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Real interpolation and compactness

FERNANDO COBOS

ABSTRACT. The behaviour of compactness under real interpolation is discussed. Classical re-
sults due to Krasnosel’skii, Lions-Peetre, Persson and Hayakawa are described, as well as others
obtained very recently by Edmunds, Potter, Fernandez and the author.

If we have (for example) an integral operator

Tfx)= o K(xy)fy)au(y)

usually the function space where the operator is defined is not uniquely es-
tablished by given conditions. Often investigated is the operator acting between
several function spaces. For this reason, it is important to have results which
give relationships between properties of a given operator considered in two dif-
ferent spaces. The celebrated Riesz-Thorin theorem is a non-trivial example
of such a result. Let us recall its statement.

Let (Q,u) be a measure space, with p a positive measure, and let L,
(I = p = o0) denote the space of all (eqmvalence classes of) p- measurable
functions fon Q, such that

] ”pz Pdu) e
IFll, = ( Qlf(x)l )

is finite.

Riesz-Thorin Theorem. Assume that p, # p,, g, # 4., and let T be a linear op-
erator which maps L, continuously into L, (j = 0,1), then T maps L, con-
tinuously into L, where p and q are given by

1/p = (1-8)/p, + O/p,, 1/g = (1-0)/g, + 0/, (0 <6 <)
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This result was proved in 1926 by M. Riesz with the restriction p = q.
Later on, Thorin in 1938 gave an entlrely new proof removing the restriction
p = g (see [1] and [13]).

In connection with this theorem, a natural question arises: whether or not
the compactness property of a linear operator can also be interpolated.

In 1960 this problem was solved affirmatively by Krasnosel’skii [7]. He
proved that under the hypothesis of the Riesz-Thorin theorem, if g, < co and
T:L, - L, is a compact mapping, then T°L, —» L, is also compact.

Another main result in interpblation theory is the Marcinkiewicz interpo-
lation theorem. Before stating this, let me recall that

= {fllf .= sup {tf %)} < oo}
t>0

where f* is the non-increasing rearrangement of f,

X0 = infid: p{x : M0 > 8)) = ¢}

Marcinkiewicz Theorem. Assume that p, # p,, 4, # 4., and let T be a linear
operator which maps L, continuously into L,,fo,,(i =0,1). Let 0 < 0 < I and put
7

1/p=(1-6)/p,+8/p,, 1/ = (1-9)/q, + /9. If p = g, then T maps L, con-
tinuously into L,

This result appeared in a note by Marcinkiewicz in 1939, without proof.
In 1956 Zygmund gave a proof and also applications of the theorem, which
cannot be obtained by the Riez-Thorin result. Note that L, < L, (see [1] and

[13D.

The study of abstract interpolation theory started in the early 1960’s. it
was motivated by questions connected with partial differential equations. Two
main methods were developed, the complex method (associated with the
Riesz-Thorin theorem) and the real method (connected with the Marcinkie-
wicz theorem). Let me recall the definition of the real interpolation space.

Let (4,,4,) be a compatible couple of Banach spaces (meaning that they are
continuously embedded in a topological vector space={). Then we can form
their sum 4, + A4, and their intersection 4, ~ A,. The sum consists of all x €=
such that we can write x = x, + X, for some x, € 4,and x, € 4,

The intersection and the sum are Banach spaces endowed with the fol-
lowing norms
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Ixll, . = maxtilxll, lxll, }
0 1 0 1

“-x||A0+Al = inf{”xo”,,o + Hx]”,{l X=X + xl}

We want to construct a Banach space A,, between the intersection and the
sum, and which has some properties in common with 4, and A4,. In this re-
spect, let

K(em,x) = inf{onHAo + e'"”-x.”,{l X=Xt xl}’ me”Z

(note that for each m this functional is an equivalent norm to that defined in
A, + A). Next, for 1 = g=ocoand 0 < 0 < 1, we put

Ayy = {X € A,+A4;: ”x”e,q: (E;_ (e‘e”‘K(e”',x))q)l/ﬂ<oo}

It turns out that we obtain such a Banach space, which also has the
interpolation property:

If T is a linear operator, which maps 4, continuously into B(j = 0,1)
[(4,4,) and (B,,B,) being compatible couples of Banach spaces ] then

K}

T:A,,~ B,
is also bounded (see [1] and [13] for details on this method).

