarz tables [Sch 1] or from Lemma 4.
So we list them. The reference for the K-module structure of p is [F
de V].
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Type g f p Method

El € sp(4,C) 42 Table 4a.3,dimp+#38
E1V e i ”  5a4 ‘
EV e; s1(8,C) 70 »  1a.20, dimp#8
EVIII eg s0(16,C) 128 »  3a.2, dimp#16
FII fa 50(9,C) 16 »  3a.5, dimp=#9
EIl e, 5i(6,C) xs1(2,C) A3(C9 Lemma 4

EVI e 50(12,C)x s1(2,C)  As(spin) ?

EIX eg e;x 51(2,C) A, ?

F1 fa sp(3,C)x s1(2,C) A, »

G o S, C)xA2,C) © V(3)=3\ »

Note: under «p» we have listed dim p for {Sch 1}, p, for Lemma 4. Here A; means the j-
fundamental weight, as in [Hu].

There are two remaining cases:

Type EIII: Here g=¢5, f=50(10,C)P C, p=p+ Pp_. As K-module, p_ is
dual to p,; ps is As(spin) as [f, fl-module and C = center of f acts by non-
trivial scalars.

Type EVIL: Here g=e;, f=es @ C, p=p+DP_, P+ 1S Ay, etc.

We develope an argument for both of them. Let b=t®d be a Cartan
subalgebra of f, where t is a C. s. of [f, f] and 8 is the center; let H be the
corresponding maximal torus. The goal is to prove the non-coregularity of
(p, H). Let o €d* associated to the action on pi; 070 because g has trivial
center. By abuse of notation we call also o the extension to b vanishing on t;
the same convention for A € I (p4, t).

Then H(py,b)={A+0: A€ (p4,t)}. As usual, let {x,} be the basis of p,
where x, is a vector of weight A+o, AeIl(ps,t); let {y,} be the basis of p_
where y, is a vector of weight —\ —g, and let {X,, Y;} be the corresponding
dual basis. If S'(p, )= A; then A,=<X, .. X\ X - X, °
Sisr (Ai+0)+ 25, (—A;—0) =0>. Thus A, =0 if m is odd and A,=<X, ¥\>.
Now assume that there are some Ay, ..., Agin [I(p4,t) such that Ay + Ay = A3+ Ay
and A, #\;, Ay Then X, X, Y, T, , X\, X3, I, 14, do not belong to A} and
Lemma 3 applies.

The preceding hypothesis is fulfilled in both cases, as we can see easily;
note that, as rank g=rank f, we may look at the non-compact roots in p,.

From the preceding analysis, we have:

Proposition D: (g, K) is coregular if and only if it corresponds to
g, =so(p,)orsu(p,1).=
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4. THE OTHER CRITERIA

Here we assume that L is a semisimple complex algebraic group, and that
V is L-orthogonalizable; see section 2.

Proposition E: i) If every root it in the Z-span of 11 (V), then the principal
isotropy class of (Ad&® V, L) is (the class of)

Ker (L— GL(Ad®V)).

ii) If L is simple and V is non trivial, then every root is in the Z-span of
().

iii) If g is simple, the principal isotropy class of (g, K) is trivial, discarding
the trivial case when p=0.

iv) (8, K) never satisfies criteria E.

Proof: i) Let H be the maximal torus of L whose Lie algebra is h and pick
any element x € h such that L*= H. As V= @, (v, ¥, we can choose y =3,
Yx» P2 E V—0. 1t follows that

Dty=I*NL=HNL ={Ac€H: Ay,=y), for all AeIl(V)}
Now such 4 =exp a, for some ach, and
(Ad; A) yy=(exp a)yx=e @y, =y,

Then A(a)e2miZ for all A€II(V), because y,#0. By hypothesis,
u (a)e2mil for every root u and then A€ Ker Ad L.

As V is L-orthogonalizable, the same is true for Ad@ V. So, it only
remains to show that the set { Zel@ V: LZ=Ker Ad L} is dense in i@ V.

