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ABSTRACT

In this paper, we consider order statistics and outlier models, and focus pri-
marily on multiple-outlier models and associated robustness issues. We first
synthesise recent developments on order statistics arising from independent and
non-identically distributed random variables based primarily on the theory of
permanents. We then highlight various applications of these results in evaluat-
ing the robustness properties of several linear estimators when multiple outliers
are possibly present in the sample.
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Introduction

Order statistics and their properties have been studied rather extensively since the
early part of the last century. Yet, most of these studies focused only on the case
when order statistics are from independent and identically distributed (IID) random
variables. Motivated by robustness issues, studies of order statistics from outlier
models began in early 70s. Though much of the early work in this direction concen-
trated only on the case when there is one outlier in the sample (single-outlier model),
there has been a lot of work during the past fifteen years or so on multiple-outlier
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models and more generally on order statistics from independent and non-identically
distributed (INID) random variables. These results have also enabled useful and in-
teresting discussions on the robustness of different estimators of parameters of a wide
range of distributions.

These generalizations, of course, required the use of special methods and tech-
niques. Since the book by Barnett and Lewis [43] has authoritatively covered the
developments on the single-outlier model, we focus our attention here primarily on
the multiple-outlier model which is quite often handled as a special case in the INID
framework. We present many results on order statistics from multiple-outlier models
and illustrate their use in robustness studies. We also point out some unresolved is-
sues as open problems at a number of places which hopefully would perk the interest
of some readers!

1. Order statistics from IID variables

Let X1, . . . , Xn be IID random variables from a population with cumulative distribu-
tion function F (x) and probability density function f(x). Let X1:n < X2:n < · · · <
Xn:n be the order statistics obtained by arranging the n Xi’s in increasing order of
magnitude. Then, the distribution function of Xr:n (1 ≤ r ≤ n) is

Fr:n(x) = Pr(at least r of the n X’s are at most x)

=
n∑

i=r

Pr(exactly i of the n X’s are at most x)

=
n∑

i=r

(
n

i

)
{F (x)}i{1− F (x)}n−i, x ∈ R. (1)

Using the identity, obtained by repeated integration by parts,

n∑
i=r

(
n

i

)
{F (x)}i{1− F (x)}n−i =

∫ F (x)

0

n!
(r − 1)!(n− r)!

tr−1(1− t)n−r dt,

we readily obtain from (1) the density function of Xr:n (1 ≤ r ≤ n) as

fr:n(x) =
n!

(r − 1)!(n− r)!
{F (x)}r−1{1− F (x)}n−rf(x), x ∈ R. (2)

The density function of Xr:n (1 ≤ r ≤ n) in (2) can also be derived using multi-
nomial argument as follows. Consider the event (x < Xr:n ≤ x + ∆x). Then,

Pr(x < Xr:n ≤ x + ∆x)

=
n!

(r − 1)!(n− r)!
{F (x)}r−1{F (x+∆x)−F (x)}{1−F (x+∆x)}n−r +O((∆x)2),
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where O((∆x)2) denotes terms of higher order (corresponding to more than one of
the Xi’s falling in the interval (x, x + ∆x]), and so

fr:n(x) = lim
∆x↓0

Pr(x < Xr:n ≤ x + ∆x)
∆x

=
n!

(r − 1)!(n− r)!
{F (x)}r−1{1− F (x)}n−rf(x).

Proceeding similarly, we obtain the joint density of Xr:n and Xs:n (1 ≤ r < s ≤ n) as

fr,s:n(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
{F (x)}r−1{F (y)− F (x)}s−r−1

× {1− F (y)}n−sf(x)f(y), −∞ < x < y < ∞. (3)

The single and product moments of order statistics can be obtained from (2)
and (3) by integration. This computation has been carried out for numerous distri-
butions and for a list of available tables, one may refer to the books in [57,66].

The area of order statistics has had a long and rich history. While the book in [6]
provides an introduction to this area, the books in [53, 57] provide comprehensive
reviews on various developments on order statistics. The books in [25, 66] describe
various inferential methods based on order statistics. The two volumes in [35, 36]
highlight many methodological and applied aspects of order statistics. Order statis-
tics have especially found key applications in parametric inference, nonparametric
inference and robust inference.

In this paper, we synthesise some recent advances on order statistics from INID
random variables and pay special emphasis to results on order statistics from single-
outlier and multiple-outlier models, and then illustrate their applications in the robust
estimation of parameters of different distributions. It is important to mention here,
however, that some developments on topics such as inequalities, stochastic order-
ings, and characterizations that are not directly relevant to the present discussion on
outliers and robustness have not been stressed in this article.

2. Order statistics from a single-outlier model and robust esti-
mation for normal distribution

2.1. Introduction

The distributions of order statistics presented in the last section, though simple in
form, become quite complicated once the assumption of identical distribution of the
random variables is lost. A well-known case in this scenario is the single-outlier
model wherein X1, . . . , Xn are independent random variables with X1, . . . , Xn−1 being
from a population with cumulative distribution function F (x) and probability density
function f(x) and Xn being an outlier from a different population with cumulative

9
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distribution function G(x) and probability density function g(x). As before, let X1:n ≤
· · · ≤ Xn:n denote the order statistics obtained from this single-outlier model.

2.2. Distributions of order statistics

By using multinomial arguments and accounting for the fact that the outlier Xn may
fall in any of the three intervals (−∞, x], (x, x + ∆x] and (x + ∆x,∞), the density
function of Xr:n (1 ≤ r ≤ n) can be obtained as (see [5, 43,58])

fr:n(x) =
(n− 1)!

(r − 2)!(n− r)!
{F (x)}r−2G(x)f(x){1− F (x)}n−r

+
(n− 1)!

(r − 1)!(n− r)!
{F (x)}r−1g(x){1− F (x)}n−r

+
(n− 1)!

(r − 1)!(n− r − 1)!
{F (x)}r−1f(x){1− F (x)}n−r−1{1−G(x)},

x ∈ R, (4)

where the first and last terms vanish when r = 1 and r = n, respectively. Proceeding
similarly, the joint density function of Xr:n and Xs:n (1 ≤ r < s ≤ n) can be expressed
as

fr,s:n(x, y)

=
(n− 1)!

(r − 2)!(s− r − 1)!(n− s)!
{F (x)}r−2G(x)f(x){F (y)− F (x)}s−r−1

× f(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 1)!(n− s)!
{F (x)}r−1g(x){F (y)− F (x)}s−r−1

× f(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 2)!(n− s)!
{F (x)}r−1f(x){F (y)− F (x)}s−r−2

× {G(y)−G(x)}f(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 1)!(n− s)!
{F (x)}r−1f(x){F (y)− F (x)}s−r−1

× g(y){1− F (y)}n−s

+
(n− 1)!

(r − 1)!(s− r − 1)!(n− s− 1)!
{F (x)}r−1f(x){F (y)− F (x)}s−r−1

× f(y){1− F (y)}n−s−1{1−G(y)}, −∞ < x < y < ∞, (5)

where the first, middle and last terms vanish when r = 1, s = r + 1, and s = n,
respectively.
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2.3. Moments of order statistics

The single and product moments of order statistics in this case need to be obtained
by integration from (4) and (5), respectively. Except in a few cases like the expo-
nential distribution, the required integrations need to be done by numerical methods,
and as is evident from the expressions in (4) and (5) this may be computationally
very demanding. For example, in the case of the normal distribution, the required
computations were carried out in [56] for the two cases:

(i) Location-outlier model:

X1, . . . , Xn−1
d= N(0, 1) and Xn

d= N(λ, 1),

(ii) Scale-outlier model:

X1, . . . , Xn−1
d= N(0, 1) and Xn

d= N(0, τ2).

The values of means, variances and covariances of order statistics for sample sizes up
to 20 for different choices of λ and τ were all tabulated in [56].

2.4. Robust estimation for normal distribution

By using the tables in [56], detailed robustness examination has been carried out
in [5, 58] on various linear estimators of the normal mean, which included

(i) Sample mean:

X̄n =
1
n

n∑
i=1

Xi:n;

(ii) Trimmed means:

Tn(r) =
1

n− 2r

n−r∑
i=r+1

Xi:n;

(iii) Winsorized means:

Wn(r) =
1
n

[n−r−1∑
i=r+2

Xi:n + (r + 1)[Xr+1:n + Xn−r:n]
]
;

(iv) Modified maximum likelihood estimators:

Mn(r) =
1
m

[n−r−1∑
i=r+2

Xi:n + (1 + rβ)[Xr+1:n + Xn−r:n]
]
,

where m = n− 2r + 2rβ;
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λ
Estimator 0.0 0.5 1.0 1.5 2.0 3.0 4.0 ∞

X̄10 0.0 0.05000 0.10000 0.15000 0.20000 0.30000 0.40000 ∞
T10(1) 0.0 0.04912 0.09325 0.12870 0.15400 0.17871 0.18470 0.18563
T10(2) 0.0 0.04869 0.09023 0.12041 0.13904 0.15311 0.15521 0.15538
Med10 0.0 0.04832 0.08768 0.11381 0.12795 0.13642 0.13723 0.13726
W10(1) 0.0 0.04938 0.09506 0.13368 0.16298 0.19407 0.20239 0.20377
W10(2) 0.0 0.04889 0.09156 0.12389 0.14497 0.16217 0.16504 0.16530
M10(1) 0.0 0.04934 0.09484 0.13311 0.16194 0.19229 0.20037 0.20169
M10(2) 0.0 0.04886 0.09137 0.12342 0.14418 0.16091 0.16369 0.16394
L10(1) 0.0 0.04869 0.09024 0.12056 0.13954 0.15459 0.15727 0.15758
L10(2) 0.0 0.04850 0.08892 0.11700 0.13328 0.14436 0.14576 0.14585
G10 0.0 0.04847 0.08873 0.11649 0.13237 0.14285 0.14407 0.14414

Table 1 – Bias of various estimators of µ for n = 10 when a single outlier is from
N(µ + λ, 1) and the others from N(µ, 1)

(v) Linearly weighted means:

Ln(r) =
1

2
(

n
2 − r

)2
n
2−r∑
i=1

(2i− 1)[Xr+i:n + Xn−r−i+1:n]

for even values of n;

(vi) Gastwirth mean:

Gn = 0.3(X[ n
3 ]+1:n + Xn−[ n

3 ]:n) + 0.2(Xn
2 :n + Xn

2 +1:n)

for even values of n, where
[

n
3

]
denotes the integer part of n

3 .

By making use of the tables of means, variances, and covariances of order statistics
from a single location-outlier normal model presented in [56], bias and mean square
error of all these estimators were computed and are presented in tables 1 and 2,
respectively for n = 10. From these tables, we observe that though median gives the
best protection against the presence of outlier in terms of bias, it comes at the cost of
a higher mean square error than some other robust estimators. The trimmed mean,
linearly weighted mean and the modified maximum likelihood estimator turn out to
be quite robust and efficient in general.

In table 3, similar results are presented for a single scale-outlier normal model.
In this case, since all the estimators considered are unbiased, comparisons are made
only in terms of variance, and similar conclusions are reached.

Remark 2.1. It is clear from (4) and (5) that analysis of multiple-outlier models in this
direct approach would become extremely difficult if not impossible! For example, if we
allow two outliers in the sample, the marginal density of Xr:n will have 5 terms while
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λ
Estimator 0.0 0.5 1.0 1.5 2.0 3.0 4.0 ∞

X̄10 0.10000 0.10250 0.11000 0.12250 0.14000 0.19000 0.26000 ∞
T10(1) 0.10534 0.10791 0.11471 0.12387 0.13285 0.14475 0.14865 0.14942
T10(2) 0.11331 0.11603 0.12297 0.13132 0.13848 0.14580 0.14730 0.14745
Med10 0.13833 0.14161 0.14964 0.15852 0.16524 0.17072 0.17146 0.17150
W10(1) 0.10437 0.10693 0.11403 0.12405 0.13469 0.15039 0.15627 0.15755
W10(2) 0.11133 0.11402 0.12106 0.12995 0.13805 0.14713 0.14926 0.14950
M10(1) 0.10432 0.10688 0.11396 0.12385 0.13430 0.14950 0.15513 0.15581
M10(2) 0.11125 0.11395 0.12097 0.12974 0.13770 0.14649 0.14853 0.14876
L10(1) 0.11371 0.11644 0.12337 0.13169 0.13882 0.14626 0.14797 0.14820
L10(2) 0.12097 0.12386 0.13105 0.13933 0.14598 0.15206 0.15310 0.15318
G10 0.12256 0.12549 0.13276 0.14111 0.14777 0.15376 0.15472 0.15479

Table 2 – Mean square error of various estimators of µ for n = 10 when a single outlier
is from N(µ + λ, 1) and the others from N(µ, 1)

τ
Estimator 0.5 1.0 2.0 3.0 4.0 ∞

X̄10 0.09250 0.10000 0.13000 0.18000 0.25000 ∞
T10(1) 0.09491 0.10534 0.12133 0.12955 0.13417 0.14942
T10(2) 0.09953 0.11331 0.12773 0.13389 0.13717 0.14745
Med10 0.11728 0.13833 0.15375 0.15953 0.16249 0.17150
W10(1) 0.09571 0.10437 0.12215 0.13221 0.13801 0.15754
W10(2) 0.09972 0.11133 0.12664 0.13365 0.13745 0.14950
M10(1) 0.09548 0.10432 0.12187 0.13171 0.13735 0.15581
M10(2) 0.09940 0.11125 0.12638 0.13328 0.13699 0.14876
L10(1) 0.09934 0.11371 0.12815 0.13436 0.13769 0.14820
L10(2) 0.10432 0.12097 0.13531 0.14101 0.14398 0.15318
G10 0.10573 0.12256 0.13703 0.14270 0.14565 0.15479

Table 3 – Variance of various estimators of µ for n = 10 when a single outlier is from
N(µ, τ2) and the others from N(µ, 1)
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the joint density of (Xr:n, Xs:n) will have 13 terms. For this reason, majority of such
work in the outlier literature have dealt with only the single-outlier model case; see
[43]. Therefore, special tools and techniques are needed to deal with multiple-outlier
models as will be demonstrated in subsequent sections.

3. Permanents

3.1. Introduction

The permanent function was introduced by Binet and Cauchy (independently) as
early as in 1812, more or less simultaneously with the determinant function. The fa-
mous conjecture posed by van der Waerden [91] concerning the minimum permanent
over the set of doubly stochastic matrices was primarily responsible for attracting the
attention of numerous mathematicians towards the theory of permanents. van der
Waerden’s conjecture was finally solved by Egorychev, and independently by Falik-
man, around 1980. This resulted in an increased activity in this area as it is clearly
evident from the expository book on permanents by Minč [78] and the two subsequent
survey papers [79, 80]. These works will make excellent sources of reference for any
reader interested in the theory of permanents.

Suppose A = ((ai,j)) is a square matrix of order n. Then, the permanent of the
matrix A is defined to be

Per A =
∑
P

n∏
j=1

aj,ij
, (6)

where
∑

P denotes the sum over all n! permutations (i1, i2, . . . , in) of (1, 2, . . . , n). The
definition of the permanent in (6) is thus similar to that of the determinant except
that it does not have the alternating sign (depending on whether the permutation is
of even or odd order). Consequently, it is not surprising to see the following basic
properties of permanents.

Property 3.1. Per A is unchanged if the rows or columns of A are permuted.

Property 3.2. If A(i, j) denotes the sub-matrix of order n− 1 obtained from A by
deleting the i-th row and the j-th column, then

Per A =
n∑

i=1

ai,j Per A(i, j), j = 1, 2, . . . , n

=
n∑

j=1

ai,j Per A(i, j), i = 1, 2, . . . , n.

That is, the permanent of a matrix can be expanded by any row or column.
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Property 3.3. If A∗ denotes the matrix obtained from A simply by replacing the
elements in the i-th row by c ai,j , j = 1, 2, . . . , n, then

PerA∗ = cPerA.

Property 3.4. If A∗∗ denotes the matrix obtained from A by replacing the elements
in the i-th row by ai,j + bi,j (j = 1, 2, . . . , n) and A∗ the matrix obtained from A by
replacing the elements in the i-th row by bi,j (j = 1, 2, . . . , n), then

PerA∗∗ = PerA + PerA∗.

Due to the absence of the alternating sign in (6), the permanent of a matrix in
which two or more rows (or columns) are repeated need not be zero (unlike in the case
of a determinant). Let us usea1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

· · · · · ·

 } i1
} i2

to denote a matrix in which the first row is repeated i1 times, the second row is
repeated i2 times, and so on.

3.2. Log-concavity

An interesting and important result in the theory of permanents of non-negative
matrices is the Alexandroff inequality. This result, as illustrated in [40], is useful in
establishing the log-concavity of distribution functions of order statistics.

For the benefit of readers, we present below a brief introduction to log-concavity
and some related properties. A sequence of non-negative numbers α1, α2, . . . , αn is
said to be log-concave if α2

i ≥ αi−1 αi+1 (i = 2, 3, . . . , n − 1). The following lemma
presents a number of elementary properties of such log-concave sequences.

Lemma 3.5. Let α1, α2, . . . , αn and β1, β2, . . . , βn be two log-concave sequences.
Then the following statements hold:

(i) If αi > 0 for i = 1, 2, . . . , n, then

αi

αi−1
≥ αi+1

αi
, i = 2, . . . , n− 1;

that is, αi/αi−1 is non-increasing in i.

(ii) If αi > 0 for i = 1, 2, . . . , n, then α1, α2, . . . , αn is unimodal; that is,

α1 ≤ α2 ≤ · · · ≤ αk ≥ αk+1 ≥ · · · ≥ αn

for some k ( 1 ≤ k ≤ n).
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(iii) The sequence α1β1, α2β2, . . . , αnβn is log-concave.

(iv) The sequence γ1, γ2, . . . , γn is log-concave, where

γk =
k∑

i=1

αi βk+1−i, k = 1, 2, . . . , n.

(v) The sequences α1, α1+α2, . . . ,
∑n

i=1 αi and αn, αn−1+αn, . . . ,
∑n

i=1 αi are both
log-concave.

(vi) The sequence of combinatorial coefficients
(
n
i

)
, i = 0, 1, . . . , n, is log-concave.

Proof. (i), (iii), and (vi) are easily verified.
Since from (i)

α2

α1
≥ α3

α2
≥ · · · ≥ αn

αn−1

and that there must exist some k (1 ≤ k ≤ n) such that

α2

α1
≥ · · · ≥ αk

αk−1
≥ 1 ≥ αk+1

αk
≥ · · · ≥ αn

αn−1
,

(ii) follows.
(iv) may be proved directly by showing γ2

i ≥ γi−1γi+1 after carefully pairing terms
on both sides of the inequality.

