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Quasipositivity and new knot
invariants

LEE RUDOLPH(1)

ABSTRACT. This is a survey (including new results) of relations —some emergent,
others established— among three notions which the 1980s saw introduced into knot
theory: quasipositivity of a link; the enhanced Milnor number of a fibered link; and
the new link polynomials. The Seifert form fails to determine these invariants;
perhaps there exists an «enhanced Seifert form» which does.
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0. PRELIMINARIES

Manifolds, in the absence of indications to the contrary, are understood
to be oriented, compact, and smooth; maps are smooth,
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0.1. Knots, links, surfaces. A link is a 1-submanifold of $%, non-empty
and without boundary; a knot is a connected link. A link type is an ambient
isotopy class of links. A surface is a 2-manifold which is connected relative to
its non-empty boundary; a surface F embedded in S is a Seifert surface
(fordF). A knot O for which some Seifert surface is a 2-disk is called an
unknot. The mirror image of XC S3, denoted by Mir X, is the image of X by
an orientation-reversing diffeomorphism of .3,

Let Fbe a Seifert surface. A push-off map F— S*\F: x — x* (unique up to
ambient isotopy) is defined by a field of positive normal vectors on F;
if b and ¢ are l-cycles on F then link (b, ¢t) depends only on the classes of
b and ¢ in H,(F;Z); if l-cycles c,...,c; give a basis for H,(F;Z), then
[link (¢, c;f) 1=: Lgis a Seifert matrix for F (or dF), and represents the Seifert
form of F.

If Kis a knot and n is an integer, let A4 (K, n) denote an annulus of type
K with n twists--that is, A (K, n) is a Seifert surface containing K, the class of
K generates H, (A (K, n); Z), and L g ,)is the I-by-1 matrix [n]. (Note that the
linking number of the two components of A (K, n) is —n.) More generally, if
Lis alink ‘and f'is an integer framing of L (that is, f assigns an integer to each
component of L), then A (L, f) denotes the corresponding union of annuli.

The positive Hopf annulus is A (O, —1) (its oriented boundary is a pair of
fibers of a positive Hopf fibration of S3); the negative Hopf annulus is
A(O, 1)=Mir 4 (0,—1).

A link L is fibered if there is a fibration of S*\L over S! such that the
closure of each fiber is a Seifert surface for L (for example, O is fibered); a
fiber surface is any such Seifert surface. The fibration of a fibered link is
unique up to isotopy and a fibered link determines its fiber surface up to
isotopy.

Let K be a knot with tubular neighborhood N (K). A cable of type (m, n)
on K, where m>0 and n are integers, is a link K {m, n} which lies on dN (K),
is homologous in N (K) to mK, has linking number n with K, and has
GCD (m, n) components. If K is fibered then K {m, n} is fibered if and only if
n#0 or m=1. In particular, 0{2,2}=3A4(0,—1) and 0{2,—-2}=3dA(0, 1)
are fibered. The positive and negative Hopf annuli are the only annuli which
are fiber surfaces.

If the Seifert surface F is the union of subsurfaces F, and F,, whose
intersection is a 2k-gonal 2-disk with alternate edges on dF, and dF,, and if
there is a 3-disk D? in $® with F;=D3NF, F,=(S*\Int D})NF, then F is
called a Murasugi sum of F, and F,, denoted F=F,*F,; if also k=2 and
F,=A(K, n) and the 4-gon FyN A (K, n) meets both components of A4 (K, n),
then F'is a plumbing of A(K,n) to F,.
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A Murasugi sum of two fiber surfaces is a fiber surface. If K is fibered,
m>1, and n£0, then ([N & R3]) the fiber surface for K{m,n} is the
Murasugi sum of a fiber surface for K{m, n/|n|} and a fiber surface for
O{m, n}, cf. Figure 0.2.
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0.2. FIGURE

A Hopf-plumbed surface is either a disk or a plumbing of 4(0O,=x1) to a
Hopf-plumbed surface; a Hopf-plumbed surface F is flat if

F=(..((D**A,) *A4,...) *A,,, A=A (0, 5()), s())==1,
where ((...((D**A4,)*4,..)*A, )NA; CD*fori=2,...,m.

Figure 0.3 illustrates some Hopf-plumbed surfaces.

flat not flat

0.3. FIGURE
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0.4. Braids and bands. For elements x, y of any group, we will write
y:=xyxL, [x, y]:=%py, c(x, y):=xyxy-'x-1y-1. The usual presentation
of the n—string braid group B, has generators o,;(1 <i<n—1), and relators
[0, 0] 1=i<j—1=<n—1) and c(0;, 0;+;) (1=i<n-2).

It is convenient to generalize this ([Rul 3,15]). Let 7 be a tree with vertex
set {1,..., n} (the edges of T are unordered pairs of vertices); T'is espaliered if,
whenever 1 <i<j<k<m=n, then {i, k} and {j, m} are not both edges of T.
To an espaliered tree T corresponds a T-standard group presentation, as
follows: there is a (T-standard) generator o, for each edge e and a relator for
each pair {e, f} of distinct edges; for e and f disjoint, the corresponding relator
is [0, 0¢]; for e and f with one common vertex, the corresponding relator is
¢ (0e O9).

Let I={{1,2},...,{i, i+1},...,{n—1,n} }. If we abbreviate oy; ;1, to o;, then -
the I-standard presentation is exactly the usual presentation of B,; more
generally, for any espaliered tree 7, the group of the T-standard presentation
is isomorphic to B,, and becomes identical with it if, for 1<i<j<n, we
identify oy; 3 with 0; ;: = (0;0;+1... 0_3) 0,1 (0; 0+ ... 0;_5)~' € B,. The exponent
sum e (B) of Be B,. with respect to the 7-standard generators is independent
of T; in fact e: B, — Z is the abelianization homomorphism.