Let U be a Zariski open non empty subset of 1@ ¥; its image under the
projection map 1@ ¥ — 1 is open so it exists x regular semisimple such that
for some yeV, x+yeU. Now I*, the centralizer of x in 1, is a Cartan
subalgebra of 1. From the conjugacy theorem, it follows that ®(1, V¥) is
contained in the Z-span of II(¥, V). {yeV: x+ye U} and {yeV: y\#0
V AeII(V, 1)} are both open non empty; taking y in the intersection,
x+ye U and L**Y=Ker Ad.

ii) Let W be the subgroup of k* generated by II(¥) and let @=@(l, k).
We claim that & =(®N W)U (@ N W2). It suffices to show that & —-WL-C W.
If o € ® — W, there is some u € I1 (V) such that (e, x) #0. The a-string through
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uis u-ra, ..., ptqa with r—q = (a, p) #0; thus p+acIl(¥)and a € W. Since
1 is simple, @ is irreducible; as V#0, W#0 and = N W.

iii) Let L be the connected subgroup of K with Lie algebra l=[f, f], let
V=p and leth, W, ® be as in the proof of ii). Then ®=(® N W) U (N W1).
Let f; and f, be the ideals of l such that : if h; is a Cartan subalgebra of f; given
by k;=hNf, then the root systems @ (f,, k) and @ (f5, k,) are identified with
®N W and N WL respectively. If AeII(p, k), A (k) =0. Thus the action of
f, in p is trivial. Now Jacobi implies that [p, p] is an ideal of f and that [f,, [,
p]1=0. Then if d=center of f, [fi+d+p, L]=0 and f;+d+p, f, are ideals
of g. By hypothesis f,=0 and ®=® N W. Assume here that dim 6=1; as f-
module, p=p,dp_ and d acts in p,(in p) via 0#0 (via —o). Also
I (p_, h) = —II(p4, k). Recalling that & U (II(ps,k) x {o}) U I (p_,h)
x{—0})=®(g, h+d) it is also true that {ac ®: (o, II(p4, k))>0} =2, for
some choice of a base A.

Pick xef, c€d, y €p such that K**<= Hx Z is a maximal torus of K. We
want to show that Kxt¢ty= Kxte N Ky=Ker Ady(K). Let H eh, H,€b such
that exp (H,+H,)e K». Then YV Ae€Il(ps, k) A(H)+o(Hy)€2mi . facd,,
a=A;—\,, for some \;eIl(p+, k) (look at the a-string). Then a (H,) € 2mil.
Ifac®y, a=A—A\,, for some \;ell(ps,h) (look at the a-string). Then
a (H))€2miZ and we can follow the line of the proof of i).

iv) For types II-1V it follows from ii); in other case from iii). m

Next we will study the dimension of g/ K. We return to the assumption : «L
reductiven.

From Algebraic Geometry we know, for {e V/L:
dim 7-1({)+V/L=dim V. 1
Furthermore, there exists an open dense subset U of ¥ such that V Céw (U),
the equality in [1] holds.
Lemma 5: dim g/ K=dim p

Proof: If V/L has generically closed orbits (i.e., the union of the closed
orbits contains a non empty open set) then it is follows from[1] that
dim V/L=dim V—dim L+dim H, where (H) is a principal isotropy class.
Being dim H=0 from Proposition E, dim ¢/K=dim ¢/K=dim g —dim
K=dim p.m

Our following task is to compute the dimension of R, the cone of unstable
points in Mumford’s terminology, using the ideas exposed in [Sch 2], via the
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Hilbert-Mumford criterion. For convenience, we will summaryze them. See
also [M 1], Ch. II or [M 2], p. 41.