The first part of (v) follows from (iv) simply by taking βi = 1 for i = 1, 2, . . . , n.
Since αn, αn−1, . . . , α1 is log-concave, the second part of (v) follows immediately.

Interested readers may refer to the classic book on inequalities in [65] for an
elaborate treatment on log-concavity.

Now, we shall simply state the Alexandroff inequality for permanents of non-
negative matrices and refer the readers to [92] for an elegant proof.

Theorem 3.6. Let

A =

a1

...
an


be a non-negative square matrix of order n. Then,

(PerA)2 ≥ Per


a1

...
an−2

an−1


} 2

Per


a1

...
an−2

an


} 2
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Remark 3.7. The above given Alexandroff’s inequality was proved in [1] for a general
function called the “mixed discriminant” and, as a matter of fact, there is no mention
of permanents even in the paper. After almost forty years, Egorychev realized that
the result, when specialized to a permanental inequality, is what is needed to prove the
van der Waerden conjecture. As mentioned earlier, this inequality will be used later
on to establish the log-concavity of distribution functions of order statistics arising
from INID random variables.

Theorem 3.8 (Newton’s theorem). If b1, b2, . . . , bn are all real and if
n∏

i=1

(x + bi) =
n∑

r=0

(
n

r

)
αr xr,

then α2
r ≥ αr−1αr+1 for 1 ≤ r ≤ n − 1; that is, α0, α1, . . . , αn form a log-concave

sequence.

For a proof, interested readers may refer to [65, pp. 51–52].

4. Order statistics from INID variables

4.1. Distributions and joint distributions

Let X1, X2, . . . , Xn be independent random variables with Xi having cumulative dis-
tribution function Fi(x) and probability density function fi(x). Let X1:n ≤ X2:n ≤
· · · ≤ Xn:n be the order statistics obtained from the above n variables. Then, for
deriving the density function of Xr:n, let us consider

Pr(x < Xr:n ≤ x + ∆x)

=
1

(r − 1)!(n− r)!

∑
P

Fi1(x) · · ·Fir−1(x){Fir (x + ∆x)− Fir (x)}

× {1− Fir+1(x + ∆x)} · · · {1− Fin
(x + ∆x)}+ O((∆x)2), (7)

where
∑

P denotes the sum over all n! permutations (i1, i2, . . . , in) of (1, 2, . . . , n).
Dividing both sides of (7) by ∆x and then letting ∆x tend to zero, we obtain the
density function of Xr:n (1 ≤ r ≤ n) as

fr:n(x) =
1

(r − 1)!(n− r)!

∑
P

Fi1(x) · · ·Fir−1(x) fir
(x)

× {1− Fir+1(x)} · · · {1− Fin
(x)}, x ∈ R. (8)

From (8) and (6), we then readily see that the density function of Xr:n (1 ≤ r ≤ n)
can be written as

fr:n(x) =
1

(r − 1)!(n− r)!
Per A1, x ∈ R, (9)
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where

A1 =

 F1(x) F2(x) · · · Fn(x)
f1(x) f2(x) · · · fn(x)

1− F1(x) 1− F2(x) · · · 1− Fn(x)

 } r − 1
} 1
} n− r

. (10)

The permanent representation of fr:n(x) in (9) is originally due to [93].
Similarly, for deriving the joint density function of Xr:n and Xs:n (1 ≤ r < s ≤ n),

let us consider

Pr(x < Xr:n ≤ x + ∆x, y < Xs:n ≤ y + ∆y)

=
1

(r − 1)!(s− r − 1)!(n− s)!

∑
P

Fi1(x) · · ·Fir−1(x){Fir
(x + ∆x)− Fir

(x)}

× {Fir+1(y)− Fir+1(x + ∆x)} · · · {Fis−1(y)− Fis−1(x + ∆x)}
× {Fis

(y + ∆y)− Fis
(y)}{1− Fis+1(y + ∆y)} · · · {1− Fin

(y + ∆y)}
+ O((∆x)2 ∆y) + O(∆x (∆y)2), (11)

where O((∆x)2 ∆y) denotes terms of higher order corresponding to more than one
of the Xi’s falling in (x, x + ∆x] and exactly one in (y, y + ∆y], and O(∆x (∆y)2)
corresponding to exactly one of the Xi’s falling in (x, x + ∆x] and more than one in
(y, y + ∆y]. Dividing both sides of (11) by ∆x∆y and then letting both ∆x and ∆y
tend to zero, we obtain the joint density function of Xr:n and Xs:n (1 ≤ r < s ≤ n)
as

fr,s:n(x, y) =
1

(r − 1)!(s− r − 1)!(n− s)!

∑
P

Fi1(x) · · ·Fir−1(x)fir
(x)

× {Fir+1(y)− Fir+1(x)} · · · {Fis−1(y)− Fis−1(x)}
× fis(y){1− Fis+1(y)} · · · {1− Fin(y)}, −∞ < x < y < ∞. (12)

From (12) and (6), we readily see that the joint density function of Xr:n and Xs:n

(1 ≤ r < s ≤ n) can be written as

fr,s:n(x, y) =
1

(r − 1)!(s− r − 1)!(n− s)!
Per A2, −∞ < x < y < ∞, (13)

where

A2 =


F1(x) F2(x) · · · Fn(x)
f1(x) f2(x) · · · fn(x)

F1(y)− F1(x) F2(y)− F2(x) · · · Fn(y)− Fn(x)
f1(y) f2(y) · · · fn(y)

1− F1(y) 1− F2(y) · · · 1− Fn(y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

.
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Proceeding similarly, we can show that the joint density function of Xr1:n, Xr2:n,
. . . , Xrk:n (1 ≤ r1 < r2 < · · · < rk ≤ n) can be written as

fr1,r2,...,rk
(x1, x2, . . . , xk)

=
1

(r1 − 1)!(r2 − r1 − 1)! · · · (rk − rk−1 − 1)!(n− rk)!
Per Ak,

−∞ < x1 < x2 < · · · < xk < ∞,

where

Ak =



F1(x1) · · · Fn(x1)
f1(x1) · · · fn(x1)

F1(x2)− F1(x1) · · · Fn(x2)− Fn(x1)
f1(x2) · · · fn(x2)
· · · · ·

F1(xk)− F1(xk−1) · · · Fn(xk)− Fn(xk−1)
f1(xk) · · · fn(xk)

1− F1(xk) · · · 1− Fn(xk)



} r1 − 1
} 1
} r2 − r1 − 1
} 1

} rk − rk−1 − 1
} 1
} n− rk

.

Permanent expressions may also be presented for cumulative distribution functions
of order statistics. For example, let us consider

Fr:n(x) = Pr(Xr:n ≤ x)

=
n∑

i=r

Pr(exactly i of X’s are ≤ x)

=
n∑

i=r

1
i!(n− i)!

∑
P

Fj1(x) · · ·Fji(x) {1− Fji+1(x)} · · · {1− Fjn(x)}, (14)

where
∑

P denotes the sum over all n! permutations (j1, j2, . . . , jn) of (1, 2, . . . , n).
From (14) and (6), we see that the cumulative distribution function of Xr:n (1 ≤ r ≤ n)
can be written as

Fr:n(x) =
n∑

i=r

1
i!(n− i)!

Per B1, x ∈ R, (15)

where

B1 =
(

F1(x) F2(x) · · · Fn(x)
1− F1(x) 1− F2(x) · · · 1− Fn(x)

)
} i
} n− i

.

The permanent form of Fr:n(x) in (15) is due to [40]. It should be mentioned here
that an equivalent expression for the cumulative distribution function of Xr:n is (see
[53, p. 22])

Fr:n(x) =
n∑

i=r

∑
Pi

[ i∏
`=1

Fj`
(x)
][ n∏

`=i+1

{1− Fj`
(x)}

]
, (16)
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where
∑

Pi
denotes the sum over all permutations (j1, j2, . . . , jn) of (1, 2, . . . , n) for

which j1 < j2 < · · · < ji and ji+1 < ji+2 < · · · < jn. Realize that
∑

Pi
includes

(
n
i

)
terms in (16), while

∑
P in (14) includes n! terms; see [57].

Proceeding similarly, the joint cumulative distribution function of Xr1:n, Xr2:n, . . . ,
Xrk:n (1 ≤ r1 < r2 < · · · < rk ≤ n) can be written as

Fr1,r2,...,rk:n(x1, x2, . . . , xk) = Pr(Xr1:n ≤ x1, Xr2:n ≤ x2, . . . , Xrk:n ≤ xk)

=
∑ 1

j1! j2! · · · jk+1!
PerBk,

−∞ < x1 < x2 < · · · < xk < ∞, (17)

where

Bk =


F1(x1) · · · Fn(x1)

F1(x2)− F1(x1) · · · Fn(x2)− Fn(x1)
· · · · ·

F1(xk)− F1(xk−1) · · · Fn(xk)− Fn(xk−1)
1− F1(xk) · · · 1− Fn(xk)


} j1
} j2

} jk

} jk+1

and the sum is over j1, j2, . . . , jk+1 with j1 ≥ r1, j1+j2 ≥ r2, . . . , j1+j2+ · · ·+jk ≥ rk

and j1 + j2 + · · ·+ jk+1 = n.

Remark 4.1. If the condition x1 < x2 < · · · < xk is not imposed in (17), then some of
the inequalities among Xr1:n ≤ x1, Xr2:n ≤ x2, . . . , Xrk:n ≤ xk will be redundant, and
the necessary probability can then be determined after making appropriate reductions.

4.2. Log-concavity

In this section, we shall establish the log-concavity of distribution functions of order
statistics by making use of Alexandroff’s inequality in Theorem 3.6. This interesting
result, as first proved in [40], is presented in the following theorem.

Theorem 4.2. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics obtained
from n INID variables with cumulative distribution functions F1(x), F2(x), . . . , Fn(x).
Then, for fixed x, the sequences {Fr:n(x)}n

r=1 and {1 − Fr:n(x)}n
r=1 are both log-

concave. If, further, the underlying variables are all continuous with respective den-
sities f1(x), f2(x), . . . , fn(x), then the sequence {fr:n(x)}n

r=1 is also log-concave.

Proof. Let us denote, for i = 1, 2, . . . , n,

αi = Per
(

F1(x) F2(x) · · · Fn(x)
1− F1(x) 1− F2(x) · · · 1− Fn(x)

)
} i
} n− i

.

Since the above square matrix is non-negative, a simple application of Alexandroff’s
inequality in Theorem 3.6 implies that

α2
i ≥ αi−1 αi+1, i = 2, 3, . . . , n− 1;
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that is, the sequence {αi}n
i=1 is log-concave. After directly verifying that the coeffi-

cients { 1
i!(n−i)!}

n
i=1 form a log-concave sequence, we have the sequence { αi

i!(n−i)!}
n
i=1

to be log-concave due to (iii) in Lemma 3.5. Now, from the permanent expression of
the cumulative distribution function of Xr:n in (15) and statement (v) in Lemma 3.5,
we immediately have the log-concavity of the sequence {Fr:n(x)}n

r=1. Realizing that
the partial sums of { αi

i!(n−i)!}
n
i=1 from the left also form a log-concave sequence due

to (v) in Lemma 3.5, we have the log-concavity of the sequence {1 − Fr:n(x)}n
r=1.

A similar application of Alexandroff’s inequality in the permanent expression of the
density function of Xr:n in (9) will reveal that the sequence {fr:n(x)}n

r=1 is also log-
concave.

Remark 4.3. The log-concavity of {Fr:n(x)}n
r=1 established above has an important

consequence. Suppose Fr:n(x) > 0 for r = 1, 2, . . . , n. First of all, observe that

Fr:n(x)
Fr−1:n(x)

=
Pr(Xr:n ≤ x)

Pr(Xr−1:n ≤ x)
= Pr(Xr:n ≤ x | Xr−1:n ≤ x).

Then, due to (i) in Lemma 3.5, we can conclude that the sequence of conditional
probabilities {Pr(Xr:n ≤ x | Xr−1:n ≤ x)}n

r=1 is non-increasing in r.

Remark 4.4. The log-concavity of {Fr:n(x)}n
r=1 established in Theorem 4.2 has been

proved in [84] by direct probability arguments. A stronger log-concavity result has
been established in [37] wherein the case when the underlying variables Xi’s are
possibly dependent has also been considered.

4.3. Case of INID symmetric variables

Suppose the random variables X1, X2, . . . , Xn are independent, non-identically dis-
tributed and all symmetric about 0 (without loss of generality). In this section, we
establish some properties of order statistics from such a INID symmetric case.

From (15), let us consider

Fr:n(−x) = Pr(Xr:n ≤ −x)

=
n∑

i=r

1
i!(n− i)!

Per
(

F1(−x) · · · Fn(−x)
1− F1(−x) · · · 1− Fn(−x)

)
} i
} n− i

=
n∑

i=r

1
i!(n− i)!

Per
(

1− F1(x) · · · 1− Fn(x)
F1(x) · · · Fn(x)

)
} i
} n− i

=
n−r∑
i=0

1
i!(n− i)!

Per
(

F1(x) · · · Fn(x)
1− F1(x) · · · 1− Fn(x)

)
} i
} n− i
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=
n∑

i=0

1
i!(n− i)!

Per
(

F1(x) · · · Fn(x)
1− F1(x) · · · 1− Fn(x)

)
} i
} n− i

−
n∑

i=n−r+1

1
i!(n− i)!

Per
(

F1(x) · · · Fn(x)
1− F1(x) · · · 1− Fn(x)

)
} i
} n− i

= 1−
n∑

i=n−r+1

1
i!(n− i)!

Per
(

F1(x) · · · Fn(x)
1− F1(x) · · · 1− Fn(x)

)
} i
} n− i

. (18)

The last equality in (18) follows since

n∑
i=0

1
i!(n− i)!

Per
(

F1(x) · · · Fn(x)
1− F1(x) · · · 1− Fn(x)

)
} i
} n− i

=
n∑

i=0

Pr(exactly i of X’s are ≤ x) = 1.

Equation (18) simply implies that −Xr:n
d= Xn−r+1:n for 1 ≤ r ≤ n. This generalizes

the corresponding result well-known in the IID case; see [6, p. 26; 53, p. 24].

Lemma 4.5. Suppose t, tk, and u are all in (0, 1) for k = s + 1, s + 2, . . . , n. Then,
for some r ( 1 ≤ r ≤ n)

r−1∑
i=0

1
i!(n− i)!

Per
(

t · · · t ts+1 · · · tn
1− t · · · 1− t 1− ts+1 · · · 1− tn

)
} n− i
} i

=
r−1∑
i=0

1
i!(n− i)!

Per
(

u · · · u ts+1 · · · tn
1− u · · · 1− u 1− ts+1 · · · 1− tn

)
} n− i
} i

if and only if t = u.

Proof. For t, tk ∈ (0, 1), k = s + 1, s + 2, . . . , n, let

h(t) =
r−1∑
i=0

1
i!(n− i)!

Per
(

t · · · t ts+1 · · · tn
1− t · · · 1− t 1− ts+1 · · · 1− tn

)
} n− i
} i

. (19)
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Differentiating h(t) in (19) with respect to t, we get

h′(t)

=
r−1∑
i=0

(n− i)
i!(n− i)!

Per

 1 · · · 1 0 · · · 0
t · · · t ts+1 · · · tn

1− t · · · 1− t 1− ts+1 · · · 1− tn

 } 1
} n− i
} i

−
r−1∑
i=0

i

i!(n− i)!
Per

 t · · · t ts+1 · · · tn
1 · · · 1 0 · · · 0

1− t · · · 1− t 1− ts+1 · · · 1− tn

 } n− i
} 1
} i− 1

=
r−1∑
i=0

1
i!(n− i− 1)!

Per

 1 · · · 1 0 · · · 0
t · · · t ts+1 · · · tn

1− t · · · 1− t 1− ts+1 · · · 1− tn

 } 1
} n− i− 1
} i

−
r−1∑
i=1

1
(i− 1)!(n− i)!

Per

 1 · · · 1 0 · · · 0
t · · · t ts+1 · · · tn

1− t · · · 1− t 1− ts+1 · · · 1− tn

 } 1
} n− i
} i− 1

=
r−1∑
i=0

1
i!(n− i− 1)!

Per

 1 · · · 1 0 · · · 0
t · · · t ts+1 · · · tn

1− t · · · 1− t 1− ts+1 · · · 1− tn

 } 1
} n− i− 1
} i

−
r−2∑
i=0

1
i!(n− i− 1)!

Per

 1 · · · 1 0 · · · 0
t · · · t ts+1 · · · tn

1− t · · · 1− t 1− ts+1 · · · 1− tn

 } 1
} n− i− 1
} i

=
1

(r − 1)!(n− r)!
Per

 1 · · · 1 0 · · · 0
t · · · t ts+1 · · · tn

1− t · · · 1− t 1− ts+1 · · · 1− tn

 } 1
} n− r
} r − 1

> 0.

Thus, h(t) in (19) is strictly increasing. Hence, h(t) > h(u) for t > u, h(t) < h(u) for
t < u, and h(t) = h(u) if and only if t = u. Hence, the lemma.

The above lemma can be used to prove the following theorem concerning distri-
butions of order statistics.

Theorem 4.6. Let X1, . . . , Xs, Zs+1, . . . , Zn be independent random variables with
each Xi (1 ≤ i ≤ s) having an arbitrary distribution function F (x) and Zi having
arbitrary distribution functions Fi(x), i = s + 1, . . . , n. Similarly, let Y1, . . . , Ys,
Zs+1, . . . , Zn be independent random variables with each Yi ( 1 ≤ i ≤ s) having an
arbitrary distribution function G(x). Then, for some fixed r ( 1 ≤ r ≤ n), the r-th
order statistic Xr:n from the first set of n variables has the same distribution as the r-
th order statistic Yr:n from the second set of n variables if F (·) ≡ G(·). Conversely, if
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Xr:n and Yr:n are identically distributed for all x such that 0 < F (x), G(x), Fi(x) < 1,
then F (x) ≡ G(x).

Proof. From (15), we have the distribution functions of Xr:n and Yr:n to be

Pr(Xr:n ≤ x) =
n∑

i=r

1
i!(n− i)!