The (3) elements o; ; of B, are called positive embedded bands in B,; their
inverses are negative embedded bands. A positive (resp., negative) band is any
conjugate wil of a positive (resp., negative) embedded band; all bands of a
given sign are, in fact, mutually conjugate. A band representation of Be B, is
a word b=(b(1),...,b(k)) where each b(s) is a band in B, and
B=BMm):=b1)...b (k); b is embedded if each b (s) is embedded. A braid is
quasipositive if it is a product of positive bands.

0.5. Closed braids. With respect to a given fibration 7: 5%\ 0O — S! for
the unknot, a link L (disjoint from O) is a closed braid (on n strings) if m/L
is an orientation-preserving covering map (of degree n). Figure 0.6 (where the
axis O is drawn in, and  is left to the imagination) is a reminder of the
familiar way to construct a closed braid 8~, called the closure of B, from a
braid B B,; it also establishes orientation conventions. Conjugate elements
of B, determine closed braids of the same link type, and, conversely, a closed
braid determines a conjugacy class in B,. A well-known theorem of
Alexander says that (with O and = fixed) every link type contains closed
braids.

0.7. Braided surfaces. Figure 0.8 shows how to construct a Seifert
surface S'(b), equipped with a handle decomposition into n 0-handles and &
I-handles, from an embedded band representation b=(b(1),...,b(k)) in B,;
the boundary of S(b) is 8~ (b):=B(b)". Such an S(b) is called a braided
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K=(0,0%)",n=4

0.6. FIGURE

surface (as always, with respect to a given fibration m:S*\O—S' for the
unknot). Every ambient isotopy class of Seifert surfaces in §* contains
braided surfaces S(b); it is not true, however, that given a Seifert surface S
for B”, there is necessarily an embedded band representation b of 8 such that
S(b) is ambient isotopic to S by an isotopy fixing 8.

b(4)=0,3€Bs
b(3)=0,,€Bs
b(2)=oi5€ Bs
b(l)=0,3€Bs

Wﬂﬁ%ﬂ g
L/

S(b)

0.8. FIGURE

(Note: in [Ru4, 15] it is shown how to construct a «Seifert ribbon» S (b) -
-that is, according to taste, either a ribbon-immersed surface in S°, or a
ribbon-embedded surface in D?, in either case bounded by 8" (b) --from a
not-necessarily-embedded band representation b. Except for Remark 4.6, we
will ignore this more general situation.)
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0.9. Generalized homogeneous braids. A T-braidword is an embedded
band representation b such that, for every s, either b(s) or b(s)! is a
T-standard generator. If every T-standard generator appears either as some
b(s) or as some b (s)-!, then b is strict; if no generator of the 7-standard
presentation appears both as some b(s) and as some b(z)-!, then b is
homogeneous. A T-braidword surface S (b) is a fiber surface if and only if b
is strict and homogeneous. (The «if» statement is proved by [St] and [B&W],
though these authors treat explicitly only the case T=1I; cf. also [Rul 4]. Here
is a sketch proof of the «only if» statement: (1) if b is not strict, then S(b) is
easily seen to be disconnected; (2) if b is not homogeneous, then S(b) is
almost as easily seen to be compressible; but (3) a fiber surface is connected
and incompressible.) According to [Rul 3], the class of strict homogeneous 7-
braidword surfaces (for all possible n and T) is coextensive with the class of
flat Hopf-plumbed surfaces. (This is somewhat sharper than the combination
of the two well-known facts that (1) a strict homogeneous 7-braidword
surface S'(b) is an iterated Murasugi sum of surfaces S(b,), ..., S (b,_,) where
each b; is a strict homogeneous I-braidword in B,, and (2) each strict
homogeneous /-braidword surface in B, is a flat Hopf-plumbed surface.)

1. REVIEW OF QUASIPOSITIVITY

1.1. Definition. A Seifert surface F is quasipositive if it is ambient
isotopic to a braided surface S(b) where each b (s) in the embedded band
representation b is positive. A link L is quasipositive if L is ambient isotopic
to the closure of a quasipositive braid, and strongly quasipositive if there is a
quasipositive Seifert surface for L. |

1.2. 1t is known that no invariant of the Seifert form (e.g., Alexander
polynomial, equivariant signatures) can detect the presence or absence of
(even strong) quasipositivity.

Theorem [Ru5]. Let F be a Seifert surface, Lg its Seifert matrix (with
respect to some homology basis of 1-cycles). Then there is an embedding
1:F —S3 such that i(F) is quasipositive and the Seifert matrix L;y, (with
respect to the corresponding homology basis of 1-cycles) equals Lg. |

1.3. A subsurface G of a surface F is full if every simple closed curve on
G which bounds a disk on F already bounds a disk on G.

Theorem [Rul]. A full subsurface of a quasipositive surface is quasiposi-
tive. |

1.4. For integers m, n, with m>0, n70, let d{m, n} be the I-braidword
of length (m—1)|n|{ in B, with d{m, n}(i+(m—1)j)=0; (i=1,...,m—1,
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j=0,..,n—=1) if n>0, d(i+ (m—1) )=o7' (i=1,..,m—1, j=0,..,—n—1) if
n<0. Then d{mn} is strict and homogeneous, so S(d{m,n}) is a fiber
surface (in fact its boundary is O {m, n}, the torus link of type (m, n)).

Theorem [Rul]. 4 Seifert surface F is quasipositive if and only if, for some
n>0, F is ambient isotopic to a full subsurface of S(d(n,n)). |

This should be compared with a theorem of Herbert Lyon [L], which
shows that, for any Seifert surface F, there is an n>>0 such that F'is ambient
isotopic to a subsurface of the boundary— connected sum of S(d (n,n)) with
its mirror image S(d(n,—n)).

1.5. Theorem [Ru6]. For any K, there exists g€Z such that A(K,n) is
quasipositive if n=q. (More generally, for any link L, there exists a framing
f of L such that A(L,{") is quasipositive if f' is less than or equal to {
componentwise.) |

1.6. Theorem [Rul3]. A plumbing F=F;*A(K,n) is quasipositive if
(and, by 1.3, only if) both F, and A(K,n) are. |

1.7. Conjecture. An arbitrary Murasugi sum of quasipositive surfaces
is quasipositive. :

APPENDIX to Section 1: Knot theory of complex plane curves.