Let A: C* — L be a morphism of algebraic groups, briefly a 1-PS. Put
Zy={vecV:A(z)v—0 if z—0}. From the well known characterization
NV, L)={veV:f(v)=0V feS (V) homogeneous of positive degree }it
follows that M contains the various Z,. In fact, the Hilbert-Mumford
criterion insures that (¥, L)=U, |_ps Z,. Now if T is a maximal torus of L
and A is a 1—PS, IM A is conjugated to a subgroup of T and

nw, L):UA, 1-psinTL- Zj.

Let t be the Cartan subalgebra of the Lie algebra of L, 1, corresponding to 7.
If Aisal—PSin 7, note by A 1ts infinitesimal generator. If V= @,cnw.y V.,

then u(A\)e Zand Vve V,, zeC*: A(z)v=2¢Mv. So Z, = Dpu:poy>0 Va; thus
N (V, L) is union of a fimte number of L. Z,. Call ¢, =codim L. Z,; then

codim N=inf{c,: Aisa 1-PSin T}

Now let p, be the (parabolic) subalgebra of 1 that normalizes Z,, u, the
subalgebra of 1 generated by the root vectors not in p,, U, the connected
algebraic subgroup of L corresponding to u,. Following [Sch 2] we have
l:pA@uA and

c¢y=dim V—dim Z, —dim Up+e,=dim V—dim Z, —dim U, [2]
where e, =dim U, —sup {dim (T,(U, 2)+Z,)/ Zy:z€ Z,}

Furthermore, t=b@9d, where b is a Cartan subalgebra of [I,1]. Then
A =Ap+A; (obvious notation). Call ¢, the unique element in b* such that
¢\ (H)=XKilling (A, HYVheb. Now, Ve ® ([L1], b): (@), u) =pu(N) €lZ and
then ¢, € E= R-span of ®([1,1], b) in b*. (See[Hu], p. 40 and p. 67).

Finally, y(t)={Aet: A\=dA(l) for some 1 —PS A in t }is isomorphic to
'(T)={A: A 1—PSin T} via A — A; then it is isomorphic to [Z¢, d=dim t.
Moreover, y(t) is a lattice in t and then identifying v (b) with{p\: A ey (b)},
v (b) meets every open cone in E. (See [Ch], 9-06). As usual, rk denotes the
rank.

Lemma 6: codim M=1/2 (dimp+rkg+rkf)

Proof: Let t; be a f-stable Cartan subalgebra of g such that t=t,Nfis a
Cartan subalgebra of f. As above, t=b@9, withba C.s. of f’ _[f f]. Put

d=0¢ (g, t,).

i) Let first L=K actingon V=fby Ad. Let Abeal—PSin T. If A is
regular (i.e., ¢, lies in the interior of some Weyl chamber) then Z, =f, for
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the ordering defined by ¢,. If not, an easy argument shows that Z, C f;. for
some f;. Now the Chevalley Restriction Theorem guarantees - that
dim (f/K)=rk f. For A regular py=Ff;®t, uy=f_. Then from [1] and [2]:

tk f=codim R (f, K)=dim f—dim f; —dim f_=71k f.

All of this is well known; the profit for us is that e, =0; so there exists
Zef, such that dim (T, (U, Z)+ f4)/fr=dim f_.

ii) Let now (V, L)=(g, K) and let F be the R-span of ¢. If rk g=rk f,
then t, =t it is clear that there are 1 —PS in 7, regular in both t and t;. We
claim that the preceding is true even if rk f<rk g.

For pet*, put a,et* as follows: p in t, 0 in t;N p. 6 induces ¢ — ¢,
o — af and hence F— F, called also 6. Clearly {xe F: Ox=x}={xeF:
x=a, for u=xp }.

Next for a€¢, put B=ap. If a=ab, a=0ag and g,=gg. If not, put
5o =0a DYoo =9p; it is O-stable and ag=1/2(a + af). Under the above map,
¢ (f.t) is contained in F, hence E. We identify E with its image.

Now {xe€ F: 0x=x}-={xe F:0x=—x}={xe F: xy=0} D <{1/2(a—af):
ac@}>. As the Killing form on F is non degenerate, E={xec F: 0x=1x]},
E@EL=F and the restriction of the Killing form on F to E is still non
degenerate.