× Per
(

F (x) · · · F (x) Fs+1(x) · · · Fn(x)
1− F (x) · · · 1− F (x) 1− Fs+1(x) · · · 1− Fn(x)

)
} i
} n− i

(20)

and

Pr(Yr:n ≤ x) =
n∑

i=r

1
i!(n− i)!

× Per
(

G(x) · · · G(x) Fs+1(x) · · · Fn(x)
1−G(x) · · · 1−G(x) 1− Fs+1(x) · · · 1− Fn(x)

)
} i
} n− i

. (21)

If F (·) ≡ G(·), then it is clear from (20) and (21) that Xr:n
d= Yr:n.

In order to prove the converse, suppose Xr:n
d= Yr:n for all x such that 0 <

F (x), G(x), Fi(x) < 1. Then, upon equating the right-hand sides of (20) and (21) and
invoking Lemma 4.5, we simply get F (x) ≡ G(x).

Theorem 4.7. Let X1, . . . , Xn be independent random variables with each Xi

( 1 ≤ i ≤ s) having an arbitrary distribution function F (x) and Xi having arbitrary
distribution functions Fi(x) for i = s + 1, s + 2, . . . , n. Suppose Xi ( i = s + 1, . . . , n)
are all symmetric about zero. Then, for fixed r ( 1 ≤ r ≤ n), −Xr:n

d= Xn−r+1:n if Xi

( i = 1, 2, . . . , s) are also symmetric about zero. Conversely, if −Xr:n and Xn−r+1:n

are identically distributed for all x such that 0 < F (x), Fi(x) < 1, then X1, . . . , Xs

are also symmetric about zero.

Proof. The result follows from Theorem 4.6 simply by taking −X1,−X2, . . . ,−Xn in
place of Y1, . . . , Ys, Zs+1, . . . , Zn.

Remark 4.8. Theorem 4.7, for the case of absolutely continuous distributions and
s = 1, was proved in [40]. It should be noted that Theorem 4.7 gives a stronger result
for distributions of order statistics in the INID symmetric case than the one presented
earlier.

Simpler proofs of these results and also some extensions are given in [64]. For
example, when the Xi’s are symmetric variables (about 0), then by simply noting that
(X1, X2, . . . , Xn) and (−X1,−X2, . . . ,−Xn) have the same distribution and hence
the r-th order statistic of Xi’s has the same distribution as the r-th order statistic of
−Xi’s, the result that −Xr:n

d= Xn−r+1:n (proved in the beginning of this section)
follows very easily.
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Remark 4.9. We may also note that −Xr:n
d= Xn−r+1:n for all r = 1, 2, . . . , n

when Xi’s are arbitrary random variables (not necessarily independent) such that
(X1, X2, . . . , Xn) and (−XP (1),−XP (2), . . . ,−XP (n)) for some permutation
(P (1), P (2), . . . , P (n)) of (1, 2, . . . , n).

Without assuming absolute continuity for the distribution functions, using simple
probability arguments, the following result (due to [40] as indicated above) has been
proved in [64].

Theorem 4.10. Let X1, X2, . . . , Xn be independent random variables. Suppose Xi,
i = 2, . . . , n, are all symmetric about 0. If −Xr:n

d= Xn−r+1:n, then X1 is also
symmetric about 0.

Proceeding similarly, a proof for the more general one-way implication in Theo-
rem 4.7 has also been given in [64].

Definition 4.11. Two random variables X and Y are stochastically ordered if

Pr(X > t) ≥ Pr(Y > t) for every t. (22)

If strict inequality holds in (22) for all t, then we say that X and Y are strictly
stochastically ordered.

Then, [64] established an equivalence stated in Theorem 4.13 the proof of which
needs the following lemma.

Lemma 4.12. Let B be the sum of n independent Bernoulli random variables with
parameters pi, i = 1, 2, . . . , n; similarly, let B∗ be the sum of n independent Bernoulli
random variables with parameters p∗i , i = 1, 2, . . . , n. If B and B∗ have the same
distribution, then

(p1, p2, . . . , pn) = (p∗P (1), p
∗
P (2), . . . , p

∗
P (n))

for some permutation (P(1), P(2), . . . , P(n)) of (1, 2, . . . , n).

Theorem 4.13. Let Xi’s be strictly stochastically ordered random variables. Then,
the following two statements are equivalent:

(i) (X1, . . . , Xn) and −(XP (1), . . . , XP (n)) have the same distribution for some per-
mutation (P (1), . . . , P (n)) of (1, 2, . . . , n).

(ii) −Xr:n
d= Xn−r+1:n for all r = 1, 2, . . . , n.

Proof. Let Bi denote the indicator variable for the event {Xi ≤ t}, and B∗
i denote

the indicator variable for the event {−Xi ≤ t}; further, let B =
∑n

i=1 Bi and B∗ =∑n
i=1 B∗

i . Remark 4.9 showed that (i) ⇒ (ii).

Now, suppose −Xr:n
d= Xn−r+1:n for every r; then B and B∗ have the same

distribution. Then, (ii) ⇒ (i) follows readily from Lemma 4.12 and the fact that Xi’s
are strictly stochastically ordered.
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Remark 4.14. Through this argument, [64] also presented the following simple proof
for the log-concavity property of {Fr:n(t)}n

r=1 and {1−Fr:n(t)}n
r=1 established earlier

in Theorem 4.2. By the simple fact that B =
∑n

i=1 Bi is the sum of n independent
Bernoulli random variables, it is strongly unimodal [59, p. 109]. Consequently, the
sequences {Pr(B = r)} and {Pr(B ≤ r)} are log-concave. From this, the log-concavity
property of {Fr:n(t)}n

r=1 and {1− Fr:n(t)}n
r=1 follows at once.

4.4. Characterizations of IID case

In this section, we shall describe some characterizations of the IID case established in
[42]. For this purpose, let us denote the pdf, cdf, and the hazard rate (or failure rate)
of Xi by fi(·), Fi(·), and hi(·), respectively, for i = 1, 2, . . . , n. Let us also define the
variables

Ir,n = i if Xr:n = Xi for 1 ≤ r ≤ n. (23)

Since the random variables Xi’s are assumed to be of continuous type, the variables
Ir,n’s in (23) are uniquely defined with probability 1.

Definition 4.15. The variables Xi’s are said to have proportional hazard rates if
there exist constants γi > 0, i = 1, 2, . . . , n, such that

hi(x) = γi h1(x) for all x and i = 2, 3, . . . , n, (24)

or equivalently, if the survival functions satisfy

1− Fi(x) = {1− Fi(x)}γi for all x and i = 2, 3, . . . , n. (25)

The family of distributions satisfying (24) or (25) is then called the proportional hazard
family.

The following characterization result, which has been used extensively in the the-
ory of competing risks, is due to [2, 4, 86].

Theorem 4.16. The random variables X1, X2, . . . , Xn belong to the proportional
hazard family defined in (24) or (25) if and only if X1:n and I1,n are statistically
independent.

The above theorem simply states that if there are n independent risks acting
simultaneously on a system in order to make it fail, then the time to failure of the
system is independent of the cause of the failure if and only if the n lifetimes belong
to the proportional hazard family.

By assuming that the Xi’s belong to the proportional hazard family, a necessary
and sufficient condition for the Xi’s to be identically distributed has been established
in [42]. To present this theorem, we first need the following lemma.
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Lemma 4.17. Let c1, c2, . . . , cn be real numbers and 0 < d1 < d2 < · · · < dn. If

n∑
i=1

ci udi = 0, 0 ≤ u ≤ 1,

then ci = 0 for all i = 1, 2, . . . , n.

Proof. The result follows by taking 0 < u1 < u2 < · · · < un < 1, writing the
corresponding system of equations asud1

1 · · · udn
1

. . . . . . . .
ud1

n · · · udn
n


c1

...
cn

 =

0
...
0

 ,

and using the nonsingularity of the matrix on the L.H.S.; see [82, p. 46].

Theorem 4.18. Let X1, X2, . . . , Xn be independent random variables with propor-
tional hazard rates. Then, Xi’s are IID if and only if Xr:n and Ir,n are statistically
independent for some r ∈ {2, 3, . . . , n}.

Definition 4.19. The dual family of distributions such that

Fi(x) = Fαi
1 (x) for all x and i = 2, 3, . . . , n, (26)

or equivalently, if the survival rates satisfy

si(x) = αi s1(x) for all x and i = 2, 3, . . . , n, (27)

where the survival rate si(x) = fi(x)/Fi(x), will be called the proportional survival
rate family.

Analogous to Theorems 4.16 and 4.18, we then have the following two results.

Theorem 4.20. The random variables X1, X2, . . . , Xn belong to the proportional
survival rate family defined in (26) or (27) if and only if Xn:n and In:n are statistically
independent.

Theorem 4.21. Let X1, X2, . . . , Xn be independent random variables with propor-
tional survival rates. Then, Xi’s are IID if and only if Xr:n and Ir,n are independent
for some r ∈ {1, 2, . . . , n− 1}.

Remark 4.22. If Xi’s are IID, it is obvious that Xr:n and Ir,n are independent for any
r ∈ {1, 2, . . . , n}. On the other hand, the independence of Xr:n and Ir,n, r ∈ {1, n},
and that of Xs:n and Is,n, s ∈ {1, 2, . . . , n} \ {r}, will be sufficient to claim the
independence of all other pairs Xi:n and Ii,n from Theorems 4.18 and 4.21.
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Another interesting characterization of IID has been presented in [42] based on
subsamples of size n − 1. For describing this result, let us consider the case when
X1, X2, . . . , Xn are independent random variables of continuous type with common
support, use X

[i]
r:n−1 to denote the r-th order statistic from n − 1 variables and

F
[i]
r:n−1(x) for the cdf of X

[i]
r:n−1.

Also, let Ni = {1, 2, . . . , n} \ {i}, Nij = {1, 2, . . . , n} \ {i, j}, and πk,Nij
(x) be

the probability that exactly k of the n − 2 X`’s, ` ∈ Nij , are less than x (with
π0,Nij (x) = 1).

Lemma 4.23. For i, j ∈ {1, 2, . . . , n} and i 6= j,

F
[i]
r:n−1(x)− F

[j]
r:n−1(x) = πr−1,Nij

(x) {Fj(x)− Fi(x)}, 1 ≤ r ≤ n− 1.

Proof. We have

F
[i]
r:n−1(x) = Pr(at least r of X`, ` ∈ Ni, are ≤ x)

=
n−1∑
k=r

Pr(exactly k of X`, ` ∈ Ni, are ≤ x)

=
n−1∑
k=r

Pr(exactly k − 1 of X`, ` ∈ Nij , are ≤ x)Fj(x)

+
n−2∑
k=r

Pr(exactly k of X`, ` ∈ Nij , are ≤ x){1− Fj(x)}

=
n−2∑
k=r

πk,Nij
(x) + πr−1,Nij

(x) Fj(x). (28)

Similarly, we have

F
[j]
r:n−1(x) =

n−2∑
k=r

πk,Nij
(x) + πr−1,Nij

(x) Fi(x). (29)

Upon subtracting (29) from (28), the result follows.

Theorem 4.24. The random variables X1, X2, . . . , Xn are IID if and only if the
random variables X

[1]
r:n−1, . . . , X

[n]
r:n−1 have the same distribution for some fixed r ∈

{1, 2, . . . , n− 1}.

Proof. It is obvious that if X1, X2, . . . , Xn are IID, then X
[1]
r:n−1, . . . , X

[n]
r:n−1 will all

have the same distribution.
Let i, j ∈ {1, 2, . . . , n} and i 6= j. If x is in the common support of X`’s, then

πr−1,Nij (x) > 0; since F
[i]
r:n−1(x) = F

[j]
r:n−1(x), we get Fi(x) = Fj(x) from Lemma 4.23.

We may similarly prove that F1(x) = · · · = Fn(x) for all x in the common support.
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Remark 4.25. Let i, j ∈ {1, 2, . . . , n} and i 6= j. From Lemma 4.23, we see easily that

F
[i]
r:n−1(x)− F

[j]
r:n−1(x)

<
=
>

0 according as Fj(x)− Fi(x)
<
=
>

0.

In particular, Xi

st
≥ Xj if and only if X

[i]
r:n−1

st
≤ X

[j]
r:n−1.

Remark 4.26. It also follows easily from Lemma 4.23 that E(X [i]
r:n−1)−E(X [j]

r:n−1) ≥
E(Xj)− E(Xi) for i, j ∈ {1, 2, . . . , n} and i 6= j. A similar inequality holds for other
moments as well.

5. Relations for order statistics from INID variables

5.1. Introduction

Several recurrence relations and identities for order statistics in the IID case are avail-
able in the literature. The book in [53], the survey paper in [76], and the monograph
in [5] all provide elaborative and exhaustive treatment to this topic. Since many of
these results were extended in [8–10] to the case when the order statistics arise from
a sample containing a single outlier, a number of papers have appeared establishing
and extending most of the results to (i) the INID case and (ii) the arbitrary case. All
the results for (i) are proved through permanents, and they will be discussed here
in detail. The results for (ii), on the other hand, are established using a variety of
techniques like probabilistic methods, set theoretic arguments, operator methods, and
indicator methods.

In this section, we assume that X1, X2, . . . , Xn are INID random variables with
Xi having cumulative distribution function Fi(x) and probability density function
fi(x), for i = 1, 2, . . . , n. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics
obtained by arranging the Xi’s in increasing order of magnitude. Let S be a subset
of N = {1, 2, . . . , n}, Sc be the complement of S in N , and |S| denote the cardinality
of the set S. Let Xr:S denote the r-th order statistic obtained from the variables
{Xi|i ∈ S}, and Fr:S(x) and fr:S(x) denote the cumulative distribution function and
density function of Xr:S , respectively. Occasionally (when there is no confusion, of
course), we may even replace S by |S| in the above notations (like, for example, Xr:n

instead of Xr:N ).
For fixed x ∈ R, let us denote the row vector

(
F1(x) F2(x) · · · Fn(x)

)
1×n

by F ,
(
f1(x) f2(x) · · · fn(x)

)
1×n

by f , and
(
1 1 · · · 1

)
1×n

by 1. Let us
use A1[S] to denote the matrix obtained along the lines of A1 in (10) starting with
components corresponding to i ∈ S. Further, let us define for i = 1, 2, . . . , r

F i:r(x) =
1(
n
r

) ∑
|S|=r

Fi:S(x) (30)
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and

f i:r(x) =
1(
n
r

) ∑
|S|=r

fi:S(x), (31)

where
∑

|S|=r denotes the sum over all subsets S of N with cardinality equal to r. We
shall also follow notations similar to those in (30) and (31) for the joint distribution
functions and density functions of order statistics. Let us also use F

[i]
r:n−1(x) and

f
[i]
r:n−1(x) to denote the distribution function and density function of the r-th order

statistic from n−1 variables obtained by deleting Xi from the original n X’s. Similar
notations also hold for joint distributions as well as for distributions of order statistics
from n−m variables obtained by deleting m X’s.

5.2. Relations for single order statistics

In this section, we derive several recurrence relations and identities satisfied by dis-
tributions of single order statistics. These generalize many well-known results for
order statistics in the IID case discussed in detail in [5, 6, 53, 57]. For a review of all
these results, one may refer to [14]. Even though the results are given in terms of
distributions or densities, they hold equally well for moments (if they exist).

Result 5.1. For n ≥ 2 and x ∈ R,
n∑

r=1

Fr:n(x) =
n∑

r=1

Fr(x) = n F 1:1(x) . (32)

Proof. The result follows simply by noting that
n∑

r=1

Pr(Xr:n ≤ x) =
n∑

r=1

Pr(Xr ≤ x).

Result 5.2 (Triangle Rule). For 1 ≤ r ≤ n− 1 and x ∈ R,

r fr+1:n(x) + (n− r) fr:n(x) = n fr:n−1(x). (33)

Proof. By considering the expression of r fr+1:n(x) from (9) and expanding the per-
manent by its first row, we get

r fr+1:n(x) =
n∑

i=1

Fi(x) f
[i]
r:n−1(x). (34)

Next, by considering the expression of (n − r) fr:n(x) from (9) and expanding the
permanent by its last row, we get

(n− r) fr:n(x) =
n∑

i=1

{1− Fi(x)} f
[i]
r:n−1(x). (35)

On adding (34) and (35) and simplifying, we derive the relation in (33).
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Remark 5.3. It is easy to note from Result 5.2 that one just needs the distribution of a
single order statistic arising from n variables in order to determine the distributions of
the remaining n−1 order statistics, assuming that the distributions of order statistics
arising from n− 1 (and less) variables are known. This result was first proved in [11]
and independently in [40].

Result 5.4. For x ∈ R,

1
2
{Fn+1:2n(x) + Fn:2n(x)} = Fn:2n−1(x). (36)

Proof. The result follows from Result 5.2 upon taking 2n in place of n and n in place
of r.

In terms of expected values, the relation in (36) simply implies that the expected
value of the median from 2n variables is exactly the same as the average of the
expected values of the medians from 2n−1 variables (obtained by deleting one variable
at a time).

Result 5.5. For m = 1, 2, . . . , n− r and x ∈ R,

fr:n(x) =
n∑

j=0

(−1)j

{(
r+j−1

j

)(
n

m−j

)(
n−r
m

) }
fr+j:n−m+j(x). (37)

Proof. By considering the expression of fr:n(x) in (8), writing

{1− Fir+1(x)} · · · {1− Fir+m(x)} =
m∑

j=0

(−1)j
∑
|S|=j

F`1(x) · · ·F`j (x),

where
∑

|S|=j denotes the sum over all
(
m
j

)
subsets S = {`1, `2, . . . , `j} of

{ir+1, ir+2, . . . , ir+m} (with cardinality j), and simplifying the resulting expression,
we derive the relation in (37).

Result 5.2 may be deduced from (37) by setting m = 1.

Proceeding as we did in proving Result 5.5, we can establish the following dual
relation.

Result 5.6. For m = 1, 2, . . . , r − 1 and x ∈ R,

fr:n(x) =
n∑

j=n−m

(−1)j−n+m

{(
j+m−r

n−r

)(
n
j

)(
r−1
m

) }
fr−m:j(x).

Upon setting m = n − r and m = r − 1 in Results 5.5 and 5.6, respectively, we
derive the following relations.
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Result 5.7. For 1 ≤ r ≤ n− 1 and x ∈ R,

fr:n(x) =
n∑

j=r

(−1)j−r

(
j − 1
r − 1

)(
n

j

)
f j:j(x). (38)

Result 5.8. For 2 ≤ r ≤ n and x ∈ R,

fr:n(x) =
n∑

j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

)(
n

j

)
f1:j(x).