For a more detailed survey of the knot theory of complex plane curves, up
to 1982, the reader is referred to [Ruld] (where, regrettably, Suzuki’s 1974
paper [Su] went unnoticed). Some post-1982 references are included below,
as appropriate, but I make no claims for completeness.

Let I'C €2 be a complex-algebraic curve (reduced but not necessarily non-
singular or irreducible), (0,0)el. For r>0, set D*(r):={(z, w)eC?2:
Iz|12+|wi2<r2}, S3(r) :=aD (7).

1A.1. Problem. Describe the topological type of the pair
(D*(r), D*(r)NT).

In other words, study complex curves in complex 2—space via their
topological placement in the large—-i.e., not necessarily either «in the small»
(infinitesimally) or globally, but in a «middle range» (which at its limits
encompasses both extremes).

By «passing to the boundary of the situation» we may pose a more specific
problem. The (dense open) subset R (T") of regular points of I is of course a
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smooth 2-submanifold of €2 for all but finitely many radii r€]0, [, S?(r)
intersects I' only at points of R(T'), and there transversely, so that the
(naturally oriented) intersection L(T',r): =S (r)NT is a link (it is not empty,
by the maximum modulus principle for I').

1A.2. Problem. Describe the link type of L(I',1).

In the extreme cases 1A.2 is solved, or nearly solved; sometimes its
solution implies a solution for 1A.1.

1A.3. Example. For fixed T, and all sufficiently small r>0, the link
type of L(T',r) is constant, known as the link of the singularity of T at (0, 0);
let L(I',0) denote a representative of this link type. (For instance, if
0, 0) e R(I") then L(I',0)=0.) Links of singularities are completely
classified, and their topology is very well understood (cf. [E&N], [M&W],
and references cited therein). Here are some facts: L(I",0) is an iterated torus
link, obtained from an unknot O by successive cabling operations; L (T, 0) is
fibered, [Mi]; if L(I",0) is a slice knot (i.e., the boundary of some smoothly
embedded 2-disk in the 4-disk) then it is trivial [Lé]). Furthermore [ Mi], for
small r, the pair (D*(r), D*(r)NT") is homeomorphic to the cone on
(S?, L(I',0)), so in this case Problem 1 also is solved. |

1A.4. Example. For fixed T, and all sufficiently large r, the link type of
L(T,r) is constant, known as the link-at-infinity of I'; let L(I',) denote a
representative of this link type. Links-at-infinity have been much less studied
than links of singularities; they are partially classified, and a good
understanding of their topology is beginning to emerge (cf. [Su], [Ru7],
[N&R3], and especially the beautiful paper [Ne]). Here are some facts:
L(T,o0) is an iterated torus link; L(I",%) need not be fibered, but is often
«approximated» by a fibered link (or «fibered multilink»), [ Ne]; if L(I", o) is
a slice knot then it is trivial, [Ru7]. Furthermore, according to [Ne], L(T",c0)
often (but not always) determines (D*(r), D*(r)NT") for large r (and non-
singular I')--again, a solution to 1A.1 in an extreme case. |

In contrast with links of singularities and links-at-infinity, general links
L(T,r) seem hard to get one’s hands on (although some progress has been
made by Fiedler [F1-2}). They need not be iterated torus links, they need
not be fibered (even approximately), and they can be slice but highly
nontrivial, [Ru2].

1A.5.Caution. In[Rull] it is shown that, given an arbitrary pair (D*, S),
where S is an oriented surface (without closed components) smoothly and
properly embedded in D4, there is a smooth embedding i:D* C.C2 and a
complex-algebraic curve I' such that i(S) is a connected component of
I'Ni(D%. Thus 1A.1 and 1A.2 may become uninteresting if modified to omit
such geometrical hypotheses as the roundness of D (r) (the point is that one
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has no control over the geometry of the embedding; i(D*) may be very
twisted--.g., not convex or even pseudoconvex). |

To make further progress, we change the terms of the problems. Given T,
after an arbitrarily small unitary change of coordinates in €2 we may assume
that its reduced defining polynomial f€C [z, w] is monic in w when written in
Weierstrass form, i.e., f(z, w)=w"+f, (2) w*1+...+f, (z) for some n>0 and
fiz)ec { .. There is a finite set Z such that, if zeC\Z, then {w:f(z, w)=0}
contains #n distinct points. Let RCC be a smooth 2-disk such that JRCC C\Z
There exists M >0 such that, if zedR and f(z, w)=0, then |w] <M; a
maximum modulus argument (using the monicity of fin w) shows that then
|w| <M whenever ze R and f(z, w)=0. The product D:=R. x{wec:
lw|<M} is a piecewise-smooth 4-disk; dD is a 3-sphere-w1th-corners
equipped with a natural genus-1 Heegard splitting into smooth solid tori
0,D:=d Rx{weC: |w|<M} and 9,D, and we have just seen that
I‘ﬂaD 'NJ,D. In fact (with the notion of closed braid modified in an
obvious way) the link T'NAD is a closed braid in dD.

1A.6. Theorem [Ru2]. Such a closed braid is quasipositive. Conversely
(even if D is restricted to be {(z, w): |z|=<1, |w|<1}), up to isotopy through
closed braids every quasipositive closed braid can be realized as T'NdD for
some (non-singular) complex algebraic curve I'. Furthermore (after identifying
dD with S3 by rounding its corners), every quasipositive closed braid I'\dD
can be realized as L (I, r) for some I and r>0. |

This was the original motivation for studying quasipositive links.

1A.7. The link of a singularity is quasipositive; that is, though L(I",0) is
defined a priori as the intersection of I' with a small round sphere, a link of
the same type can be realized (after at worst a linear change of coordinates)
as the closed braid intersection of a curve and a bidisk boundary, so 1A.6
applies. (This is a standard trick, cf. [Lé2], which basically boils down to the
existence of tangent lines for the branches of a singularity.) In fact, it can be
seen that the fiber surface of L(I',0) is quasipositive, so the link of a
singularity is strongly quasipositive.