We must prove that the Zariski open cone in E, E N {He F: H is regular}
is non empty. If not, putting P, ={H € F: (o, H =0}, a €, we have ECU, P,
and by irreducibility, EC P, for some a. Now a =+, | € E, oy € E-. Thus
(a;, E)=0, hence ;=0 and a € E*-. That is, o)y =0, a0 =—a. Pick Xes,Nf;
X=X;,=X_ with X,ceg,, X €9 ,. VY Het[H X]=[H, X+]+ [H X_=0;
then s,NfCs,NtCs,Nt,=0.5,Cp. Then Vy et,Nyp, [y,5]C [p.p]
N 5,C fN p=0. Then a, =0, a contradiction.

iii) From the preceeding and as in i), it can be shown that F is the union
of the various K. Z, with¢, in the open cone {X & E: X is regular in both t
and t;}. Clearly, ¢U 0 —II(g,t), « — ay, is surjective. Thus Z, = @g.pr)>0
g3 =g+ for the order defined by A. Even more,
Z)D @ppoy>o fp=Fr, pa=Fr@t and uy= f.

Pick Z< fy such that dim (77 (Uy, Z)+f+)/f+=dim f_; then
dim (T; (UyZ)+9+)/g+=dim f_; so e,=0 and codim MN=dim g—dim
g+—dim f_=1/2 (dim p+rk g+1k f). =

Lemma 7 ([Sch 3], p. 129): (V, L) is cofree <> (V, L) is coreguldr and
codim N(V/L)=dim V/L.u
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Proposition B: (g, K) satisfies criteria B <> g, =s0(n, 1) or su(n, 1).
Proposition C: (@, K) is cofree <> g, =s0(n, 1) or su(n, 1).

Proofs: If (V, L) is visible, R (¥, L) is the closure of an orbit and then it
codim N =dim (g/K) holds iff g, =so0(n, 1) or su(n, 1). In view of Lemma 7
and Proposition D, this implies Proposition C. Also, we have =s»in
Proposition B. But cofreeness implies flatness and then all the fibres have the
same dimension. mm

Remark: The cofreeness in case $0(n, 1) is also proved in [Sch 2].
Proposition A: (g, K) is never visible.

Proof: If (V, L) is visible, M (¥, L) is the closure of an orbit and then it
follows easily that codim 1 =dim (¥/L). (See [K], Lemma 3.5). Furthermore,
for L linear reductive (V/ L) visible implies that the multiplicity of any non-
zero weight is at most 1. ([K], 3.4).

These two facts show the non-visibility of (g, K) in most the cases, in view
of Lemma 6 and the following well known fact:

If rk g >rk f, then there is some a €Il () with multiplicity greather than
one. (In the notation of Lemma 6, we must pick ac¢(g.t) such that

@ np70).

There are two remaining cases:

g, =su(n,1): Here g=sl(n+1,C), f—“{(A 0) €g: Acgl(n,C)} and hence we
may assume that K= {(x 0) e SL(n+1, C): X€ GL(n, C)}. Choosing as usual
b={3%| Hie,; 3 H;=0}as Cartan subalgebra of both g and f, it is well
known that ¢(g, b)={e;;: a;,;(H)=H,—H; if H=3 He;;, i#*j}. Take
¢+={a;; i<jand jSnori<n)or (i=n+l, j=n)}. It corresponds to the
1—PS A given by A (z)= the diagonal (z, 22, 23, ..., z"*!, z%). Thus, g C . Put
for ceC: y.= (T “) where T=Ye;,+1, u=e,_; and v=ce, We claim that:
y.€EKyy=c=d.

Let (’; :) €K such that (Z‘ °) v.=ys. Then XT=TX, Xe, ,=xe,,
cxe,=de, X. Now it is easy to show that X=xI,4,+ be, ,+ and thus c=d.