As an example, let us mention that the following formulae hold

(Lpo’Lpl)B P = Lp’ (L O,oo’qu,oo)O,q = Lq

4,

(equivalent norms)
where 1/p = (I1-6)/p, + 0/p, and 1/q = (1-0)/q, + 9/4,.

Let us focus our attention on the behaviour of compactness under this in-
terpolation method. In other words, let us consider the problem of whether or
not Krasnosel’skii’s result can be extended to this abstract framework.

The first result in this direction appeared in 1964. It is contained in the
famous paper by Lions and Peetre [9] on the real interpolation method.

Lions-Peetre Theorem. Let (A,,A4,) and (B,,B,) be compatible couples of Ba-
nach spaces, and let T be a linear operator such that T:A,— B, is compact and
T:A,- B, is continuous.
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i) If B, = B, then T:A,,~ B, is compact.
ii) IfA, = A, then T:A,~ B, is compact.

In fact, they proved a more general result covering all interpolation func-
tors F such that for every Banach couple (4,,4,), the space F(A4,4,) is a Ba-
nach space of class C(8,4) (see [1]). In particular, the result is also true for the
complex method. '

Note that in this result we always have a degenerate couple. An abstract
general result for the case 4, # A, and B, # B, was established in 1964 by A.
Persson [12]. In the proof he used the Lions-Peetre theorem and required the
following approximation property on the last couple:

There exists a set D of linear operators
P:B, + B,~»B,+ B, and a constant C> 0 such that

1) P(B)c B,n B, (j= 0.
2) Pl 5SC(=01IforallP e D

3) For every ¢ > 0 and every finite set {b,,....b,} < B,, thereisa P € D
so that

”Pbk - b;(ngo <& (k = ],...,N).

An approximation condition of this kind was also used by Krein-Petunin
[8] to prove a compactness theorem between scales of Banach spaces. In fact,
as early as Krasnosel’skii’s paper the sequence of partial sum operators asso-
ciated to the Haar basis was used to derive the compactness result. Note that
this sequence has the properties (1) — (3).

Again Persson’s result is true for the same class of interpolation functors
F that we mentioned before.

So far as we are aware the only result for the general case without an ap-
proximation hypothesis is that given by Hayakawa [5] in 1969. He states that
if T is a linear operator such that the restrictions 7:4,— B, and T:4,— B, are
compact, then T'A'M—»BM is compact for all ® and ¢ with 0 < 6 < I and
1 = g < oo. Unfortunately his arguments are extremely difficult to follow.

A transparent proof of this result has been given very recently by Edmunds,
Potter and the author [2]. The approach developed therein enables us to in-
clude the cases 0 < ¢ < I and g = oo which were not considered by Ha-
yakawa.
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Note that if 0 < g < 1, /i.,,,, still makes sense and has the interpolation

property. The functional || |l,, is no longer a norm since it does not satisfy
the triangle inequality. The funtional || [l,, is only a quasi-norm.

Let me state our result and describe the main ideas of the proof. It only
works for the real method.

Theorem 1. Let (4,,4,) and (B,,B,) be compatible couples of Banach spaces and
let T be a linear operator such that T:A,— B, and T:A,~ B, are compact. Then
if0 < qg=ocoand0 < 0 < I, T:Ay,~ By, Is also compact.

Sketch of the proof. (full details can be found in [2]). Let 4, be the closure of
Ay N A, in 4, (j = 0,1) and define B, similarly. First note that the restrictions
T:A,~ B, and T:4,—_B, are compact.

Next we are going to embed these last spaces in vector-valued sequences
spaces. With this aim, put

D, =[B,+B,K(e" )], e*"D,, = [B,+B,,e*"K(e",’)]
(here m € Z and 0 = 0 = I), and consider the following Banach spaces
Ci(D,) = {(x): X, € Dy N(x e, = sup K(emx,) <co

and "llz;r_nm K(ex,) = 0}

CieD,) = {(x,): X, € e"D,, llxyllcy = sup e-"K(emx,) <oo

and lim ee-"K(e™x,) = 0}.

m-co

It is not hard to check that the map
Jjix = (LxxxX,...)

is a continuous embedding from B, into C;(D,) and from B, into C'(e-"D,).
Hence, calling