A link-at-infinity is quasipositive (again, the proof is easy), but need not
be strongly quasipositive (cf. the last paragraph of §4).

As in [Ru5], it is still not known (to me) whether or not every link L(T',r)
is quasipositive.
2. REVIEW OF THE ENHANCED MILNOR NUMBER

Although the theory of the enhanced Milnor number can be extended in
various ways (to fibered links and multilinks in other 3-manifolds, [Ru8],
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[N&RI1]; to fibered links in higherdimensional spheres, [N&R2]; perhaps,
using work of Gabai, to arbitrary non-split links in S3), this review will be
limited to fibered links in S3, approached via isolated critical points.

We identify the three real vectorspaces R4, €2, and H (the real
quaternions), in the usual way. Then the group S$*=S3(1)CH of unit
quaternions contains the (quaternionic) square roots of —1 as its great 2-
sphere §? of pure unit quaternions.

If M is a 2-by-4 real matrix of rank 2, let (u(M), v(M)) be the ortho-
normal frame obtained by applying the Gram-Schmidt process to the rows of
M: so u(M) and v(M) belong to S and are mutually orthogonal. Then
p(M):=v(M)u! (M)ec S

(The referee has kindly contributed this geometrical interpretation of
P (M): «represent S3 by stereographic projection as R3+oco», where the space
of pure quaternions R3 is also the tangent space to $° at 1; «then p (M) is the
helix turn of angle /2, pushing forward /2 and sending u (M) to v(M).»)

Let f:(R%0) —(R2,0) be continuous, and smooth in a punctured
neighborhood of 0c R4 Then f has an isolated critical point (at 0) if the
2-by-4 matrix Df(X) (i.e., the total differential of f at X) has rank 2 for all
X #0 of sufficiently small norm. In this case, all the maps
(uo Df, p o DF)|S3(e): $3(e) — S%x 82, for sufficiently small e >0, determine
the same element of m;(S°x $%) = m;(S°) @ m; (S?).

Of course m3(S*) @3 ($?)=ZdZ. We choose the isomorphism so that
(id,*) corresponds to (1,00 and (*,H) to (0,1), where
H:S$? = 8% (., w)—(|z|>—|w|% 2zw) is a negative Hopf fibration, and we let
((£:0), A(f;0)) denote the homotopy class in question. Direct calculation
now shows that, if f(z, w)=2z2+w? (complex coordinates), then (u(f;0),
A(f;0))=(1,0), whereas if f(z w)=2z2+w" then (u(f:0), AO)=(1,1).
More generally, the following is readily established [Ru§], [N&R3].

2.1. Theorem. Let f have an isolated critical point at 0 Then A £;00=0
if f is complex-analytic near 0. Let Q (z, w) =(z, W). Then u({ o Q; 0) = u (f;0)
and A (f o Q; 0)=p(f;0)—A(f;0). |

Now we are ready to introduce (u, A) for fibered links.

Let f:(R% 0)—(R20) have an isolated critical point at 0. Following
Kauffman & Neumann, we define the isolated critical point of f at 0 to be
tame if for all sufficiently small >0, (1) the set f~!(0) (which is a smooth 2-
manifold in a punctured neighborhood of 0) intersects $° () transversely, and
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(2) for all sufficiently small §=56(e) >0, D(f: 8, €): = D*(e)N f~1(D?(8)) is a
4-disk-with-corners; and we observe that, if (1) and (2) hold, then
Sf1(0)N3 D(f;8,¢) is a fibered link in the (piecewise-smooth) 3-sphere
dD (f; 8, €), with ambient isotopy type L(f;0) depending only on (the germ of)
/. Furthermore ([L], [K&N]), every type of fibered link occurs as L(f;0) for
some tame f, and if L(f;0)= L(g;0) then ([K&N]) fand g are equivalent in
a sense strong enough to make 2.2 work.

2.2. Definition. If L is a fibered link, then (u(L), N(L))=(u(f:0)
N(f:0)) for any fwith L=L(f;0). | -

2.3. Theorem. If'F is a fiber surface, then u(dF) is the first Betti number
of F. |

Theorem 2.3 is due to Milnor [ M7] in the complex-analytic case; a proof
in the general case can be given along exactly the same lines [N&R3]. It is
now standard to call the first Betti number of the fiber surface of a fibered
link the Milnor number of the link. We will call (i, A) the enhanced Milnor
number, and A the enhancement.

The next result, proved quite otherwise in [Ru8], is immediate from 2.1.
2.4. Theorem. A (K)+A(Mir K)=pu(K). |

2.5. Example. The positive Hopf link dA (0, —1) is L (z2+w?3;(0,0)), the
simplest non-trivial link of a complex plane curve singularity. Its Milnor
number is 1. By 2.1, A(d4 (0, —1))=0; by 2.4 (or direct computation),
A@A(O 1))=1. :

2.6. The development of the enhanced Milnor number through isolated
critical points ties it suggestively to the geometry of two complex variables.
(Another way to think of the enhancement is as the obstruction to extending
the almost-complex structure «left multiplication by p o Df» over 0, up to
homotopy.) It is'also useful, however, to have methods of calculation which
take place purely «in the 3-sphere». One such (whose proof, though, does
involve an excursion into the 4-disk) is the following.

Theorem [N&R3). The enhanced Milnor number is additive over
Murasugi sums. |

(Actually, it is additive over a more general composition of fibered links,
unfolding, which was introduced in [N&R3].)
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2.7. Corollary. If F is a Hopf-plumbed surface, then \(9F) is the
number of negative Hopf annuli in any plumbing presentation of F. (Of
course u(9F) is the total number of Hopf annuli.)