8, =50(2n, 1): Here g=s50(2n+1, C); we will follow the notation of [ Hu],
p. 3. Then f={xegq: by=b,=0},p={xcqg: m=n=p= O}and we assume
that K={(! °)eSL(2n+1, C): ‘XsX =35}
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Choosing b={ Heg: H is diagonal } as Cartan subalgebra of both g and f,
it is known that there is some ordering for which g, ={xeg: b; =0, p=0 and
m is upper triangular }C M.

Put for ceC: y.=(b,=e,, m=T as above,n=c(e,_; ,— €, ,_1)). Then it
is not so difficult to prove that y.=y, iff y e Ky,.

5. SOME REMARKS ON THE UNSTABLE CONE

As a corollary of the proof of Lemma 6, we can state: R (g, K) is the union
of the various K.g.. Furthermore, codim (N (g, K) )= codim K.g. for every
such g. This suggests us that the irreducible components of N are those K.g,.
Actually, this follows from a general fact (as in [ G], Corollary 2, p. 142). Let
(V, L) be as above, P a parabolic subgroup of L, W a linear subspace of V'
such that P. WC W. Then L. W is closed (because of the completeness of L/ P).

The following step is to compute ¢y, the number of irreducible components
of M. Assume first that rank f=rank g; then N (g, K)= Ueveryq, K-9+. From
([G], Corollary 2) we also know that K.g. = K.g,"if and only if there is some
o€ W(f,t) such that o(g+) =g+ (Use Bruhat decomposition). Thus.

=W t) /I Wb

Assume now rank f<<rank g. We prove now some easy facts in order to
compute cy. As usual N, (S) (resp. C.(S)) is the normalizer (resp., the
centralizer) of S in L.

) Ng(t) CNg(t)

Proof: Let ZeNg(t), Bell(g.t). Then Z.ggCgg,-1. In particular,
Z.g,=Zt;Ct,. :

i) Cr(t)=Ng®)NCs(ty)

Proof: We only need to show Cg(t)C Cg(t). By i), Cx(t)C Ng(t,). Let
Ze Ck(t) and call {its class in Ng(t;)/ Cs(t) = W (g. t;). As { fixes every A in
E, regular in g, then {=id; i.e. Ze Cs(ty).

From the preceding, we get the following injections of finite groups:
W, )= Nk )/ Cx(t) — N (t)/ (Ne ()N Cs (L)) ) — N (t)/ Ca(t) = W (g, ty)

Call W, the group in the middle. (Note that all of this can be done if
rank f=rank g; then W, = W(g.t,)).
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Pick A, u in the open cone of regular ¢lements both in g and in f, included
in E; call g, g* the respective maximal nilpotent subalgebras of g. If o € W,

ogr =g
iii) If o€ W (g, t,) sends g, to g,* then c€ W).

Proof:  Pick we W(f,t) such that w (f;*) =f#; then ow~! sends g,** to
g+* so we can replace A by wA and assume that f,* =f.# Le., o (®:*(f. 1)) =
= ®,#(f, t). But then o (P* (f, t) ) = @+ (f, t) and o normalizes t = Y, o [for F_al;
1.e. 0€ W].

We summarize the preceding in:
Lemma 8: The irreducible components of N (g, K) are the K.g, where g,
corresponds to some NEE regular both in ¢ and in f. The number of

components is ca = |W,|/ | W(f.t)|.=

Finally, we list some information about W, and cp for those (g, K)
satisfying rank f<<rank g. We left to the reader the task to verify it.

Type g f W cn
Al, sl(n+1, C)‘ so(n+1, C) Zix,, %, 1
n=2k

Al sl(n+1, C) so(n+1,C) 25,5, 2
n=2k+1

All sl(2n, C) sp (2n, C) 25 %05, 1
BDI, so(p+q, C) so(p,C) X y (SRS (fjs)
p=2r+l, so(q, C)

q=2s+1

EI e sp (8, C) 3
EIV & fa 1
II Ix1, | simple diag (1) wQ) 1
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