Remark 5.9. Results 5.7 and 5.8 are both very useful as they express the distribution
of the r-th order statistic arising from n variables in terms of the distributions of the
largest and smallest order statistics arising from n variables or less, respectively. We,
therefore, note once again from Results 5.7 and 5.8 that we just need the distribution
of a single order statistic (either the largest or the smallest) arising from n variables
in order to determine the distributions of the remaining n− 1 order statistics, given
the distributions of order statistics arising from at most n− 1 variables. This agrees
with the comment made earlier in Remark 5.3, which is only to be expected as both
Results 5.7 and 5.8 could be derived by repeated application of Result 5.2 as shown
in [11,40]. This was observed in [60,90] for the IID case.

Theorem 5.10. If any one of Results 5.2, 5.7, or 5.8 is used in the computation
of single distributions (or single moments) of order statistics arising from n INID
variables, then the identity given in Result 5.1 will be automatically satisfied and
hence should not be applied to check the computational process.

Proof. We shall prove the theorem first by starting with Result 5.7, and the proof for
Result 5.8 is quite similar. From (38), we have

n−1∑
r=1

fr:n(x) =
n−1∑
r=1

n∑
j=r

(−1)j−r

(
j − 1
r − 1

)(
n

j

)
f j:j(x)

=
(

n

1

)
f1:1(x) +

n−1∑
r=2

(
n

r

)
fr:r(x)

{r−1∑
j=0

(−1)r−1−j

(
r − 1

j

)}

+
n−2∑
j=0

(−1)n−1−j

(
n− 1

j

)
fn:n(x)

=
(

n

1

)
f1:1(x)− fn:n(x), (39)

where the last equality follows from the fact that fn:n(x) ≡ fn:n(x) and upon using
the combinatorial identities

r−1∑
j=0

(−1)r−1−j

(
r − 1

j

)
= 0 and

n−2∑
j=0

(−1)n−1−j

(
n− 1

j

)
= −1.
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Equation (39), when rewritten, gives the identity presented in Result 5.1. This proof
was given in [34] for the IID case.

In order to prove the theorem with Result 5.2, consider the relation in (33) and
set r = 1, r = 2, . . . , r = n− 1, and add the resulting n− 1 equations, to get

(n− 1)
n∑

r=1

fr:n(x) = n
n−1∑
r=1

fr:n−1(x)

or

1
n

n∑
r=1

fr:n(x) =
1

n− 1

n−1∑
r=1

fr:n−1(x)

= · · · = f1:1(x)

which is simply the identity in (32).

Through repeated application of Result 5.2, [14] proved the following relation
which was established in [89] for the IID case.

Result 5.11. For 1 ≤ r ≤ m ≤ n− 1 and x ∈ R,

n−m∑
j=0

(
r − 1 + j

j

)(
n− r − j

n−m− j

)
fr+j:n(x) =

(
n

m

)
fr:m(x).

Result 5.12. For n ≥ 2 and x ∈ R,

n∑
r=1

1
r

fr:n(x) =
n∑

r=1

1
r

f1:r(x) (40)

and
n∑

r=1

1
n− r + 1

fr:n(x) =
n∑

r=1

1
r

fr:r(x). (41)

Proof. We shall prove here the identity in (40), and the proof for (41) is quite similar.
By using Result 5.8, we can write

n∑
r=1

1
r

fr:n(x) =
n∑

r=1

1
r

n∑
j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

)(
n

j

)
f1:j(x)

=
n∑

r=1

(
n

r

)
f1:r(x)

{r−1∑
j=0

(−1)j

(
r − 1

j

)/
(n− r + 1− j)

}
. (42)
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The identity in (40) follows readily from (42) upon using the combinatorial identity
that

r−1∑
j=0

(−1)j

(
r − 1

j

)/
(n− r + 1− j) =

∫ 1

0

(1− t)r−1 tn−r dt = B(r, n− r + 1),

where B(a, b) = Γ(a) Γ(b)/Γ(a + b) is the complete beta function.

The above result, established in [70] for the IID case, was proved in [8] for a single-
outlier model and in the INID case in [41]. The result has also been extended to the
arbitrary case in [23]. The extensions of Joshi’s identities given in [33] for the IID
case can also be generalized as follows.

Result 5.13. For i, j = 1, 2, . . . and x ∈ R,

n∑
r=1

1
(r + i + j − 2)(j)

fr:n(x)

=
1

(n + i + j − 2)(j−1)

n∑
r=1

1
r

(
r + j − 2

j − 1

)
(n− r + i− 1)(i−1)

(n + i− 1)(i−1)
f1:r(x) (43)

and
n∑

r=1

1
(n− r + i + j − 1)(j)

fr:n(x)

=
1

(n + i + j − 2)(j−1)

n∑
r=1

1
r

(
r + j − 2

j − 1

)
(n− r + i− 1)(i−1)

(n + i− 1)(i−1)
fr:r(x); (44)

for i = 1, 2, . . .,

n∑
r=1

1
(r + i− 1)(i)(n− r + i)(i)

fr:n(x)

=
1

(n + 2i− 1)(2i−1)

n∑
r=1

1
r

(
r + 2i− 2

i− 1

)
{f1:r(x) + fr:r(x)};

and for i, j = 1, 2, . . . ,

n∑
r=1

1
(r + i− 1)(i)(n− r + j)(j)

fr:n(x)

=
1

(n + i + j − 1)(i+j−1)

×
n∑

r=1

1
r

{(
r + i + j − 2

i− 1

)
f1:r(x) +

(
r + i + j − 2

j − 1

)
fr:r(x)

}
,
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where

m(i) =

{
m(m− 1) · · · (m− i + 1) for i = 1, 2, . . . ,

1 for i = 0.

The two identities in Result 5.12 may be deduced from (43) and (44) by setting
i = j = 1. A different type of extension of Result 5.12 derived in [14] is presented
below.

Result 5.14. For ` = 0, 1, . . . , n− 2 and x ∈ R,
n∑

r=`+1

1
r

fr:n(x) =
n∑

r=`+1

1
r

f `+1:r(x) (45)

and
n−∑̀
r=1

1
n− r + 1

fr:n(x) =
n−∑̀
r=1

1
r + `

fr:r+`(x). (46)

Proof. We shall prove here the identity in (45), and the proof for (46) is quite similar.
From Result 5.6, upon setting m = r − 1− ` we have

fr:n(x) =
n∑

j=n−r+1+`

(−1)j−n+r−1−`

{(
j−1−`
n−r

)(
n
j

)(
r−1

`

) }
f `+1:j(x)

=
r−1−`∑

j=0

(−1)r−1−`−j

{(
n−1−`−j

n−r

)(
n
j

)(
r−1

`

) }
f `+1:n−j(x). (47)

Upon making use of the expression of fr:n(x) in (47) and rewriting, we get
n∑

r=`+1

1
r

fr:n(x) =
n∑

r=`+1

Cr

(
n

r

)
f `+1:r(x), (48)

where the coefficients Cr (` + 1 ≤ r ≤ n) are given by

C`+1+s =
n∑

j=n−s

(−1)j−n+s 1
j

(
s

n− j

)/(
j − 1

`

)

=
n∑

j=n−s

(−1)j−n+s

(
s

n− j

)
B(` + 1, j − `)

=
s∑

j=0

(−1)s−j

(
s

j

)
B(` + 1, n− j − `)

=
∫ 1

0

ts t` (1− t)n−`−s−1 dt

= B(` + s + 1, n− `− s).
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The identity in (45) follows readily if we substitute the above expression of Cr

in (48).

Proceeding in an analogous manner, the following identities have been established
in [14].

Result 5.15. For `1, `2 ≥ 0, `1 + `2 ≤ n− 1, and x ∈ R,

n−`2∑
r=`1+1

1
r

fr:n(x) =
n−`2∑

r=`1+1

1
r + `2

f `1+1:r+`2(x)

+
n−`2∑

r=`1+1

(
1
r
− 1

r + `2

)
fr:r+`2(x)

and
n−`2∑

r=`1+1

1
n− r + 1

fr:n(x) =
n−`2∑

r=`1+1

1
r + `2

fr:r+`2(x)

+
n−`2∑

r=`1+1

(
1

r + `2 − `1
− 1

r + `2

)
f `1+1:r+`2(x).

When Xi’s are IID with distribution function F (x), [58] presented the relations

Fr:n(x) = Fr+1:n(x) +
(

n

r

)
{F (x)}r {1− F (x)}n−r

and

Fr:n(x) = Fr:n−1(x) +
(

n− 1
r − 1

)
{F (x)}r {1− F (x)}n−r

wherein analogous results are also presented for the single-outlier model. The gener-
alizations of these results to the INID case, as proved in [40], are presented below.

Result 5.16. For 1 ≤ r ≤ n− 1 and x ∈ R,

Fr:n(x) = Fr+1:n(x) +
(

n

r

)
1
n!

Per
(

F
1− F

)
} r
} n− r

(49)

and

Fr:n(x) = F r:n−1(x) +
(

n− 1
r − 1

)
1
n!

Per
(

F
1− F

)
} r
} n− r

. (50)

Revista Matemática Complutense
2007: vol. 20, num. 1, pags. 7–107 36



N. Balakrishnan Permanents, order statistics, outliers, and robustness

Proof. The relation in (49) follows quite simply from (15) by writing

Fr:n(x) =
n∑

i=r

1
i!(n− i)!

Per
(

F
1− F

)
} i
} n− i

=
n∑

i=r+1

1
i!(n− i)!

Per
(

F
1− F

)
} i
} n− i

+
1

r!(n− r)!
Per

(
F

1− F

)
} r
} n− r

= Fr+1:n(x) +
(

n

r

)
1
n!

Per
(

F
1− F

)
} r
} n− r

.

Next, in order to prove the relation in (50) let us consider

n!Fr:n(x) =
n∑

i=r

(
n

i

)
Per

(
F

1− F

)
} i
} n− i

=
n∑

i=r

{(
n− 1
i− 1

)
+
(

n− 1
i

)}
Per

(
F

1− F

)
} i
} n− i

=
(

n− 1
r − 1

)
Per

(
F

1− F

)
} r
} n− r

+
n−1∑
i=r

(
n− 1

i

)
Per

(
F

1− F

)
} i + 1
} n− i− 1

+
n−1∑
i=r

(
n− 1

i

)
Per

(
F

1− F

)
} i
} n− i

=
(

n− 1
r − 1

)
Per

(
F

1− F

)
} r
} n− r

+
n−1∑
i=r

(
n− 1

i

) ∑
|S|=n−1

Per
(

F
1− F

)
} i
} n− i− 1 [S] · F [Sc]

+
n−1∑
i=r

(
n− 1

i

) ∑
|S|=n−1

Per
(

F
1− F

)
} i
} n− i− 1 [S] · (1− F )[Sc]

=
(

n− 1
r − 1

)
Per

(
F

1− F

)
} r
} n− r

+
n−1∑
i=r

(
n− 1

i

) ∑
|S|=n−1

Per
(

F
1− F

)
} i
} n− i− 1 [S]

=
(

n− 1
r − 1

)
Per

(
F

1− F

)
} r
} n− r

+ (n− 1)!
∑

|S|=n−1

Fr:S(x). (51)
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In the above, F [Sc] denotes the distribution function of the X-variable corresponding
to the index {1, 2, . . . , n}\S (viz., Sc). The relation in (50) then follows readily upon
simplifying (51).

5.3. Relations for pairs of order statistics

In this section, we establish several recurrence relations and identities satisfied by joint
distributions of pairs of order statistics. These generalize many well-known results
for order statistics in the IID case discussed in detail in [5, 6, 53, 57]. For a review of
all these results, one may refer to [18, 44]. Even though most of the results in this
section are presented in terms of joint densities or distribution functions, they hold
equally well for the product moments (if they exist) of order statistics.

For convenience, let us denote

R2
U = {(x, y) : −∞ < x ≤ y < ∞}, R2

L = {(x, y) : −∞ < y < x < ∞},

and
R2 = R2

U ∪ R2
L = {(x, y) : −∞ < x < ∞, −∞ < y < ∞}.

One may then note that the product moment of Xr:n and Xs:n can be written as

E(Xr:nXs:n) =
∫∫
R2

U

xy fr,s:n(x, y) dx dy, 1 ≤ r < s ≤ n,

and more generally

E{g1(Xr:n) g2(Xs:n)} =
∫∫
R2

U

g1(x) g2(y) fr,s:n(x, y) dx dy, 1 ≤ r ≤ s ≤ n,

where fr,s:n(x, y) is as given in (13).

Result 5.17. For n ≥ 2,
n∑

r=1

n∑
s=1

E(Xr:nXs:n) =
n∑

i=1

Var(Xi) +
{ n∑

i=1

E(Xi)
}2

. (52)

Proof. By starting with the identity
n∑

r=1

n∑
s=1

Xr:nXs:n =
n∑

i=1

n∑
j=1

XiXj =
n∑

i=1

X2
i +

∑∑
i 6=j

XiXj

and taking expectation on both sides, we get
n∑

r=1

n∑
s=1

E(Xr:nXs:n) =
n∑

i=1

E(X2
i ) +

∑∑
i 6=j

E(Xi)E(Xj)

=
n∑

i=1

{Var(Xi) + [E(Xi)]2}+
∑∑

i 6=j

E(Xi) E(Xj)
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which gives the identity in (52).

Result 5.18. For n ≥ 2,

n−1∑
r=1

n∑
s=r+1

E(Xr:nXs:n) =
1
2

{[ n∑
i=1

E(Xi)
]2
−

n∑
i=1

[E(Xi)]2
}

. (53)

Proof. Since

n∑
r=1

n∑
s=1

E(Xr:nXs:n) =
n∑

r=1

E(X2
r:n) + 2

n−1∑
r=1

n∑
s=r+1

E(Xr:nXs:n)

and
n∑

r=1

E(X2
r:n) =

n∑
i=1

E(X2
i ),

the identity in (53) follows easily.

Result 5.19 (Tetrahedron Rule). For 2 ≤ r < s ≤ n and (x, y) ∈ R2
U ,

(r − 1) fr,s:n(x, y) + (s− r) fr−1,s:n(x, y) + (n− s + 1) fr−1,s−1:n(x, y)

= n fr−1,s−1:n−1(x, y) . (54)

Proof. By considering the expression of (r − 1) fr,s:n(x, y) from (13) and expanding
the permanent by its first row, we get

(r − 1) fr,s:n(x, y) =
n∑

i=1

Fi(x) f
[i]
r−1,s−1:n−1(x, y). (55)

Next, by considering the expression of (s− r) fr−1,s:n(x, y) from (13) and expanding
the permanent by its r-th row, we get

(s− r) fr−1,s:n(x, y) =
n∑

i=1

{Fi(y)− Fi(x)} f
[i]
r−1,s−1:n−1(x, y). (56)

Finally, by considering the expression of (n − s + 1) fr−1,s−1:n(x, y) from (13) and
expanding the permanent by its last row, we get

(n− s + 1) fr−1,s−1:n(x, y) =
n∑

i=1

{1− Fi(y)} f
[i]
r−1,s−1:n−1(x, y). (57)

Upon adding (55), (56), and (57), we get the recurrence relation in (54).
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Remark 5.20. It is easy to note that Result 5.19 will enable one to determine all the
joint distributions of pairs of order statistics with the knowledge of n−1 suitably cho-
sen ones like, for example, the distributions of contiguous order statistics fr,r+1:n(x, y)
(1 ≤ r ≤ n − 1). This bound can be improved as shown in Theorem 5.30. For the
IID case, Result 5.19 was proved in [60], and in its general INID form in [11,40].

By repeated application of Result 5.19, the following three recurrence relations
can be proved as shown in [23].

Result 5.21. For 1 ≤ r < s ≤ n and (x, y) ∈ R2
U ,

fr,s:n(x, y) =
s−1∑
i=r

n∑
j=n−s+i+1

(−1)j+n−r−s+1

(
i− 1
r − 1

)(
j − i− 1

n− s

)(
n

j

)
f i,i+1:j(x, y),

fr,s:n(x, y) =
s−1∑

i=s−r

n∑
j=n−s+i+1

(−1)n−j−r+1

(
i− 1

s− r − 1

)(
j − i− 1

n− s

)(
n

j

)
f1,i+1:j(x, y),

fr,s:n(x, y) =
n−r∑

i=s−r

n∑
j=r+i

(−1)s+j

(
i− 1

s− r − 1

)(
j − i− 1

r − 1

)(
n

j

)
f j−i,j:j(x, y).

Theorem 5.22. If either Result 5.19 or 5.21 is used in the computation of product
moments of pairs of order statistics arising from n INID variables, then the identities
in Results 5.17 and 5.18 will be automatically satisfied and hence should not be applied
to check the computational process.

Proof. We shall prove the theorem by starting with Result 5.19 and the proof for
5.21 is very similar. From (54), upon setting r = 2, s = 3, 4, . . . , n, r = 3, s =
4, 5, . . . , n, . . . , and r = n − 1, s = n, and adding the resulting

(
n−1

2

)
equations, we

get
n−1∑
r=1

n∑
s=r+1

E(Xr:nXs:n) =
1

n− 2

n∑
i1=1

n−2∑
r=1

n−1∑
s=r+1

E(X [i1]
r:n−1X

[i1]
s:n−1).

By repeating this process, we obtain the identity in Result 5.18 which proves the
theorem.

The above theorem was proved in [34] for the IID case, and in [18] in the INID
case.

Result 5.23. For 1 ≤ r < s ≤ m ≤ n− 1 and (x, y) ∈ R2
U ,

n−m∑
j=0

n−m∑
k=j

(
r − 1 + j

j

)(
s− r − 1 + k − j

k − j

)(
n− s− k

n−m− k

)
fr+j,s+k:n(x, y)

=
(

n

m

)
fr,s:m(x, y).
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This result can be proved by repeated application of the recurrence relation in (54).
Note that Result 5.19 is a special case of this result when m = n− 1.

Result 5.24. For n ≥ 2 and (x, y) ∈ R2
U ,

n−1∑
r=1

n∑
s=r+1

1
r

fr,s:n(x, y) = n
n−1∑
r=1

n∑
s=r+1

1
(s− 1)s

f1,r+1:s(x, y),

n−1∑
r=1

n∑
s=r+1

1
s− r

fr,s:n(x, y) = n
n−1∑
r=1

n∑
s=r+1

1
(s− 1)s

fr,r+1:s(x, y),

and
n−1∑
r=1

n∑
s=r+1

1
n− s + 1

fr,s:n(x, y) = n
n−1∑
r=1

n∑
s=r+1

1
(s− 1)s

fr,s:s(x, y).