Proof: Immediate from 2.5 and 2.6. |

In particular, one has the formula for A (dS5(b)), b a strict homogeneous
T-braidword, which was derived by entirely different methods in [Ru9]:
MA@ S(b))=#{s, 1=s<k:b(s) is the inverse of a T-standard generator }—
#{ {i,j}€ T:for some s with | Ss<k, b(s)=0fj}}.

2.8. A second method of calculation «in the 3-sphere», this one from
[N&R1], applies to cables on fibered knots, and has an important corollary.

Theorem. Let K be a fibered knot, m>0 and n#0 integers. Then
AK{m,n})=A(K) if n>0, A(K{m,n})=A(K)+(m—1) (p(K)—n—1) if
n<o0. |

Corollary. The enhancement is not determined by the Seifert form. (Of
course the Milnor number of F is determined by the Seifert form of F--in fact,
by the Alexander polynomial of dF.)

In fact, if K is any fibered knot other than the unknot, and m is any
integer greater than 1, then the fiber surfaces of K{m, 1} and K{m, —1} have
identical Seifert matrices (with respect to an obvious diffeomorphism of the
surfaces), but different enhancements.

2.9. Another result of [N&R1] is that the enhancement can take on any
value in Z. In light of 2.7, this provides graphic evidence of how far the class
of Hopf-plumbed links is from exhausting the class of all fibered links.

3. REVIEW OF THE NEW LINK POLYNOMIALS

This exposition follows [Ru 3], which is closely based (except for the
framed polynomial) on [Li].

XX

3.1. FIGURE
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\/

3.2. FIGURE

Let L, L;, and L_ be three links with diagrams identical except as
indicated in 3.1. If the visible crossing (of L, and L_) involves just one
component, then segments of two components of L, are visible; let p be the
linking number of the right-hand component of L, with the rest of L, and let
L. be the link indicated in 3.2(i). If the visible crossing involves two
components, let g be the linking number of the bottom-right to top-left
component of L, with the rest of L, and let L., be the link indicated in
3.2 (ii).

3.3. Theorem ([FYHLMOJ], [P&T]). There is one and only one way to
assign each link L an element Py of [vY!,z*] so as to satisfy:

(Pl) Pp=1,
(P2) P, =vzPp+Vv? P;_ for all instances of 3.1. |

In 3.3, the choice of variables v and z follows [Mo]. Though I would wish
it otherwise, Morton’s evocative name «twisted Alexander polynomial» for
P; has not caught on; I will follow [Li] and call P; the oriented polynomial
of L.

3.4. Theorem ([K]). There is one and only one way to assign each link L.
an element Fy of [at!, x*!] so as to satisfy:

(F1) Fo=1;

(F2) a Fi +a'\F; =x(Fp+a*F ) for all instances
of Case 1 (resp., aFy, +a~'F; =x(Fp+a*9t2F; )
for all instances of Case 2) of 3.1 and 3.2.

Again following [ L], I will call F; the semi-oriented polynomial of L.

Each of these 2-variable Laurent polynomials can of course be specialized
to a I-variable Laurent polynomial in infinitely many ways. In particular,
Py (1,7"2—Y2)= A, (¢) is the classical Alexander polynomial of L;
P (1, 112—t=1Uy =V} (1) = F; (1-3/4, —(t~1/4+11/%) is the Jones polynomial of L
(see [J]; the second equality is due to Lickorish, [Li]); and F;(1,x)=Q; (x)
is the absolute polynomial of L ([BLM], [H]). Examples show that, of all
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these polynomials, only the Alexander polynomial can be calculated from a
Seifert matrix for L.

In[Ru 3], I introduced some technical modifications of P;, which turn out
to be useful in the theory of quasipositivity.

3.5. Notations. Let [L, f] denote B, ;, where fis a framing of L (cf.
0.1). Let u denote [0, 0] =(v-'—v) z—1. (Of course dA4 (0, 0) is the unlink of
two components.)

Although u is not invertible in Z [vt!, zt1], it can be handy to invert it
formally, and with discretion to interpret u~! as Py, where ¢ is «the empty
link» (which is «the unlink of 0 componentsy).

3.6. Proposition. (1) Let —L denote L with its orientation reversed; then
P =Pi. (2) Let Mir L denote the mirror image of L, then
Pumic (v, 2) =P (—v1, 2). (3) For n=0, let O, denote an unlink of n
components; then P, =u~1. (4) Let L|\A\ L, denote the split sum of L, and
Ly; then Py X ,=u Py, Py, (5) Let f and f” be framings of L which differ only
on the component K, with {"(K)=f{(K)+c;, then [L,f]=(1—v%)
[L—K, f]+v=2[L,f]. |

Proof: These are all well-known consequences of (P1) and (P2) (to see (5),
consider 3.7, where c=—1).

KK 06 XX

JA(K.f'(K)) OCOWIA(L-K ) A (K, f(K))
C dA(L.f) C AA(LJf)

3.7. FIGURE

3.8. Definition. Let L be a link with n components, f a framing of L.
The framed polynomial {L,f}€Z[v¥!, zt!] is u times the sum, over all
sublinks K of L (including @), of (—1)'~¥[K, f] (where K has k components,
0=k=n); Bd A(¢,f) is of course ¢.

3.9. Proposition [Ru 3]. (1) {L,f} is independent of the orientation of L.
(2) {Mir L, f}(v,2) ={L,f}(—v"1,2). 3) {0,0} =u>—
@) {L,\g L, f}={L,, {}{L,,f}. (5) VIO {L,f} is mdependent of f, where f(L)
denotes the total framing, that is, the sum of the integers which { assigns to
the components of L. (6) [L, f] is u~! times the sum of {K,{} over all sublinks
K of L (in paticular, this sum is divisible by u in Z [vt!,z%1]). |
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3.10. Remark. Up to the normalizing factor u, {L,f} is a «Mdbius
transformy» of {L, f/]. Yamada has made a general study of M&bius transforms
of link polynomials; 3.9(6) is essentially Proposition 1 of [Y].