Tx = j(ITx) = (..Tx,TxTx,...)
we have that

T:4,~C+D,)and T: 4,-C(e"D,)
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are compact.
The next step is to show that the bounded operator
(*) T: (dpd)o,~(CD,),Ci{e"D,)),,
is also compact. For this purpose, let us consider the following families of map-
pings between the sequence spaces. Given (x,) € CD,) + C(e"D,) and
n € N, put
P(x,) = (..0,0,X_, 1, X_\ e Xgpees XX 1,0,0,...)
P.(X,) = (00,0, X0 X100 Xy X, 1)
P.(x,) = (X_p yX_peux_,0,0,..)
R(x,) = (P_P,+P)XX,) = (..0,0.X_,, X 00X _yoponr).

We shall see that 7 is the limit of the sequence (P,7)=_, and later on that
this sequence is formed by compact operators.

We have
\P,T— Ty, = IP.(P,T-T) + P.(P,T-Dl,,

= CUIP(P, T~ Dl + IP,(P,T = T)ll,,)
where C is the constant in the quasi-triangle inequality for || [l,,; C = I if
I = g = oo. Let us fix our attention on [|P_(P,7—T)ll,, The interpolation
property implies that
IP_(P,T=D)lly, = PP, T—Dl-*IP_(P,T- DI
= I7151P_(P,7— Tyl
= [IT1IR, T~ T1ls-.
From the fact that 7 : 4~ C(D,) is compact and that
lim IR (x) — (el = 0

it follows that ||R,T— T1|}~*-0 as n— oo, and consequently I1P_(P,T—Dll,,~0
as n— oo.

With a similar reasoning, but now using the fact that 7 : 4, C%(e-"D,) is
compact, we obtain that
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lim \P,(P,T-1l,, = 0.

Whence 7 is the limit of the sequence (P,T) in the operator norm.
Let us see now that the sequence (P,7) is formed by compact operators. We
have the following diagram

T
4, —>C«D,)

7 /
A—>CieD,)

Thus, the Lions-Peetre result implies that

CD,)NCi(e"D,)S(CHD,), C(e"D,)),

P, nT N (.f_!o’él)s,a" (C«D,), C(eD,))s,

is compact.

This proves (*). To complete the proof, we only need to identify the inter-
polated spaces.

It is easy to see that
(ApA o, = (ApA s,
On the other hand, it is shown in [2], Lemma 2.1, that
(C«D,), Ci(e"D,)) (e D).

This finishes the proof. [

These techniques also allow us to show that the same conclusion holds
when the assumption

T : A,— B, compactly
is replaced by
B, continuously embedded in B,

(see [2], Theorem 3.2), Note that this last result is a natural extension of the
Lions-Peetre theorem (i).
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Now the question is whether or not the corresponding extension of part
(i) in the Lions-Peetre theorem also holds. This problem has been solved in
the affirmative in a paper by Fernandez and the author [3]. To be precise, we
have established.

Theorem 2. Let (B,,B,) be a compatible couple of Banach spaces and suppose
that A,,A, are Banach spaces such that A, is continuously embedded in A,. Let
T be a linear operator such that T : A,~ B, is bounded and T : A, - B, is com-
pact. Then if 0 < © < 1 and 0 < q = oo, T : A,,~ B,, is compact.

The proof of this result is based on the description of the real interpola-
tion space through the J-functional

Jenx) = maxlixll, ellxll, }, x € 44, m e Z.

Let me recall that x € 4,, if and only if there exists a sequence
(u,) c A, n A, with

“) X= § u, (convergence in 4,+A4,)

and

(9 MMy =( 3 (e *J(emu,))"<oo.

Moreover
lixll,, is equivalent to inf {li(u,);,}
where the infimum is extended over all sequences (u,,) satisfying (4) and (5).

Instead of the C, spaces modelled on the sum B,+ B, that we have used
before, we now need vector-valued /, spaces modelled on the intersection
A,NA, (see [3], Theorem 2.1).

The procedures we used in Theorems 1 and 2 also work for the (more
general) method of interpolation with a function parameter (see [2], Theorem
3.3). We refer to [11], [4] and [10] for details on this method. Using it one can
obtain certain Orlicz spaces as interpolation spaces between L ,-spaces.

Finally, let us mention that in [2] one can find applications of our inter-
polation results to show that certain integral operators are compact. In par-
ticular, we derive a theorem of this kind due to Kantorovich [6).
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