These identities are bivariate extensions of Joshi’s identities and were established
in [23]. They can be proved along the lines of Result 5.12.

Result 5.25. For 1 ≤ r < s ≤ n,

E(Xr:nXs:n) +
r−1∑
j=0

n−s∑
k=0

(−1)n−j−k

(
j + k

j

) ∑
|S|=n−j−k

E(Xn−s−k+1:SXn−r−k+1:S)

=
s−r∑
j=1

(−1)s−r−j

(
s− 1− j

r − 1

) ∑
|S|=s−j

E(Xs−j:S) E(Xj:Sc). (58)

Proof. For 1 ≤ r < s ≤ n, let us consider

I =
1

(r − 1)!(s− r − 1)!(n− s)!

∫∫
R2

xy Per


F (x)
f(x)

F (y)− F (x)
f(y)

1− F (y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dy dx (59)

=
1

(r − 1)!(s− r − 1)!(n− s)!

s−r−1∑
j=0

(−1)s−r−1−j

(
s− r − 1

j

)

×
∫∫
R2

xy Per


F (x)
f(x)
F (y)
f(y)

1− F (y)


} s− j − 2
} 1
} j
} 1
} n− s

dy dx
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=
1

(r − 1)!(s− r − 1)!(n− s)!

s−r−1∑
j=0

(−1)s−r−1−j

(
s− r − 1

j

)

×
∑

|S|=s−j−1

∫ ∞

−∞
xPer

(
F (x)
f(x)

)
} s− j − 2
} 1 [S] dx

×
∫ ∞

−∞
y Per

 F (y)
f(y)

1− F (y)

 } j
} 1
} n− s

[Sc] dy

which, when simplified gives the R.H.S. of (58).
Alternatively, by noting that R2 = R2

U ∪ R2
L, we can write from (59) that

I = E(Xr:nXs:n) + J, (60)

where

J =
1

(r − 1)!(s− r − 1)!(n− s)!

∫∫
R2

L

xy Per


F (x)
f(x)

F (y)− F (x)
f(y)

1− F (y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dx dy.

Upon writing the first r−1 rows in terms of 1−F (x) and the last n−s rows in terms
of F (y), we get

J =
1

(r − 1)!(s− r − 1)!(n− s)!

r−1∑
j=0

n−s∑
k=0

(−1)n−j−k

(
r − 1

j

)(
n− s

k

)

×
∫∫
R2

L

xy Per


1

F (x)
f(y)

F (x)− F (y)
f(x)

1− F (x)


} j + k
} n− s− k
} 1
} s− r − 1
} 1
} r − 1− j

dx dy

=
1

(r − 1)!(s− r − 1)!(n− s)!

r−1∑
j=0

n−s∑
k=0

(−1)n−j−k

(
r − 1

j

)(
n− s

k

)

×
∑

|S|=n−j−k

(j + k)!
∫∫
R2

L

xy Per


F (y)
f(y)

F (x)− F (y)
f(x)

1− F (x)


} n− s− k
} 1
} s− r − 1
} 1
} r − 1− j

dx dy
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=
1

(r − 1)!(s− r − 1)!(n− s)!

r−1∑
j=0

n−s∑
k=0

(−1)n−j−k

(
r − 1

j

)(
n− s

k

)
×
∑

|S|=n−j−k

(j + k)!(n− s− k)!(s− r − 1)!(r − 1− j)!

× E(Xn−s−k+1:SXn−r−k+1:S)

which, when simplified and substituted in (60), yields the L.H.S. of (58). Hence, the
result.

Upon setting s = r + 1 in (58), we obtain the following result.

Result 5.26. For r = 1, 2, . . . , n− 1,

E(Xr:nXr+1:n) + (−1)n E(Xn−r:nXn−r+1:n)

=
r−1∑
j=0

n−r−1∑
k=1

(−1)n+1−j−k

(
j + k

j

) ∑
|S|=n−j−k

E(Xn−r−k:SXn−r−k+1:S)

+
r−1∑
j=1

(−1)n+1−j
∑

|S|=n−j

E(Xn−r:SXn−r+1:S) +
∑
|S|=r

E(Xr:S) E(X1:Sc).

Similarly, upon setting s = n− r + 1 in (58), we obtain the following result.

Result 5.27. For r = 1, 2, . . . , [n/2],

{1 + (−1)n} E(Xr:nXn−r+1:n)

=
r−1∑
j=0

r−1∑
k=1

(−1)n+1−j−k

(
j + k

j

) ∑
|S|=n−j−k

E(Xr−k:SXn−r−k+1:S)

+
r−1∑
j=1

(−1)n+1−j
∑

|S|=n−j

E(Xr:SXn−r+1:S)

+
n−2r+1∑

j=1

(−1)n+1−j

(
n− r − j

r − 1

) ∑
|S|=n−r+1−j

E(Xn−r+1−j:S) E(Xj:Sc). (61)

In particular, upon setting n = 2m and r = 1 in (61), we obtain the following
relation.

Result 5.28. For m = 1, 2, . . .,

2 E(X1:2mX2m:2m) =
2m−1∑
j=1

(−1)j−1
∑

|S|=2m−j

E(X2m−j:S) E(Xj:Sc).
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Similarly, upon setting n = 2m and r = m in (61), we obtain the following relation.

Result 5.29. For m = 1, 2, . . . ,

2 E(Xm:2mXm+1:2m)

=
m−1∑
j=0

m−1∑
k=1

(−1)j+k−1

(
j + k

j

) ∑
|S|=2m−j−k

E(Xm−k:SXm−k+1:S)

+
m−1∑
j=1

(−1)j−1
∑

|S|=2m−j

E(Xm:SXm+1:S) +
∑
|S|=m

E(Xm:S) E(X1:Sc).

Theorem 5.30. In order to find the first two single moments and the product mo-
ments of all order statistics arising from n INID variables, given these moments of
order statistics arising from n − 1 and less INID variables (for all subsets of the n
variables), one needs to find at most two single moments and (n− 2)/2 product mo-
ments when n is even, and two single moments and (n−1)/2 product moments when
n is odd.

Proof. In view of Remark 5.3 or 5.9, it is sufficient to find two single moments in or-
der to compute the first two single moments of all order statistics, viz., E(Xr:n) and
E(X2

r:n) for r = 1, 2, . . . , n. Also, as pointed out in Remark 5.20, the knowledge of n−1
immediate upper-diagonal product moments E(Xr:nXr+1:n), 1 ≤ r ≤ n − 1, is suffi-
cient for the calculation of all the product moments. For even values of n, say n = 2m,
Results 5.26 and 5.29 imply that the knowledge of (n−2)/2 = m−1 of the immediate
upper-diagonal product moments, viz., E(Xr:2mXr+1:2m) for r = 1, 2, . . . ,m − 1, is
sufficient for the determination of all the product moments. Finally, for odd values
of n, say, n = 2m + 1, Result 5.26 implies that the knowledge of (n − 1)/2 = m
of the immediate upper-diagonal product moments, viz., E(Xr:2m+1Xr+1:2m+1) for
r = 1, 2, . . . ,m, is sufficient for the computation of all the product moments.

Remark 5.31. It is of interest to mention here that the bounds established for the
number of single and product moments while determining the means, variances and
covariances of order statistics arising from n INID variables are exactly the same as
the bounds established in [73] for the IID case; see also [5].

5.4. Relations for covariances of order statistics

In this section, we establish several recurrence relations and identities satisfied by
the covariances of order statistics. These generalize several well-known results on
covariances of order statistics in the IID case discussed in detail in [5].

Result 5.32. For n ≥ 2,
n∑

r=1

n∑
s=1

Cov(Xr:n, Xs:n) =
n∑

i=1

Var(Xi). (62)

Revista Matemática Complutense
2007: vol. 20, num. 1, pags. 7–107 44



N. Balakrishnan Permanents, order statistics, outliers, and robustness

Proof. By writing

n∑
r=1

n∑
s=1

Cov(Xr:n, Xs:n) =
n∑

r=1

n∑
s=1

E(Xr:n Xs:n)−
n∑

r=1

E(Xr:n)
n∑

r=1

E(Xs:n)

and then using Result 5.17 on the R.H.S., we get the identity in (62).

Result 5.33. For 2 ≤ r < s ≤ n,

(r − 1)Cov(Xr:n, Xs:n)

+ (s− r) Cov(Xr−1:n, Xs:n) + (n− s + 1)Cov(Xr−1:n, Xs−1:n)

=
n∑

i=1

Cov(X [i]
r−1:n−1, X

[i]
s−1:n−1)

+
n∑

i=1

{E(X [i]
r−1:n−1)− E(Xr−1:n)}{E(X [i]

s−1:n−1)− E(Xs:n)}. (63)

Proof. Using Result 5.19, we have for 2 ≤ r < s ≤ n

(r−1)Cov(Xr:n, Xs:n)+(s−r) Cov(Xr−1:n, Xs:n)+(n−s+1)Cov(Xr−1:n, Xs−1:n)

=
n∑

i=1

Cov(X [i]
r−1:n−1, X

[i]
s−1:n−1) +

n∑
i=1

E(X [i]
r−1:n−1)E(X [i]

s−1:n−1)

− (r − 1)E(Xr:n)E(Xs:n)− (s− r)E(Xr−1:n) E(Xs:n)
− (n− s + 1)E(Xr−1:n)E(Xs−1:n)

=
n∑

i=1

Cov(X [i]
r−1:n−1, X

[i]
s−1:n−1) +

n∑
i=1

E(X [i]
r−1:n−1)E(X [i]

s−1:n−1)

− E(Xs:n){(r − 1)E(Xr:n) + (n− r + 1)E(Xr−1:n)}
− (n− s + 1)E(Xr−1:n){E(Xs−1:n)− E(Xs:n)}

=
n∑

i=1

Cov(X [i]
r−1:n−1, X

[i]
s−1:n−1) +

n∑
i=1

E(X [i]
r−1:n−1)E(X [i]

s−1:n−1)

− E(Xs:n)
n∑

i=1

E(X [i]
r−1:n−1)− E(Xr−1:n)

n∑
i=1

{E(X [i]
s−1:n−1)− E(Xs:n)}

upon using Result 5.2. The relation in (63) is derived by simplifying the above
equation.

The above result was established in its general form in [12].
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Result 5.34. For 1 ≤ r ≤ n− 1 and 1 ≤ ` ≤ n− r,

n−`+1∑
k=r+1

(
n− k

`− 1

)
E(Xr:nXk:n) +

r∑
j=1

r+∑̀
k=r+1

(
k − j − 1
k − r − 1

)(
n− k

n− `− r

)
E(Xj:nXk:n)

=
∑

|S|=n−`

E(Xr:S)E(X1:Sc). (64)

Proof. For 1 ≤ r ≤ n− 1 and 1 ≤ ` ≤ n− r, let us consider

I =
1

(r − 1)!(`− 1)!(n− r − `)!

×
∫∫
R2

xy Per


F (x)
f(x)

1− F (x)
f(y)

1− F (y)


} r − 1
} 1
} n− `− r
} 1
} `− 1

dx dy (65)

=
1

(r − 1)!(`− 1)!(n− r − `)!

×
∑

|S|=n−`

∫ ∞

−∞
xPer

 F (x)
f(x)

1− F (x)

 } r − 1
} 1
} n− `− r

[S] dx

×
∫ ∞

−∞
y Per

(
f(y)

1− F (y)

)
} 1
} `− 1 [Sc] dy,

which, when simplified, yields the R.H.S. of (64).
Alternatively, by noting that R2 = R2

U ∪ R2
L we may write I in (65) as

I = J1 + J2,

where J1 and J2 have the same expressions as I in (65) with the integration being over
the regions R2

U and R2
L (instead of R2), respectively. By considering the expression

for J1 and writing 1− F (x) as (F (y)− F (x)) + (1− F (y)), we get

J1 =
1

(r − 1)!(`− 1)!(n− r − `)!

×
n−r−`∑

j=0

(
n− r − `

j

)∫∫
R2

U

xy Per


F (x)
f(x)

F (y)− F (x)
f(y)

1− F (y)


} r − 1
} 1
} j
} 1
} n− r − 1− j

dx dy,
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which, when simplified, gives the first term on the L.H.S. of (64). Similarly, by
considering the expression for J2 and writing F (x) as F (y) + (F (x) − F (y)) and
1− F (y) as (F (x)− F (y)) + (1− F (x)), we get

J2 =
1

(r − 1)!(`− 1)!(n− r − `)!

r−1∑
j=0

`−1∑
k=0

(
r − 1

j

)(
`− 1

k

)

×
∫∫
R2

L

xy Per


F (y)
f(y)

F (x)− F (y)
f(x)

1− F (x)


} j
} 1
} r − 1− j + k
} 1
} n− r − k − 1

dx dy,

which, when simplified, gives the second term on the L.H.S. of (64). Hence, the
result.

Upon setting r = 1 in (64), we obtain the following result.

Result 5.35. For 1 ≤ ` ≤ n− 1,

n−`+1∑
k=2

(
n− k

`− 1

)
E(X1:nXk:n) +

`+1∑
k=2

(
n− k

n− `− 1

)
E(X1:nXk:n)

=
∑

|S|=n−`

E(X1:S) E(X1:Sc). (66)

Remark 5.36. If we replace ` by n − ` in Result 5.35, the relation in (66) remains
unchanged and, therefore, there are exactly [n/2] equations in n−1 product moments,
viz., E(X1:nXs:n) for s = 2, 3, . . . , n. For even values of n, there are n/2 equations
in n − 1 unknowns and hence a knowledge of (n − 2)/2 of these product moments
is sufficient. For odd values of n, there are (n − 1)/2 equations in n − 1 unknowns
and hence a knowledge of (n − 1)/2 of these product moments is sufficient. These
are exactly the same bounds as presented in Theorem 5.30 which is not surprising
since the product moments E(X1:nXs:n), for s = 2, 3, . . . , n, are also sufficient for the
determination of all the product moments through Result 5.19.

Upon setting ` = 1 in (64), we obtain the following result.

Result 5.37. For 1 ≤ r ≤ n− 1,

n∑
k=r+1

E(Xr:nXk:n) +
r∑

j=1

E(Xj:nXr+1:n) =
∑

|S|=n−1

E(Xr:S) E(X1:Sc).

Similarly, upon setting ` = n− r in (64), we obtain the following result.
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Result 5.38. For 1 ≤ r ≤ n− 1,

E(Xr:nXr+1:n) +
r∑

j=1

n∑
k=r+1

(
k − j − 1
k − r − 1

)
E(Xj:nXk:n)

=
∑
|S|=r

E(Xr:S)E(X1:Sc).

Result 5.39. For 1 ≤ r ≤ n− 1,

n∑
k=r+1

Cov(Xr:n, Xk:n) +
r∑

j=1

Cov(Xj:n, Xr+1:n)

=
∑

|S|=n−1

{E(Xr:S)− E(Xr:n)}E(X1:Sc)

−
( r∑

j=1

E(Xj:n)
)
{E(Xr+1:n)− E(Xr:n)}. (67)

Proof. From Result 5.37, we have for 1 ≤ r ≤ n− 1

n∑
k=r+1

Cov(Xr:n, Xk:n) +
r∑

j=1

Cov(Xj:n, Xr+1:n)

=
∑

|S|=n−1

E(Xr:S)E(X1:Sc)− E(Xr:n)
n∑

k=r+1

E(Xk:n)

− E(Xr+1:n)
r∑

j=1

E(Xj:n)

=
∑

|S|=n−1

E(Xr:S)E(X1:Sc)− E(Xr:n)
n∑

i=1

E(Xi)

− {E(Xr+1:n)− E(Xr:n)}
r∑

j=1

E(Xj:n)

from which the relation in (67) follows directly.

Upon setting r = 1 in (67), we obtain the following result.
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Result 5.40. For n ≥ 3,

2 Cov(X1:n, X2:n) +
n∑

k=3

Cov(X1:n, Xk:n)

=
∑

|S|=n−1

{E(X1:S)− E(X1:n)}E(X1:Sc)

− E(X1:n){E(X2:n)− E(X1:n)}.

Upon setting r = n− 1 in (67), we obtain the following result.

Result 5.41. For n ≥ 3,

n−2∑
j=1

Cov(Xj:n, Xn:n) + 2 Cov(Xn−1:n, Xn:n)

=
∑

|S|=n−1

{E(Xn−1:S)− E(Xn−1:n)}E(X1:Sc)

− {E(Xn:n)− E(Xn−1:n)}
{ n∑

i=1

E(Xi)− E(Xn:n)
}

.

5.5. Results for the symmetric case

In this section, we consider the special case when the variables Xi (i = 1, 2, . . . , n) are
all symmetric about zero and present some recurrence relations and identities satisfied
by the single and the product moments of order statistics. These results enable us
to determine improved bounds (than the ones presented in Theorem 5.30) for the
number of the single and the product moments to be determined for the calculation
of means, variances and covariances of order statistics arising from n INID variables,
assuming these quantities to be known for order statistics arising from n−1 (and less)
variables (for all subsets of the n Xi’s). These results generalize several well-known
results for the IID case developed in [60,68,73], and presented in detail in [5, 53].

As already shown in section 4.3, when the Xi’s are all symmetric about zero,
then −Xr:n

d= Xn−r+1:n and (−Xs:n,−Xr:n) d= (Xn−r+1:n, Xn−s+1:n). From these
distributional relations, it is clear that

E(Xk
r:n) = (−1)k E(Xk

n−r+1:n), (68)
E(Xr:nXs:n) = E(Xn−s+1:nXn−r+1:n), (69)

Var(Xr:n) = Var(Xn−r+1:n),

and

Cov(Xr:n, Xs:n) = Cov(Xn−s+1:n, Xn−r+1:n).
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Result 5.42. For m ≥ 1 and k = 1, 2, . . .,

E(X [i]k

m:2m−1) = 0 for odd values of k (70)

and

E(Xk
m:2m) =

1
2m

2m∑
i=1

E(X [i]k

m:2m−1) for even values of k. (71)

Proof. Equation (70) follows simply from (68). Equation (71) follows from Result 5.2
upon using the fact that

E(Xk
m+1:2m) = E(Xk

m:2m) for even values of k,

observed easily from (68).