3.11. Notation. Let 0 be the framing which assigns 0 to each component
of L; then {L} will denote {L, 0}.

In this notation, 3.9(5) becomes the attractively simple formula
{Lf}=v¥®AL}

3.12. Congruence theorem [Ru 3]. (1+(v-2+v})z2) F (v-2,2%) is con-
gruent modulo 2 to vV®{L}(v, z). |

(Here t (L) denotes the total linking of L, that is, the sum of the linking
numbers of all pairs of components of L.)

3.13. Remark. As remarked by the referee of [Ru 3], the Congruence
Theorem is «a generalization, to all values of v and z, but only modulo 2,» of
Prop. 10 of [Y], which relates—-by equality, not congruence--a certain
specialization of the semioriented polynomial of L and a Mdbius transform
of the Jones polynomial of dA4 (L, 0).

4. QUASIPOSITIVITY AND THE NEW
LINK POLYNOMIALS

As already mentioned (1.2), the Alexander polynomial of a quasipositive
link is utterly undistinguished among all Alexander polynomials. Of course,
the Alexander polynomial is also insensitive to handedness. Intuitively,
quasipositivity seems to be deeply related to handedness. This intuition might
give some reason to hope that the oriented and semi-oriented polynomials
(and their common specialization, the Jones polynomial), which are sensitive
to handedness, should also be sensitive to quasipositivity. We will see in this
section that, in fact, such a hope is to some extent justified.

4.1. l;llotation. For any coefficient ring R and indeterminates x, y, if
S(xy)=3 Si(v)x'e R[x*,y*'1=RD*'][x*'] and S, SyeRD*'] are

non-zero,:then ord, S:=m, deg, S := M. Trivially, for any quotient ring R/1,
if S*(x,y)e(R/D[xt!, y*"] denotes the reduction of S modulo I, then
ord, S*=ord, S, deg, S*=deg, S.

4.2. Theorem. ([Mo], [F&W]). For all B< B, ord,Pg-=e(B)—n+1. |

4.3. Corollary. Let b be a quasipositive embedded band representation
in B,. Then ord, Pg- (b)=1—d, where d is the number of components of S (b)
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which are 2-disks. Also, if S (b) is a fiber surface, then ord, Pg- )= u (8" (b))

Proof: Because b is quasipositive, its length is e(B); thus n—e(B) is the
Euler characteristic of S(b), so by 4.1, ord, Pg-p=1—dim H,(S(b); R)+
dim H,(S(b); R). The contribution of each non-disk component of S(b) to
—dim H, (s (b); R)+dim H, (S(b); R) is non-negative, whereas the contribution
of each of the d disks is —1; the first conclusion follows. The second is similar
by 2.3. |

4.4. Corollary [Ru3]. Let f be a framing of the link L. If A(L,f) is
quasipositive, then ord, {L,f}=0.

Proof: Immediate from 4.3, the definition of the framed polynomial, and
standard properties of ord,. |

4.5. Corollary. If K is a strongly quasipositive knot other than the
unknot, then ord, {K,0}=0.

Proof: Let S be a quasipositive Seifert surface for K. Then a regular
neighborhood of K on Sis 4 (K, 0) (the Seifert self-linking of K is 0 because
K bounds on S). If S is not a disk, then A4 (K, 0) is full on S and therefore
quasipositive by 1.3, so ord,{K, 0}=0by 4.4. |

4.6. Remark. In fact, 4.3. remains true (with the same proof) in the
context of not-necessarily-embedded band representations and their associated
Seifert ribbons (cf. the end of 0.8). This shows, for instance, that if a knot K
and its mirror image Mir K are both quasipositive then they are slice (actually
ribbon); thus, any non-slice knot which is its own mirror image (e.g., the
figure-8 knot) is not quasipositive. This was the first proof that non-
quasipositive knots. exist.

More can be said. According to Morton, if a knot K and Mir K are both
quasipositive, then Pg (v, z)=1 (= Py x(v, z)). It is not known if any link
other than O has Pg(v,z)=1.

Conjecture. If a link L is such that L. and Mir L are both quasipositive,
then L is an unlink (i.e., it has a Seifert surface which is the union of disjoint
2-disks). |

4.7. Corollary (converse to 1.5). For any knot K, there exists Q€Z such
that A (K,n) is not quasipositive if n>q. (More generally, for any link L,
there exists Q€ Z such that A (L,f) is not quasipositive if f(1L)>q.)

Proof: By 4.4, this is the case for g=(1/2) ord, {K, 0}. |
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4.8. Inlight of 1.5 and 4.7, we may define the modulus of quasipositivity
g(K) of the knot K to be the greatest integer g such that A (K q) is
quasipositive. (Essentially this definition appears in [Ru5], where, however,
the possibility of an infinite modulus of quasipositivity was left open.) The
proof of 4.7 shows that q(K)<(1/2)ord,{K, 0}. By 3.12, thls implies the
weaker (but more easily calculated) bound g (K)=—1—deg, F¥%(a, x), where
F¥% denotes the reduction of Fx modulo 2.

4.9. Examples. (1) Since A (O, —1)= S(b) where b=(0,,0,) in B,, the
modulus of quasipositivity of the unknot is=—1. By 4.8, ¢ (0)=(1/2) ord,
{K,0}=(1/2) ord, (1—u)=—1/2. So q(0)=—1. (2) Since A(0{2,-3},
—6)=S(b) where b is the quasipositive embedded band representation
(02,4, 01,2, 02,3, 03 4,01,3) in Bs, q(O{2, 3})>—6 By 4.8 and a consultation
of the table of semioriented polynormals in [K] q(0{2 —3}) =—6; so
q(0{2,—3})=—6. (The corresponding calculation using the framed polyno-
mial, without reducing the coefficients, can be done by hand--barely; the
forbidding prospect of similar calculations, for knots with more crossings
than the mere three of O{2,—3}, was the original motivation for the
investigation which led to the Congruence Theorem.)

4.10. Remark. There is some evidence that g(K) is the maximum
Maslov index of a knot of type K which is Legendrian with respect to the
standard contact structure on $%, cf. [Ar]; this is the case for O, [Be].

4.11. Corollary. Let O be an unknot lying on a quasipositive surface F.
Let n=1ink (O, O+) be the Seifert self-linking of O on F. Then n=0, and
n=20 if and only if O bounds a disk on F.

Proof: A regular neighborhood N of O on Fis an annulus A (O, —n). If N
is not a full subsurface of F, then O bounds a disk on F, and n=0. If Nis full,
then (by 1.3) N is quasipositive, so —n<—1 (by 4.9). |

4.12. The next result can extracted from [Be], where it is proved with
different machinery (although, tantalizingly, the quantity e (8)—n+1 of [Mo]
and [F&W] is prominent in [Be] also).

Corollary. A quasipositive surface is incompressible.

Proof: The boundary of a compressing disk would be an unknot of self-
linking 0 which bounds no disk on F. |

4.13. Corollary. A fibered link is strongly quasipositive (if and) only if
its fiber surface is quasipositive.

Proof (of «only if»): A fiber surface is the unique incompressible Seifert
surface for its own boundary. |
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In particular, a fibered link is not strongly quasipositive if it has 4 (0, 1)
as a Murasugi summand, or if it can be subjected to a Stallings-Harer
+1—twist or a (non-trivial) Stallings-Harer 0-twist (cf. [St.], [Ha], and--for
the present notation—[N&R1]).

Must a quasipositive fibered link be strongly quasipositive? I do not
know. However, a non-fibered quasipositive link need nor be strongly
quasipositive. For instance the closure K of 0, 03 0, 632 € B; has 3 unknotted
components O, O,, O;, where (say) link (O,, O,+0;)=0, so that on any
Seifert surface F for K, the Seifert self-linking of O, is 0, yet O, cannot bound
a disk on Fsince link (O,, O;)#0. (It is interesting to note that K is the link-
at-infinity of I'={(z, w)eC2:z(zw+1)=0}, cf. 1A.7; this is most easily seen
in the boundary of a large bi-disk.)

4.14. Remark. In a recent preprint [F3], Fiedler derives various
interesting results on the Jones polynomial ¥ (¢), and states a conjecture
which can be phrased as follows: if b is a band representation in B, with p
positive and q negative bands, then ord, Vg 4, <(p+q+1—n)/2 and
—(p+q+1—n)/2=deg, Vg @ - This would imply, for instance, that if K is a
strongly quasipositive knot, then ord, ¥, and —deg, Vx are bounded above by
the genus of K. It also implies (as Fiedler points out) the affirmative answer
to the «question of Milnor» on the unknotting number of the link of a
singularity.

5. QUASIPOSITIVITY AND THE ENHANCEMENT OF THE
MILNOR NUMBER

5.1. Theorem [Rul3]. A4 Hopf-plumbed fibered link is strongly quasipo-
sitive if and only if its enhancement is 0.

Proof: By 1.6 and 2.7, a Hopf-plumbed fiber surface is quasipositive if and
only if its enhancement is 0; the theorem follows from 4.13. |

5.2. A torus knot is a cable O{m, n}, GCD (m, n)=1, on an unknot; an
iterated torus knot is Of{my,ny;;my,ny;..;my, m}:=O0{my,n}{my,ny} ...
{mpm} with m;>0,n,#0, GCD(m, n)=1 (i=1,...,k). Without loss of
generality we may assume that m;> 1, |[n;| >1 (else the same knot could be
realized with strictly smaller k). An iterated torus knot is fibered, but need not
be be Hopf-plumbed (e.g., 0{2,3;2, 1}, [N&R3]).

Theorem. An iterated torus knot is strongly quasipositive if and only if
its enhancement is 0.

Proof: For j=1,...k, let F; be the fiber surface of O{m,,n;;my,ny;...;
mj, n;}; there are m; (linked, disjoint) copies of F;_; embedded in F; as full
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subsurfaces. Using induction (starting from 1.4), it is straightforward to write
down an embedded band representation O {m,, ny; m,, ny; ...;my, m}in By,
(not necessarily a braidword if k> 1), which is quasipositive if and only if all
n; are positive, with S(O{my, n;; my, ny;...;my, n;} )= F;. Since (by 2.8) it is
also the case that the enhancement of O{m,, n;;my, ny;...;my, ni}is 0 if and
only if all »; are positive, it remains to show that, if some », is negative, then
F is not quasipositive.

This is easy if for some j we have n;<—1: then F; has A(O, 1) as a
Murasugi summand (0.1), so F; is not quasipositive (4.8), so Fj is not
quasipositive (1.3). A more finicky proof (which also works in the preceding
case) is needed if n;=—1 for i=1, ...,k and n;=—1 for some j greater than 1:
inspection shows that F; contains an annulus 4 (O{2, 3}, f) with f=—5, which

*is not quasipositive (by calculation and 4.2). |

5.3. The following seems credible, though the evidence for it is
essentially limited to 5.1-5.2.

Conjecture. The enhancement of a quasipositive (resp., strongly quasi-
positive) fibered link is non-positive (resp., zero). |

APPENDIX to Section 5: Complex plane curves and the enhancement

The link L (T, 0) of a singularity is both quasipositive and fibered (in fact
it is Hopf-plumbed), and has enhancement 0 (e.g., by 2.1). A link-at-infinity
L(I',) is quasipositive, but need not be fibered; and, when L(I',0) is
fibered, it is not known whether its enhancement is necessarily 0, although
this is the case when L(T',0) is regular in the sense of [Ne]. If L(T,c0) is
connected, then it is regular, and thus fibered with enhancement 0, as asserted
in [N&R3]; note that the proof there is incomplete, [N&R3, corrigendum].

As remarked in 1A.7, it is not known whether or not a general link L(T', r)
(the transverse intersection of a complex plane curve with a round sphere
which need be neither very small nor very large) is quasipositive. Certainly
L(T',r) need not be fibered. Nonetheless, in analogy with 5.3, we may ask
whether, when L(T',r) is fibered, its enhancement must be non-positive.