Result 5.43. For 1 ≤ r < s ≤ n,

{1 + (−1)n}E(Xr:nXs:n)

=
r−1∑
j=0

n−s∑
k=1

(−1)n−j−k−1

(
j + k

j

) ∑
|S|=n−j−k

E(Xn−s−k+1:SXn−r−k+1:S)

+
r−1∑
j=1

(−1)n−j−1
∑

|S|=n−j

E(Xn−s+1:SXn−r+1:S)

+
s−r∑
j=1

(−1)s−r−j−1

(
s− 1− j

r − 1

) ∑
|S|=s−j

E(X1:S) E(Xj:Sc).

(72)

Proof. Equation (72) follows directly from Result 5.25 upon using the symmetry re-
lations in (68) and (69).

Result 5.44. For even values of n and 1 ≤ r < s ≤ n,

2 E(Xr:nXs:n) = 2 E(Xn−s+1:nXn−r+1:n)

=
r−1∑
j=0

n−s∑
k=1

(−1)j+k−1

(
j + k

j

) ∑
|S|=n−j−k

E(Xn−s−k+1:SXn−r−k+1:S)

+
r−1∑
j=1

(−1)j−1
∑

|S|=n−j

E(Xn−s+1:SXn−r+1:S)

+
s−r∑
j=1

(−1)s−r−j−1

(
s− 1− j

r − 1

) ∑
|S|=s−j

E(X1:S)E(Xj:Sc).
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The above relation follows simply from Result 5.43 when n is even.

Result 5.45. For even values of n,

2 E(X1:nX2:n) =
n−2∑
k=1

(−1)k−1
∑

|S|=n−k

E(X1:SX2:S). (73)

Proof. Equation (73) follows from Result 5.44 when we set r = 1 and s = 2 and use
the facts that ∑

|S|=n−k

E(Xn−k−1:SXn−k:S) =
∑

|S|=n−k

E(X1:SX2:S)

and ∑
|S|=1

E(X1:SXj:Sc) = 0

(since E(Xi) = 0, i = 1, . . . , n).

Theorem 5.46. In order to find the first two single moments and the product mo-
ments of all order statistics arising from n INID symmetric variables, given these
moments of order statistics arising from n − 1 and less variables (for all subsets of
the n variables), one needs to find at most one single moment when n is even, and
one single moment and (n− 1)/2 product moments when n is odd.

Proof. In view of Results 5.2 and 5.42, it is sufficient to find one single moment
(E(X2

n:n) for odd values of n and E(Xn:n) for even values of n) in order to compute
the first two single moments of all order statistics. The theorem is then proved by
simply noting that there is no need to find any product moment when n is even due
to Result 5.44.

Open Problem 5.47. For the case when n is even, the assumption of symmetry for
the distributions of Xi’s reduced the upper bound for the number of product moments
from (n − 2)/2 to 0. However, when n is odd, the assumption of symmetry had no
effect on the upper bound (n−1)/2 for the number of product moments. Is this upper
bound the best in this case or can it be improved?

5.6. Some comments

First of all, it should be mentioned that all the results presented in this section
(even though stated for continuous random variables) hold equally well for INID
discrete random variables. This may be proved by either starting with the permanent
expressions of distributions of discrete order statistics, or establishing all the results
in terms of distribution functions of order statistics (which cover both continuous and
discrete cases) instead of density functions. These will generalize the corresponding
results in the IID discrete case established in [7]; see also [81].
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It is worth concluding this section by stating that all the results presented in terms
of moments of order statistics may very well be established in terms of expectations
of functions of order statistics (assuming that they exist), with minor changes in the
ensuing results.

6. Additional results for order statistics from INID variables

6.1. Introduction

In the last section, we established several recurrence relations and identities for dis-
tributions of single order statistics and joint distributions of pairs of order statistics.
We also presented bounds for the number of single and product moments to be deter-
mined for the calculation of means, variances and covariances of all order statistics,
and also improvements to those bounds in the case when the underlying variables are
all symmetric.

In this section, we discuss some additional properties satisfied by order statis-
tics from INID variables. These include some formulae in the case of distributions
closed under extrema, a duality principle in order statistics for reflective families, re-
lationships between two related sets of INID variables, some inequalities among the
distributions of order statistics, and simple expressions for the variances of trimmed
and Winsorized means.

6.2. Results for distributions closed under extrema

Suppose a random variable X has an arbitrary distribution function F (x). Let us
define the following two families of distribution functions with a parameter λ:

Family I : F (λ)(x) = (F (x))λ, λ > 0, (74)

Family II : F(λ)(x) = 1− (1− F (x))λ, λ > 0. (75)

It is clear from (74) and (75) that Family I is the family of distributions closed
under maxima, while Family II is the family of distributions closed under minima.

Now, suppose X1, X2, . . . , Xn are INID random variables from Family I with Xi

having parameter λi. Then, it may be noted that

F|S|:S(x) =
∏
i∈S

F (λi)(x) =
∏
i∈S

(F (x))λi = (F (x))λS , (76)

where λS =
∑

i∈S λi. Then, from Result 5.7 we have

Fr:n(x) =
n∑

j=r

(−1)j−r

(
j − 1
r − 1

) ∑
|S|=j

F|S|:S(x). (77)
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Upon using (76) in (77), we get

Fr:n(x) =
n∑

j=r

(−1)j−r

(
j − 1
r − 1

) ∑
|S|=j

(F (x))λS . (78)

For example, if Xi’s are distributed as power function with parameter λi and with
cumulative distribution function

Fi(x) = xλi , 0 < x < 1, λi > 0,

Equation (78) gives the cumulative distribution function of Xr:n as

Fr:n(x) =
n∑

j=r

(−1)j−r

(
j − 1
r − 1

) ∑
|S|=j

xλS , 0 < x < 1,

the density function of Xr:n as

fr:n(x) =
n∑

j=r

(−1)j−r

(
j − 1
r − 1

) ∑
|S|=j

λS xλS−1, 0 < x < 1,

and the single moments of Xr:n as

E(Xk
r:n) =

n∑
j=r

(−1)j−r

(
j − 1
r − 1

) ∑
|S|=j

λS/(λS + k), k = 1, 2, . . . .

Suppose X1, X2, . . . , Xn are INID random variables from Family II with Xi having
parameter λi. Then, it may be noted that

F1:S(x) = 1−
∏
i∈S

(1− F(λi)(x)) = 1−
∏
i∈S

(1− F (x))λi

= 1− (1− F (x))λS , (79)

where λS =
∑

i∈S λi. Then, from Result 5.8 we have

Fr:n(x) =
n∑

j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

) ∑
|S|=j

F1:S(x). (80)

Upon using (79) in (80), we get

Fr:n(x) =
n∑

j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

) ∑
|S|=j

{1− (1− F (x))λS}

= 1−
n∑

j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

) ∑
|S|=j

(1− F (x))λS , (81)
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due to the combinatorial identity

n∑
j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

)(
n

j

)
= 1.

For example, if Xi’s are distributed as exponential with parameter λi and with cu-
mulative distribution function

Fi(x) = 1− e−λix, x ≥ 0, λi > 0,

Equation (81) gives the cumulative distribution function of Xr:n as

Fr:n(x) = 1−
n∑

j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

) ∑
|S|=j

e−λSx, 0 ≤ x < ∞,

the density function of Xr:n as

fr:n(x) =
n∑

j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

) ∑
|S|=j

λS e−λSx, 0 ≤ x < ∞,

and the single moments of Xr:n as

E(Xk
r:n) =

n∑
j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

) ∑
|S|=j

k!/λk
S , k = 1, 2, . . .

These results and many more examples are given in [39].

6.3. Duality principle in order statistics for reflective families

Let V = (X1, X2, . . . , Xn) be a random vector, S ⊂ {1, 2, . . . , n} and V Fr:S(x), with
r = (r1, r2, . . . , rk) and x = (x1, x2, . . . , xk), be the joint cumulative distribution
function of the k order statistics Xr1:S , Xr2:S , . . . , Xrk:S corresponding to the Xi,
i ∈ S, with 1 ≤ r1 < r2 < · · · < rk ≤ |S|. Similarly, let V F r:S(x) be the joint
survival function of the k order statistics Xr1:S , Xr2:S , . . . , Xrk:S corresponding to
the Xi, i ∈ S, with 1 ≤ r1 < r2 < · · · < rk ≤ |S|.

Let C be a family of random vectors of dimension n such that, if V = (X1, X2, . . . ,
Xn) is in C, then V = (−X1,−X2, . . . ,−Xn) is also in C. Such a family C is referred
to as a “reflective family.” For example, the family consisting of all n-dimensional
random vectors each of whose components are (a) discrete, (b) continuous, (c) ab-
solutely continuous, (d) IID, (e) symmetric, (f) exchangeable, and (g) INID are all
clearly reflective families. Similarly, any meaningful intersection of these collections
is also a reflective family.

Then, the following theorem which proves a duality principle in order statistics
for reflective families has been established in [38].
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Theorem 6.1. Suppose that a relation of the form∑
cr:S V Fr:S(x) ≡ 0 (82)

for all V in a reflective family C, for every real x, and where the summation is over
all subsets S of {1, 2, . . . , n} and over r = (r1, r2, . . . , rk) with 1 ≤ r1 < r2 < · · · <
rk ≤ |S|, is satisfied. Then, the following dual relation is also satisfied by every V ∈ C:∑

cr:S V FR:S(x) ≡ 0, (83)

where R = (R1, R2, . . . , Rk) = (|S| − rk + 1, |S| − rk−1 + 1, . . . , |S| − r1 + 1).

Proof. By changing V to V in (82), we simply obtain∑
cr:S V Fr:S(x) =

∑
cr:S V F R:S(−x) ≡ 0. (84)

Since the equality in (84) holds for every real x, we immediately have∑
cr:S V F R:S(x) ≡ 0. (85)

Now by writing

FX1,X2,...,Xk
(x) = 1 +

k∑
`=1

(−1)`
∑

1≤i1<···<i`≤k

F X(i)(x(i)), (86)

where X(i) = (Xi1 , . . . , Xi`
), x(i) = (xi1 , . . . , xi`

), and R(i) = (Ri1 , Ri2 , . . . , Ri`
) =

(|S| − ri`
+ 1, . . . , |S| − ri1 + 1), and observing that (85) implies∑

cr:S = 0 (87)

and ∑
cr:S V F R(i):S

(x(i)) ≡ 0 (88)

(by setting all or other xi’s as 0), the dual relation in (83) simply follows from (86)
on using (87) and (88).

For illustration of this duality, let us consider Result 5.7 which gives for 1 ≤ r ≤
n− 1 and x ∈ R

Fr:n(x) =
n∑

j=r

(−1)j−r

(
j − 1
r − 1

) ∑
|S|=j

Fj:S(x).

Upon using the duality principle, we simply obtain

Fn−r+1:n(x) =
n∑

j=r

(−1)j−r

(
j − 1
r − 1

) ∑
|S|=j

F1:S(x),
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which readily yields the relation

Fr:n(x) =
n∑

j=n−r+1

(−1)j−n+r−1

(
j − 1
n− r

) ∑
|S|=j

F1:S(x).

Note that this is exactly Result 5.8.
Similarly, let us consider the first identity in Result 5.12 which gives for n ≥ 2

and x ∈ R
n∑

r=1

1
r

Fr:n(x) =
n∑

r=1

1
r
(
n
r

) ∑
|S|=r

F1:S(x).

Upon using the duality principle in the above identity, we simply obtain
n∑

r=1

1
r

Fn−r+1:n(x) =
n∑

r=1

1
r
(
n
r

) ∑
|S|=r

Fr:S(x),

which readily yields the identity
n∑

r=1

1
n− r + 1

Fr:n(x) =
n∑

r=1

1
r
(
n
r

) ∑
|S|=r

Fr:S(x).

Note that this is exactly the second identity in Result 5.12.
Next, let us consider the second relation in Result 5.21 which gives for 1 ≤ r <

s ≤ n and (x, y) ∈ R2
U

Fr,s:n(x, y) =
s−1∑

i=s−r

n∑
j=n−s+1+i

(−1)n−r+1−j

(
i− 1

s− r − 1

)(
j − i− 1

n− s

)
×
∑
|S|=j

F1,i+1:S(x, y).

Upon using the duality principle in the above relation, we simply obtain

Fn−s+1,n−r+1:n(x, y) =
s−1∑

i=s−r

n∑
j=n−s+1+i

(−1)n−r+1−j

(
i− 1

s− r − 1

)(
j − i− 1

n− s

)
×
∑
|S|=j

Fj−i,j:S(x, y).

This readily gives

Fr,s:n(x, y) =
n−r∑

i=s−r

n∑
j=r+i

(−1)s+j

(
i− 1

s− r − 1

)(
j − i− 1

r − 1

) ∑
|S|=j

Fj−i,j:S(x, y),

which is exactly the last relation in Result 5.21.
There are many more such dual pairs among the results presented in section 5.
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6.4. Results for two related sets of INID variables

Let X1, X2, . . . , Xn be INID random variables with Xi having probability density
function fi(x) symmetric about 0 (without loss of any generality), and cumulative
distribution function Fi(x). Then, for x ≥ 0 let

Gi(x) = 2 Fi(x)− 1 and gi(x) = 2 fi(x). (89)

That is, the density functions gi(x), i = 1, 2, . . . , n, are obtained by folding the density
functions fi(x) at zero (the point of symmetry).

Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n denote the order statistics obtained from n INID
random variables Y1, Y2, . . . , Yn, with Yi having probability density function gi(x) and
cumulative distribution function Gi(x) as given in (89).

In the IID case, some relationships among the moments of these two sets of order
statistics were derived in [61]. These relations were then employed successfully in [62]
to compute the moments of order statistics from the Laplace distribution by making
use of the known results on the moments of order statistics from the exponential
distribution. These results were extended in [10] to the case when the order statistics
arise from a sample containing a single outlier. In [20], these results were used to
examine the robustness properties of various linear estimators of the location and
scale parameters of the Laplace distribution in the presence of a single outlier.

All these results were generalized in [13] to the case of INID variables, and these
results are presented below.

Result 6.2. For 1 ≤ r ≤ n and k = 1, 2, . . .,

E(Xk
r:n) = 2−n

{r−1∑
`=0

∑
|S|=n−`

E(Y k
r−`:S) + (−1)k

n∑
`=r

∑
|S|=`

E(Y k
`−r+1:S)

}
. (90)

Proof. From (9), we have

E(Xk
r:n) =

1
(r − 1)!(n− r)!

∫ ∞

−∞
xk Per

 F (x)
f(x)

1− F (x)

 } r − 1
} 1
} n− r

dx

=
1

(r − 1)!(n− r)!

{∫ ∞

0

xk Per

 F (x)
f(x)

1− F (x)

 } r − 1
} 1
} n− r

dx

+ (−1)k

∫ ∞

0

xk Per

 F (x)
f(x)

1− F (x)

 } n− r
} 1
} r − 1

dx

}
(91)

upon using the symmetry properties fi(−x) = fi(x) and Fi(−x) = 1 − Fi(x), for
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i = 1, 2, . . . , n. Now, upon using (89) in (91), we get

E(Xk
r:n) =

2−n

(r − 1)!(n− r)!

{∫ ∞

0

xk Per

1 + G(x)
g(x)

1−G(x)

 } r − 1
} 1
} n− r

dx

+ (−1)k

∫ ∞

0

xk Per

1 + G(x)
g(x)

1−G(x)

 } n− r
} 1
} r − 1

dx

}

=
2−n

(r − 1)!(n− r)!

{∫ ∞

0

xk Ir−1,n−r(x) dx

+ (−1)k

∫ ∞

0

xkIn−r,r−1(x) dx

}
, (92)

where

Ir−1,n−r(x) = Per

1 + G(x)
g(x)

1−G(x)

 } r − 1
} 1
} n− r

and

In−r,r−1(x) = Per

1 + G(x)
g(x)

1−G(x)

 } n− r
} 1
} r − 1

.

By expanding Ir−1,n−r(x) by the first row, we obtain

Ir−1,n−r(x) =
n∑

i1=1

J
[i1]
0,r−2,n−r(x) + J1,r−2,n−r(x),

where J
[i1]
0,r−2,n−r(x) is the permanent obtained from Ir−1,n−r(x) by dropping the

first row and the i1-th column, and J1,r−2,n−r(x) is the permanent obtained from
Ir−1,n−r(x) by replacing the first row by G(x). Proceeding in a similar way, we
obtain

Ir−1,n−r(x) =
r−1∑
`=0

(r − 1− `)!
(

r − 1
`

) ∑
|S|=n−`

Per

 G(x)
g(x)

1−G(x)

 } r − 1− `
} 1
} n− r

[S]

so that
1

(r − 1)!(n− r)!

∫ ∞

0

xk Ir−1,n−r(x) dx =
r−1∑
`=0

∑
|S|=n−`

E(Y k
r−`:S). (93)

Proceeding exactly on the same lines, we also obtain

1
(r − 1)!(n− r)!

∫ ∞

0

xk In−r,r−1(x) dx =
n∑

`=r

∑
|S|=`

E(Y k
`−r+1:S). (94)
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Making use of the expressions in (93) and (94) on the R.H.S. of (92), we derive the
relation in (90).

Result 6.3. For 1 ≤ r < s ≤ n,

E(Xr:nXs:n) = 2−n

{r−1∑
`=0

∑
|S|=n−`

E(Yr−`:SYs−`:S)

−
s−1∑
`=r

∑
|S|=n−`

E(Ys−`:S)E(Y`−r+1:Sc)

+
n∑

`=s

∑
|S|=`

E(Y`−s+1:SY`−r+1:S)
}

. (95)

Proof. From (13), we have

(r − 1)!(s− r − 1)!(n− s)!E(Xr:nXs:n)

=
∫∫

−∞<x<y<∞

xy Per


F (x)
f(x)

F (y)− F (x)
f(y)

1− F (y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dx dy

=
∫∫

0<x<y<∞

xy Per


F (x)
f(x)

F (y)− F (x)
f(y)

1− F (y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dx dy

+
∫∫

0<y<x<∞

xy Per


1− F (x)

f(x)
F (x)− F (y)

f(y)
F (y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dx dy

−
∫ ∞

0

∫ ∞

0

xy Per


1− F (x)

f(x)
F (y)− 1 + F (x)

f(y)
1− F (y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dx dy (96)
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upon using the symmetry properties of F . Now, upon using (89) in (96), we get

(r − 1)!(s− r − 1)!(n− s)!E(Xr:nXs:n)

= 2−n


∫∫

0<x<y<∞

xy Per


1 + G(x)

g(x)
G(y)−G(x)

g(y)
1−G(y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dx dy

+
∫∫

0<y<x<∞

xy Per


1 + G(y)

g(y)
G(x)−G(y)

g(x)
1−G(x)


} n− s
} 1
} s− r − 1
} 1
} r − 1

dx dy

−
∫ ∞

0

∫ ∞

0

xy Per


1−G(x)

g(x)
G(x) + G(y)

g(y)
1−G(y)


} r − 1
} 1
} s− r − 1
} 1
} n− s

dx dy

 . (97)

The recurrence relation in (95) may be proved by expanding the three permanents on
the R.H.S. of (97) as we did in proving Result 6.2 and then simplifying the resulting
expressions.