6. THE ENHANCEMENT AND THE NEW LINK
POLYNOMIALS

6.1. Fantasy. Imagine that J. W. Alexander, whose «Note on Riemann
Spaces» [ Al] essentially introduced open-book structures, had developed a bit
more of the geometrical theory of fibered links and knots before he
discovered (quite combinatorially) the polynomial invariant which now bears
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his name [A2]. In such an alternative universe, how might the search for the
geometrical underpinnings of the Alexander polynomial have proceeded? I
suggest a scenario like the following. Immediately, it would have been noticed
that the degree of the Alexander polynomial of a fibered link equals the first
Betti number of its fiber surface; and, soon thereafter, that (up to
pnormalization) the leading coefficient is 1. This would have suggested,
correctly, that the polynomial of a fibered link is an invariant of the fiber
surface--namely, the characteristic polynomial of its algebraic monodromy.
The interpretation for general links, via Seifert surfaces and infinite cyclic
coverings, would have followed very naturally.

6.2. At present, the enhancement and the new link polynomials of a
fibered link are known to be related only in certain cases, and there only by
an inequality. I still cherish a hope that the analogy «Milnor number : Alexander
polynomial :: enhanced Milnor number : oriented polynomial» will be fruitful,
and not just in the fibered case.

6.3. The following estimate is derived in [Rul3].

Theorem [Rul3}. If L is either a generalized strict homogeneous braid or
a fibered arborescent link, then

*) ord, Pp=—4N(L)+u(L)
(and equality can occur for all possible values of \). |

The proof uses 5.1 and 4.1, and inductions on the Milnor number (slightly
different for the two cases) within the class of fibered links being considered.

Since generalized strict homogeneous braids and fibered arborescent links
are Hopf-plumbed, the following seems reasonable.

Conjecture. The inequality (*) holds for all Hopf-plumbed fibered links.

The obstacle to generalizing the proof of the Theorem to cover the
Conjecture is the inductive step.

6.4. The hope expressed in 6.2 would be distinctly encouraged if the
Conjecture of 6.3 were true for all fibered links. This, alas, is not the case.
Although, for instance, the iterated torus knots O{2,3;2,2k+1} and links
01{2,3;2,2k}, which are not all Hopf-plumbed, can indeed be shown to
satisfy (*), for other fibered links this inequality can fail arbitrarily badly. For
instance, the link K, in Figure 6.5 is fibered for every integer n (K is the
connected sum of a positive and a negative Hopf link, and K, is produced
from K, by repeated Stallings-Harer 0-twists) and can be shown to have
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enhancement 1 for all n (a proof is given in [N&R]); it falsifies (*) for negative
n.

¢ D

Ké .
)

6.5. FIGURE

6.6. It may be possible to salvage something from the Conjecture. The
following idea has not been developed, and is put forward here partly for
amusement value.

Specialize the oriented polynomial to R, (w)= P (v, v?),w=v% This is
not unmotivated; in fact, R; has (and is nearly characterized by) the
geometrically interesting property that, though non-trivial, it cannot distinguish
the positive Hopf link from the unknot. This suggests that, for fibered K,
ord,, Rx might be related (by an inequality) to the enhancement of K.

Indeed, 6.3 appears to generalize; moreover, the behavior of ord,, R for
the links of 6.5 is just as good as for the Hopf-plumbed examples. Here, the
major obstacle to progress is the following inequality (an analogue of 4.2),
which I have been unable to establish.

Conjecture. If F is a quasipositive Seifert surface with s (F) «split pieces»
(i.e., s(F)—1 is the rank of the free abelian group m, (SA\F), then
ord,, Ryp=1—s (F).

7. CAN THE SEIFERT FORM BE «<ENHANCED»?

Let F be a Seifert surface. As we have seen, the Seifert form of F doesn’t
determine quasipositivity of F, is insufficient to calculate the oriented, semi-
oriented, absolute, and Jones polynomials of the boundary of F, and--should
F happen to be a fiber surface—-is ignorant of the enhancement of (the
boundary of) F. One may wonder whether there is an «enhanced Seifert
form» which does determine one or more of these--preferably all of them, and
in such a way as to advance our understanding of their interrelations.
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There are ample hints in the preceding sections that in some way the
geometry of two complex variables provides an underlying connection among
quasipositivity, the enhancement, and (less clearly) the new link polynomials;
perhaps that is the place to look for an enhanced Seifert form. On a different
tack, on August 12, 1988, at the American Mathematical Society’s Centennial
meeting in Providence, Rhode Island, the mathematical physicist Edward
Witten anounced a geometric interpretation [Wi] of the Jones polynomial
(and at least some of the other new polynomials) in terms of Quantum Field
Theory; as the details emerge, they may reveal an enhanced Seifert form as a
sidelight.

The speculation which follows has rather a different flavor, and is meant
to be suggestive rather than programmatic.

If Sis a surface, call a 1-submanifold C of S full if C is non-empty and no
component of C bounds a disk on § (i.e., the regular neighborhood of C on
S is a full subsurface). Write SCC(S) for the set of full (oriented)
1-submanifolds of S modulo ambient isotopy on S (possibly exchanging
components). Each embedding f: S — $3 as a Seifert surface F=f(S) induces
a mapping from SCC (S) into Links, the set of oriented link types in 83, and
(using a push-off map on the second factor) from SCC(S)XSCC(S) into
Links X Links. In some sense, these mappings give a «universal enhanced
Seifert form», and less enhanced Seifert forms result by composition with
suitable link invariants. For instance, composing SCC (S)XSCC (S)— Links
X Links with «linking number» essentially recovers the usual Seifert form.

Of course, this «universal enhanced Seifert form» begs too many
questions--for instance, it determines the link type of the boundary of F and
therefore all the invariants of that boundary. But one may still wonder
whether a useable invariant might be yielded by a mapping of Links or
Links X Links which retains (even slightly) more information than linking
number.
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