Remark 6.4. If we set F1 = F2 = · · · = Fn = F and f1 = f2 = · · · = fn = f ,
Result 6.2 reduces to

E(Xk
r:n) = 2−n

{r−1∑
`=0

(
n

`

)
E(Y k

r−`:n−`) + (−1)k
n∑

`=r

(
n

`

)
E(Y k

`−r+1:`)
}

and Result 6.3 reduces to

E(Xr:nXs:n) = 2−n

{r−1∑
`=0

(
n

`

)
E(Yr−`:n−`Ys−`:n−`)

−
s−1∑
`=r

(
n

`

)
E(Ys−`:n−`) E(Y`−r+1:`)

+
n∑

`=s

(
n

`

)
E(Y`−s+1:`Y`−r+1:`)

}
,

which were the relations derived in [61] for the IID case.

Remark 6.5. If we set F1 = F2 = · · · = Fn−1 = F and f1 = f2 = · · · = fn−1 = f ,
Results 6.2 and 6.3 reduce to the relations derived in [10] for the single-outlier model.
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Remark 6.6. It should be mentioned here that Results 6.2 and 6.3 have been extended
in [29] after relaxing the assumption of independence for the random variables Xi’s.

6.5. Inequalities for distributions of order statistics

For the case when the Xi’s are INID continuous random variables with pdf fi(x) and
cdf Fi(x), i = 1, 2, . . . , n, some very interesting inequalities between the distribution
of Xr:n from F = (F1 F2 · · ·Fn) and the distribution of Xr:n arising from an IID
sample from a population with average distribution function G(x) = 1

n

∑n
i=1 Fi(x)

have been established in [85]. We shall discuss these results in this section. Some of
these results have also been presented in [53, pp. 22–24].

Let us assume that the p-th quantile of the distribution G(·) is uniquely given
by xp; that is, G(xp) = p.

Theorem 6.7. For r = 2, 3, . . . , n− 1 and all x < x r−1
n

< x r
n
≤ y,

Pr{x < Xr:n ≤ y | F } ≥ Pr{x < Xr:n ≤ y | G} , (98)

where equality holds only if F1 = F2 = · · · = Fn = F at both x and y.

Proof. The proof of this theorem requires the following result in [67].
Let Bi (i = 1, 2, . . . , n) be n independent Bernoulli trials with Bi having pi as

the probability of success. Let B =
∑n

i=1 Bi denote the number of successes in the n
trials, and p = (p1 p2 · · · pn). Then, it was established in [67] that if E(B) = np and
c is an integer,

0 ≤ Pr(B ≤ c | p) ≤ Pr(B ≤ c | p) for 0 ≤ c ≤ np− 1 (99)

and

Pr(B ≤ c | p) ≤ Pr(B ≤ c | p) ≤ 1 for np ≤ c ≤ n. (100)

Now, by taking Bi’s to be the indicator variables for the events {Xi ≤ x}, taking
p = F (x) and p = G(x), and observing that

{B ≥ r} and {Xr:n ≤ x}

are equivalent events, we obtain from (100) and (99) for the case when c = r − 1

Pr{Xr:n ≤ x | F } ≤ Pr{Xr:n ≤ x |G} for nG(x) ≤ r − 1 or x ≤ x r−1
n

(101)

and

Pr{Xr:n ≤ y | F } ≥ Pr{Xr:n ≤ y | G} for r − 1 ≤ nG(y)− 1 or x r
n
≤ y. (102)

The inequality in (98) follows by subtracting (101) from (102).
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Remark 6.8. For the case when r = 1 and r = n, (98) gives the inequalities

Pr{X1:n ≤ y | F } ≥ Pr{X1:n ≤ y | G} for y ≥ x 1
n

and

Pr{Xn:n ≤ x | F } ≤ Pr{Xn:n ≤ x | G} for x ≤ xn−1
n

,

respectively. But, these two inequalities hold for all values as shown in the following
theorem.

Theorem 6.9. For n ≥ 2 and all x,

Pr{X1:n ≤ x | F } ≥ Pr{X1:n ≤ x | G} (103)

and

Pr{Xn:n ≤ x | F } ≤ Pr{Xn:n ≤ x | G} (104)

with equalities holding if and only if F1 = F2 = · · · = Fn = F at x.

Proof. For proving this theorem, we shall use the A.M.-G.M. (arithmetic mean-
geometric mean) inequality given by

{ n∏
i=1

zi

}1/n

≤ z (105)

with equality holding if and only if all zi’s are equal.
Since

Pr{Xn:n ≤ x | F } =
n∏

i=1

Fi(x) and Pr{Xn:n ≤ x | G} = {G(x)}n ,

the inequality in (104) follows readily from (105) by taking zi = Fi(x).
Also, since

Pr{X1:n ≤ x | F } = 1− Pr{X1:n > x | F } = 1−
n∏

i=1

{1− Fi(x)}

and

Pr{X1:n ≤ x | G} = 1− Pr{X1:n > x | G} = 1− {1−G(x)}n,

the inequality in (103) follows easily from (105) by taking zi = 1− Fi(x).
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6.6. Variance of a trimmed mean

Simple expressions for the variance of a trimmed mean have been derived in [46,
54], with the former focusing on a symmetrically trimmed mean while the latter
focusing on a general trimmed mean. These expressions, derived for the IID case,
were generalized to the INID case in [28], and we present these formulas in this
section and illustrate them with some examples.

From Result 5.37, we have for 1 ≤ i ≤ n− 1,

n∑
j=i+1

µi,j:n +
i∑

h=1

µh,i+1:n =
n∑

h=1

µ
[h]
i:n−1E(Xh), (106)

where, as before, µ
[h]
i:n−1 denotes the mean of the i-th order statistic among n − 1

variables obtained by deleting Xh from the original n variables.

Scale-outlier model

Suppose the n distributions have the same mean 0 (without loss of any generality)
but have different variances σ2

i (i = 1, 2, . . . , n). In this case, (106) becomes

n∑
j=i+1

µi,j:n +
i∑

h=1

µh,i+1:n = 0. (107)

From (107), we readily obtain

k∑
i=1

n∑
j=1

i 6=j

µi,j:n = −
k∑

i=1

µi,k+1:n (108)

and
n∑

i=m

n∑
j=1

µi,j:n = −
n∑

i=m

µm−1,i:n. (109)

By using (108) and (109), it can be shown that

E

(
m−1∑

i=k+1

Xi:n

)2

=
n∑

i=1

σ2
i −

k∑
i=1

µi,i:n −
n∑

j=m

µj,j:n + 2
k∑

i=1

k+1∑
j=i+1

µi,j:n

+ 2
n−1∑

i=m−1

n∑
j=i+1

µi,j:n + 2
k∑

i=1

n∑
j=m

µi,j:n. (110)
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Now, let Tn(k, `) denote the trimmed mean after deleting the smallest k and the
largest ` order statistics, i.e.,

Tn(k, `) =
1

n− `− k

n−∑̀
i=k+1

Xi:n. (111)

Then, from (110) we immediately have the variance of the trimmed mean in (111) as

Var(Tn(k, `))

=
1

(n− `− k)2

[ n∑
i=1

σ2
i −

k∑
i=1

µi,i:n −
n∑

j=n−`+1

µj,j:n + 2
k∑

i=1

k+1∑
j=i+1

µi,j:n

+ 2
n−1∑

i=n−`

n∑
j=i+1

µi,j:n + 2
k∑

i=1

n∑
j=n−`+1

µi,j:n

−
{ k∑

i=1

µi:n +
n∑

j=n−`+1

µj:n

}2]
. (112)

Remark 6.10. For the p-outlier scale-model (case when σ2
1 = · · · = σ2

n−p = σ2 and
σ2

n−p+1 = · · · = σ2
n = τ2), the expression in (112) can be used just with

∑n
i=1 σ2

i

replaced by (n− p)σ2 + pτ2.

Remark 6.11. If all Fi’s are symmetric about zero and k = `, then the variance of the
resulting symmetrically trimmed mean can be simplified as

Var(Tn(k, k))

=
1

(n− 2k)2

[ n∑
i=1

σ2
i − 2

i∑
i=1

µi,i:n + 4
k∑

i=1

k+1∑
j=i+1

µi,j:n + 2
k∑

i=1

n∑
j=n−k+1

µi,j:n

]
. (113)

This simplification is achieved by using the symmetry relations µi:n = −µn−i+1:n and
µi,j:n = µn−j+1,n−i+1:n.

Location-outlier model

Suppose the n distributions have different means µi (i = 1, 2, . . . , n) but have same
variance σ2. In this case, (106) readily yields

k∑
i=1

n∑
j=1

i 6=j

µi,j:n =
k∑

i=1

n∑
h=1

µ
[h]
i:n−1E(Xh)−

k∑
i=1

µi,k+1:n (114)
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and

n∑
i=m

n∑
j=1

i 6=j

µi,j:n =
n−1∑

i=m−1

n∑
h=1

µ
[h]
i:n−1E(Xh)−

n∑
i=m

µm−1,i:n. (115)

By using (114) and (115), it can be shown that

E

( m−1∑
i=k+1

Xi:n

)2

= nσ2 +

(
n∑

i=1

µi

)2

−
k∑

i=1

µi,i:n −
n∑

j=m

µj,j:n

+ 2
k∑

i=1

k+1∑
j=i+1

µi,j:n + 2
n−1∑

i=m−1

n∑
j=i+1

µi,j:n

+ 2
k∑

i=1

n∑
j=m

µi,j:n − 2
k∑

i=1

n∑
h=1

µ
[h]
i:n−1E(Xh)

− 2
n−1∑

j=m−1

n∑
h=1

µ
[h]
j:n−1E(Xh). (116)

From (116), we immediately have the variance of the trimmed mean in (111) as

Var(Tn(k, `)) =
1

(n− `− k)2

[
nσ2 +

( n∑
i=1

µi

)2

−
k∑

i=1

µi,i:n −
n∑

j=n−`+1

µj,j:n

+ 2
k∑

i=1

k+1∑
j=i+1

µi,j:n + 2
n−1∑

i=n−`

n∑
j=i+1

µi,j:n

+ 2
k∑

i=1

n∑
j=n−`+1

µi,j:n − 2
k∑

i=1

n∑
h=1

µ
[h]
i:n−1E(Xh)

− 2
n−1∑

j=n−`

n∑
h=1

µ
[h]
j:n−1E(Xn)

−
{ n∑

i=1

µi −
k∑

i=1

µi:n −
n∑

j=k−`+1

µj:n

}2]
. (117)

Remark 6.12. For the p-outlier location-model (case when µ1 = · · · = µn−p = 0,
µn−p+1 = · · · = µn = λ, and σ2

1 = · · · = σ2
n = σ2), the expression in (117) simplifies
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to

Var(Tn(k, `)) =
1

(n− `− k)2

[
nσ2 + p2λ2 −

k∑
i=1

µi,i:n −
n∑

j=n−`+1

µj,j:n

+ 2
k∑

i=1

k+1∑
j=i+1

µi,j:n + 2
n−1∑

i=n−`

n∑
j=i+1

µi,j:n

+ 2
k∑

i=1

n∑
j=n−`+1

µi,j:n − 2pλ
k∑

i=1

µi:n−1[p− 1]

− 2pλ
n−1∑

j=n−`

µj:n−1[p− 1]−
{

pλ−
k∑

i=1

µi:n −
n∑

j=k−`+1

µj:n

}2]
, (118)

where µi:n−1[p − 1] denotes the mean of the i-th order statistic in a sample of size
n− 1 containing p− 1 location-outliers.

Remark 6.13. The results presented here reduce to those in [54] for the special case
when there are no outliers in the sample; in this situation, the result for the symmetric
case presented in Remark 6.11 becomes the same as the formula derived in [46] using
an entirely different method.

Illustrative examples

For the normal case, the means, variances and covariances of order statistics from a
single-outlier model have been tabulated in [56] (determined through extensive nu-
merical integration). Tables for the two cases when (i) the single outlier is a location-
outlier, and (ii) the single outlier is a scale-outlier, have been presented and these
tables cover all sample sizes up to 20 and different choices of λ and τ .

These tables have been used in [58] for robustness studies and, in particular, for
determining the exact bias and variance of various L-estimators including the trimmed
mean in (111); see also [5,53]. Their computation of the variance of the trimmed mean
made use of the variance-covariance matrix of the order statistics Xk+1:n, . . . , Xn−`:n

under the outlier-model.
However, it should be noted that the trimming involved in the trimmed mean

based on robustness considerations is often light (i.e., k and ` are small); see, for
example, [3]. In such a situation, the expressions in (112) and (118) will be a lot more
convenient to use in order to compute the variance of the lightly trimmed mean when
the sample contains multiple scale-outliers and location-outliers, respectively.

Example 6.14. Consider the case when n = 10, and Xi (i = 1, 2, . . . , 9) are standard
normal and X10 is distributed as normal with mean 0 and variance 16; that is, we
have a single scale-outlier model with τ = 4.
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In this case, by using the entire variance-covariance matrix of the order statistics
X2:10, . . . , X9:10 taken from the tables in [56], it was determined in [58] that

Var(T10(1, 1)) = 0.1342.

On the other hand, the expression in (113) gives

Var(T10(1, 1)) =
1
64
{9 + τ2 − 2µ1,1:10 + 4µ1,2:10 + 2µ1,10:10}

=
1
64
{25− 2(9.6007396) + 4(3.0600175) + 2(−4.7257396)}

= 0.13417.

Example 6.15. Consider the case when n = 10, and Xi (i = 1, 2, . . . , 9) are standard
normal and X10 is distributed as normal with mean 4 and variance 1; that is, we have
a single location-outlier with λ = 4.

In this case, once again by using the entire variance-covariance matrix of the order
statistics X2:10, . . . , X9:10 taken from the tables in [56], it was determined in [58] that

Var(T10(1, 1)) = 0.1145.

The expression in (118), on the other hand, gives

Var(T10(1, 1)) =
1
16
{26− µ1,1:10 − µ10,10:10 + 2µ1,2:10

+ 2µ9,10:10 + 2µ1,10:10 − (4− µ1:10 − µ10:10)2}

=
1
64
{26− 2.562625− 17.031655 + 2(1.5625655)

+ 2(5.9421416) + 2(−5.950589)− 2.1833018}
= 0.11454.

6.7. Variance of a Winsorized mean

Let us consider the general Winsorized mean

Wn(r, s) =
1
n

{ n−s∑
i=r+1

Xi:n + rXr+1:n + sXn−s:n

}

=
1
n

{ n∑
i=1

Xi:n + rXr+1:n + sXn−s:n −
r∑

i=1

Xi:n −
n∑

i=n−s+1

Xi:n

}
. (119)

Then, by proceeding as in the last section, simple expressions for the mean and
variance of the general Winsorized mean in (119) for the INID case were derived
in [30], and these are described in this section and illustrated with some examples.
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From (119), we readily find the mean of Wn(r, s) as

E[Wn(r, s)] =
1
n

{ n∑
i=1

µi +
r∑

i=1

(µr+1:n − µi:n)−
n∑

i=n−s+1

(µi:n − µn−s:n)
}

, (120)

where Xi’s are INID random variables with E(Xi) = µi and Var(Xi) = σ2
i ,

i = 1, . . . , n. Further, upon using (106), (114), and (115), it can be shown that

E[Wn(r, s)]2 =
1
n2

[ n∑
i=1

σ2
i +

( n∑
i=1

µi

)2

+ r(r + 2)µ(2)
r+1:n + s(s + 2)µ(2)

n−s:n

−
r∑

i=1

µ
(2)
i:n −

n∑
i=n−s+1

µ
(2)
i:n + 2

r∑
i=1

r+1∑
j=i+1

µi,j:n + 2
n−1∑

i=n−s

n∑
j=i+1

µi,j:n

− 2r
r+1∑
i=1

µi,r+2:n − 2s
n∑

i=n−s

µn−s−1,i:n + 2rsµr+1,n−s:n

− 2r
n∑

i=n−s+1

µr+1,i:n − 2s
r∑

i=1

µi,n−s:n + 2
r∑

i=1

n∑
j=n−s+1

µi,j:n

+ 2
r∑

i=1

n∑
h=1

µh

(
µ

[h]
r+1:n−1 − µ

[h]
i:n−1

)
− 2

n−1∑
i=n−s

n∑
h=1

µh

(
µ

[h]
i:n−1 − µ

[h]
n−s−1:n−1

)]
. (121)

From the expressions in (120) and (121), the variance of Wn(r, s) can be readily
computed as

Var(Wn(r, s)) = E[Wn(r, s)]2 − {E[Wn(r, s)]}2.
For the remainder of this section, we shall focus on symmetrically Winsorized

mean, i.e., the case when r = s.

Scale-outlier model

Suppose the n distributions are all symmetric about 0 (without loss of any generality)
but have different variances, say, σ2

1 = · · · = σ2
n−p = σ2 and σ2

n−p+1 = · · · = σ2
n = τ2.

In this case, because of the symmetry relationships

µ
(k)
i:n = (−1)kµ

(k)
n−i+1:n and µi,j:n = µn−j+1,n−i+1:n,

the expressions in (120) and (121) reduce to

E[Wn(r, r)] =
1
n

{
rµr+1:n −

r∑
i=1

µi:n +
r∑

i=1

µi:n − rµr+1:n

}
= 0,
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which simply implies that the symmetrically Winsorized mean Wn(r, r) is an unbiased
estimator, and

Var(Wn(r, r)) = E[Wn(r, r)]2

=
1
n2

[
(n− p)σ2 + pτ2 + 2r(r + 2)µ(2)

r+1:n − 2
r∑

i=1

µ
(2)
i:n

+ 4
r∑

i=1

r+1∑
j=i+1

µi,j:n − 4r
r+1∑
i=1

µi,r+2:n + 2r2µr+1,n−r:n

− 4r
r∑

i=1

µi,n−r:n + 2
r∑

i=1

n∑
j=n−r+1

µi,j:n

]
, (122)

respectively.

Location-outlier model

Suppose the n distributions have different means, say, µ1 = · · · = µn−p = 0 and
µn−p+1 = · · · = µn = λ, and same variance σ2

1 = · · · = σ2
n = σ2. In this case, the

expressions in (120) and (121) reduce to

E[Wn(r, r)] =
1
n

{
pλ +

r∑
i=1

(µr+1:n − µi:n)−
n∑

i=n−r+1

(µi:n − µn−r:n)
}

(123)

and

E[Wn(r, r)]2 =
σ2

n
+

1
n2

[
p2λ2 + r(r + 2){µ(2)

r+1:n + µ
(2)
n−r:n}

−
r∑

i=1

µ
(2)
i:n −

n∑
i=n−r+1

µ
(2)
i:n + 2

r∑
i=1

r+1∑
j=i+1

µi,j:n + 2
n−1∑

i=n−r

n∑
j=i+1

µi,j:n

− 2r
r+1∑
i=1

µi,r+2:n − 2r
n∑

i=n−r

µn−r−1,i:n + 2r2µr+1,n−r:n

− 2r

n∑
i=n−r+1

µr+1,i:n − 2r

r∑
i=1

µi,n−r:n + 2
r∑

i=1

r∑
j=n−r+1

µi,j:n

+ 2pλ

r∑
i=1

(µr+1:n−1[p− 1]− µi:n−1[p− 1])

− 2pλ
n−1∑

i=n−r

(µi:n−1[p− 1]− µn−r−1:n−1[p− 1])
]
, (124)

respectively.
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Illustrative examples

Example 6.16. Suppose we have a sample of size 10, out of which nine are distributed
as N(µ, 1) and one outlier is distributed as N(µ + λ, 1). Then, by using the tables of
means, variances and covariances of order statistics from a single location-outlier nor-
mal model presented in [56], the bias and mean square error of W10(1, 1) and W10(2, 2)
were computed in [30] from (123) and (124) as follows:

λ = 0.5 λ = 1.0 λ = 1.5 λ = 2.0 λ = 3.0 λ = 4.0
Bias(W10(1, 1)) 0.04937 0.09505 0.13368 0.16298 0.19406 0.20239
Bias(W10(2, 2)) 0.04889 0.09155 0.12392 0.14500 0.16216 0.16503
MSE(W10(1, 1)) 0.10693 0.11403 0.12404 0.13469 0.15038 0.15627
MSE(W10(2, 2)) 0.11402 0.12106 0.12997 0.13805 0.14715 0.14926

Example 6.17. Suppose we have a sample of size 10, out of which nine are distributed
as N(µ, 1) and one outlier is distributed as N(µ, τ2). Once again, by using the tables
of means, variances and covariances of order statistics from a single scale-outlier
normal model presented in [56], the variance of the unbiased estimators W10(1, 1)
and W10(2, 2) were computed in [30] from (122) as follows:

τ = 0.5 τ = 2.0 τ = 3.0 τ = 4.0
Var(W10(1, 1)) 0.09570 0.12214 0.13222 0.13802
Var(W10(2, 2)) 0.09972 0.12668 0.13365 0.13743

Remark 6.18. These values agree (up to 5 decimal places) in almost all cases with
those in [5, pp. 128–130]. The differences that exist are in the fifth decimal place
and may be due to the computational error accumulated in the computations in [5],
since all the elements of the variance-covariance matrix of order statistics were used
in the calculations there. For example, in the case when n = 10 and r = 1, while the
expression in (122) would use only 6 elements of the variance-covariance matrix, the
direct computation carried out in [5] would have used (8× 9)/2 = 36 elements.

7. Robust estimation for exponential distribution

7.1. Introduction

In the last three sections, numerous results have been presented on distributions and
moments of order statistics from INID variables, with a special emphasis in many
cases on results for multiple-outlier models. In their book Outliers in Statistical
Data, Barnett and Lewis [43, p. 68] have stated

“A study of the multiple-outlier model has been recently carried out by
Balakrishnan, who gives a substantial body of results on the moments of
order statistics. . . . He indicated that these results can in principle be
applied to robustness studies in the multiple-outlier situation, but at the
time of writing, we are not aware of any published application. There is
much work waiting to be done in this important area.”
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Subsequently, the permanent approach was used successfully in [16] along with a
differential equation technique to develop a simple and efficient recursive algorithm
for the computation of single and product moments of order statistics from INID
exponential random variables. This algorithm was then utilized to address the robust
estimation of the exponential mean when multiple outliers are possibly present in the
sample. Here, we describe these developments and their applications to robustness
issues.

Consider X1, . . . , Xn to be INID exponential random variables with Xi (for
i = 1, . . . , n) having probability density function

fi(x) =
1
θi

e−x/θi , x ≥ 0, θi > 0, (125)

and cumulative distribution function

Fi(x) = 1− e−x/θi , x ≥ 0, θi > 0. (126)

It is clear from (125) and (126) that the distributions satisfy the differential equations

fi(x) =
1
θi
{1− Fi(x)}, x ≥ 0, θi > 0, i = 1, . . . , n. (127)

7.2. Relations for single moments

The following theorem has been established in [16] for the single moments of order
statistics by using the differential equation in (127).

Theorem 7.1. For n = 1, 2, . . . and k = 0, 1, 2, . . .,

µ
(k+1)
1:n =

k + 1
(
∑n

i=1 1/θi)
µ

(k)
1:n; (128)

for 2 ≤ r ≤ n and k = 0, 1, 2, . . .,

µ(k+1)
r:n =

1
(
∑n

i=1 1/θi)

{
(k + 1)µ(k)

r:n +
n∑

i=1

1
θi

µ
[i](k+1)
r−1:n−1

}
. (129)

Proof. We shall present the proof for the relation in (129) while (128) can be proved
on similar lines. For 2 ≤ r ≤ n and k = 0, 1, . . . , we can write from (8)

(r − 1)!(n− r)µ(k)
r:n

=
∑
P

∫ ∞

0

xkFi1(x) · · ·Fir−1(x)fir (x){1− Fir+1(x)} · · · {1− Fin(x)} dx

=
∑
P

1
θir

∫ ∞

0

xkFi1(x) · · ·Fir−1(x){1− Fir
(x)} · · · {1− Fin

(x)} dx
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upon using (127). Integrating now by parts treating xk for integration and the rest
of the integrand for differentiation, we obtain

(r − 1)!(n− r)µ(k)
r:n =

1
k + 1

∑
P

1
θir

[
−
∫ ∞

0

xk+1fi1(x)Fi2(x) · · ·Fir−1(x)

× {1− Fir
(x)} · · · {1− Fin

(x)} dx

− · · ·

−
∫ ∞

0

xk+1Fi1(x) · · ·Fir−2(x)fir−1(x)

× {1− Fir (x)} · · · {1− Fin(x)} dx

+
∫ ∞

0

xk+1Fi1(x) · · ·Fir−1(x)fir
(x)

× {1− Fir+1(x)} · · · {1− Fin
(x)} dx

+ · · ·

+
∫ ∞

0

xk+1Fi1(x) · · ·Fir−1(x)

× {1− Fir
(x)} · · · {1− Fin−1(x)}fin

(x) dx

]
. (130)

Upon splitting the first set of integrals (ones with negative sign) on the RHS of (130)
into two each through the term 1− Fir

(x), we obtain

(r − 1)!(n− r)µ(k)
r:n =

1
k + 1

∑
P

1
θir

[{∫ ∞

0

xk+1fi1(x)Fi2(x) · · ·Fir
(x)

× {1− Fir+1(x)} · · · {1− Fin(x)} dx

+ · · ·

+
∫ ∞

0

xk+1Fi1(x) · · ·Fir−2(x)fir−1(x)Fir
(x)

× {1− Fir+1(x)} · · · {1− Fin
(x)} dx

+
∫ ∞

0

xk+1Fi1(x) · · ·Fir−1(x)fir
(x)

× {1− Fir+1(x)} · · · {1− Fin(x)} dx

+ · · ·

+
∫ ∞

0

xk+1Fi1(x) · · ·Fir−1(x)

× {1− Fir (x)} · · · {1− Fin−1(x)}fin(x)dx

}
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−
{∫ ∞

0

xk+1fi1(x)Fi2(x) · · ·Fir (x)

× {1− Fir+1(x)} · · · {1− Fin
(x)} dx

+ · · ·

+
∫ ∞

0

xk+1Fi1(x) · · ·Fir−2(x)fir−1(x)

× {1− Fir+1(x)} · · · {1− Fin(x)} dx

}]
=

1
k + 1

[( n∑
i=1

1
θi

)
(r − 1)!(n− r)!µ(k+1)

r:n

− (r − 2)!(n− r)!(r − 1)
n∑

i=1

1
θi

µ
[i](k+1)
r−1:n−1

]
. (131)

The relation in (129) is obtained by simply rewriting (131).

Remark 7.2. The relations in Theorem 7.1 will enable one to compute all the single
moments of all order statistics in a simple recursive manner for any specified values
of θi (i = 1, . . . , n).
Remark 7.3. For the case when the exponential variables are IID, i.e., θ1 = · · · =
θn = 1, the relations in Theorem 7.1 readily reduce to those in [71].

7.3. Relations for product moments

The following theorem has been established in [16] for the product moments of order
statistics by using the differential equation in (127).

Theorem 7.4. For n = 2, 3, . . .,

µ1,2:n =
1

(
∑n

i=1 1/θi)
{µ1:n + µ2:n};

for 2 ≤ r ≤ n− 1,

µr,r+1:n =
1

(
∑n

i=1 1/θi)

{
(µr:n + µr+1:n) +

n∑
i=1

1
θi

µ
[i]
r−1,r:n−1

}
; (132)

for 3 ≤ s ≤ n,

µ1,s:n =
1

(
∑n

i=1 1/θi)
{µ1:n + µs:n};

for 2 ≤ r < s ≤ n and s− r ≥ 2,

µr,s:n =
1

(
∑n

i=1 1/θi)

{
(µr:n + µs:n) +

n∑
i=1

1
θi

µ
[i]
r−1,s−1:n−1

}
.
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Proof. We shall present the proof for the relation in (132) while the other three
relations can be proved on similar lines. For 2 ≤ r ≤ n− 1, we can write from (12)

(r − 1)!(n− r − 1)! µr:n = (r − 1)!(n− r − 1)! E(Xr:nX0
r+1:n)

=
∑
P

∫ ∞

0

∫ ∞

x

xFi1(x) · · ·Fir−1(x)fir
(x)fir+1(y)

× {1− Fir+2(y)} · · · {1− Fin
(y)} dy dx

=
∑
P

∫ ∞

0

xFi1(x) · · ·Fir−1(x)fir
(x)I(x) dx, (133)

where

I(x) =
∫ ∞

x

fir+1(y){1− Fir+2(y)} · · · {1− Fin
(y)} dy

=
1

θir+1

∫ ∞

x

{1− Fir+1(y)} · · · {1− Fin
(y)} dy

=
1

θir+1

[∫ ∞

x

yfir+1(y){1− Fir+2(y)} · · · {1− Fin
(y)} dy

+ · · ·

+
∫ ∞

x

y{1− Fir+1(y)} · · · {1− Fin−1(y)}fin
(y) dy

− x{1− Fir+1(x)} · · · {1− Fin(x)}
]
.

Upon substituting this in (133), we get

(r − 1)!(n− r − 1)! µr:n =
∑
P

1
θir+1

[∫ ∞

0

∫ ∞

x

xyFi1(x) · · ·Fir−1(x)fir (x)fir+1(y)

× {1− Fir+2(y)} · · · {1− Fin
(y)} dy dx

+ · · ·

+
∫ ∞

0

∫ ∞

x

xyFi1(x) · · ·Fir−1(x)fir (x)

× {1− Fir+1(y)} · · · {1− Fin−1(y)}fin
(y) dy dx

−
∫ ∞

0

x2Fi1(x) · · ·Fir−1(x)fir
(x)

× {1− Fir+1(x)} · · · {1− Fin
(x)} dx

]
. (134)
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Next, from (12) let us write for 2 ≤ r ≤ n− 1

(r − 1)!(n− r − 1)!µr+1:n

= (r − 1)!(n− r − 1)! E(X0
r:nXr+1:n)

=
∑
P

∫ ∞

0

∫ y

0

yFi1(x) · · ·Fir−1(x)fir (x)fir+1(y)

× {1− Fir+2(y)} · · · {1− Fin
(y)} dx dy

=
∑
P

∫ ∞

0

yfir+1(y){1− Fir+2(y)} · · · {1− Fin(y)}J(y) dy, (135)

where

J(y) =
∫ y

0

Fi1(x) · · ·Fir−1(x)fir (x) dx

=
1

θir

[∫ y

0

Fi1(x) · · ·Fir−1(x) dx−
∫ y

0

Fi1(x) · · ·Fir (x) dx

]
=

1
θir

[
yFi1(y) · · ·Fir−1(y)−

∫ y

0

xfi1(x)Fi2(x) · · ·Fir−1(x) dx

− · · · −
∫ y

0

xFi1(x) · · ·Fir−2(x)fir−1(x) dx

− yFi1(y) · · ·Fir
(y) +

∫ y

0

xfi1(x)Fi2(x) · · ·Fir
(x) dx

+ · · ·+
∫ y

0

xFi1(x) · · ·Fir−1(x)fir (x) dx

]
.

Upon substituting this in (135), we get

(r − 1)!(n− r − 1)!µr+1:n

=
∑
P

1
θir

[∫ ∞

0

y2Fi1(y) · · ·Fir−1(y)fir+1(y){1− Fir+2(y)} · · · {1− Fin
(y)} dy

−
∫ ∞

0

∫ ∞

x

xyfi1(x)Fi2(x) · · ·Fir−1(x)fir+1(y)

× {1− Fir+2(y)} · · · {1− Fin
(y)} dy dx

− · · ·

−
∫ ∞

0

∫ ∞

x

xyFi1(x) · · ·Fir−2(x)fir−1(x)fir+1(y)

× {1− Fir+2(y)} · · · {1− Fin
(y)} dy dx

−
∫ ∞

0

y2Fi1(y) · · ·Fir
(y)fir+1(y)

75
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× {1− Fir+2(y)} · · · {1− Fin
(y)} dy

+
∫ ∞

0

∫ ∞

x

xyfi1(x)Fi2(x) · · ·Fir
(x)fir+1(y)

× {1− Fir+2(y)} · · · {1− Fin(y)} dy dx

+ · · ·

+
∫ ∞

0

∫ ∞

x

xyFi1(x) · · ·Fir−1(x)fir
(x)fir+1(y)

× {1− Fir+2(y)} · · · {1− Fin(y)} dy dx

]
. (136)

On adding (134) and (136) and simplifying the resulting expression, we obtain

(r − 1)!(n− r − 1)!(µr:n + µr+1:n)

=
( n∑

i=1

1
θi

)
(r − 1)!(n− r − 1)!µr,r+1:n

−(r − 2)!(n− r − 1)!(r − 1)
n∑

i=1

1
θi

µ
[i]
r−1,r:n−1.

The relation in (132) is derived simply by rewriting the above equation.

Remark 7.5. The relations in Theorem 7.4 will enable one to compute all the product
moments of all order statistics in a simple recursive manner for any specified values
of θi (i = 1, . . . , n).
Remark 7.6. For the case when the exponential variables are IID, i.e., θ1 = · · · =
θn = 1, the relations in Theorem 7.4 readily reduce to relations equivalent to those
in [72].

7.4. Results for the multiple-outlier model

Let us consider the multiple-outlier model in which θ1 = · · · = θn−p = θ and θn−p+1 =
· · · = θn = τ . In this case, the relations in Theorems 7.1 and 7.4 reduce to the
following:

(i) For n ≥ 1 and k = 0, 1, 2, . . .,

µ
(k+1)
1:n [p] =

k + 1
(n−p

θ + p
τ )

µ
(k)
1:n[p].

(ii) For 2 ≤ r ≤ n and k = 0, 1, 2, . . .,

µ(k+1)
r:n [p] =

1
(n−p

θ + p
τ )

{
(k + 1)µ(k)

r:n[p] +
n− p

θ
µ

(k+1)
r−1:n−1[p]

+
p

τ
µ

(k+1)
r−1:n−1[p− 1]

}
.
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(iii) For n ≥ 2,

µ1,2:n[p] =
1

(n−p
θ + p

τ )
{µ1:n[p] + µ2:n[p]}.

(iv) For 2 ≤ r ≤ n− 1,

µr,r+1:n[p] =
1

(n−p
θ + p

τ )

{
µr:n[p] + µr+1:n[p] +

n− p

θ
µr−1,r:n−1[p]

+
p

τ
µr−1,r:n−1[p− 1]

}
.

(v) For 3 ≤ s ≤ n,

µ1,s:n[p] =
1

(n−p
θ + p

τ )
{µ1:n[p] + µs:n[p]}.

(vi) For 2 ≤ r < s ≤ n and s− r ≥ 2,

µr,s:n[p] =
1

(n−p
θ + p

τ )

{
µr:n[p] + µs:n[p] +

n− p

θ
µr−1,s−1:n−1[p]

+
p

τ
µr−1,s−1:n−1[p− 1]

}
.

Here, µr:n[p] and µr:n−1[p− 1] denote the mean of the r-th order statistic when there
are p and p− 1 outliers, respectively.

Remark 7.7. Relations (i)–(vi) will enable one to compute all the single and product
moments of all order statistics from a p-outlier model in a simple recursive manner.
By starting with the IID results (case p = 0), these relations will yield the single
and product moments of all order statistics from a single-outlier model (case p = 1),
which in turn can be used to produce the results for p = 2, and so on.

7.5. Optimal Winsorized and trimmed means

By allowing a single outlier in an exponential sample, it was shown in [75] that the
one-sided Winsorized mean

Wm,n =
1

m + 1

{m−1∑
i=1

Xi:n + (n−m− 1)Xm:n

}
(137)

is optimal in that it has the smallest mean square error among all linear estimators
based on the first m order statistics when, in fact, there is no outlier. The determi-
nation of an optimal m for given values of n and h = θ/τ was subsequently discussed
in [69], where τ is the mean of the outlying observation. Making use of the recur-
sive algorithm described above for the moments of order statistics from a p-outlier
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n h p = 1 p = 2 p = 3 p = 4
m∗ RE m∗ RE m∗ RE m∗ RE

20 0.05 17 25.071 14 50.296 11 70.707 9 85.163
0.10 17 6.355 14 12.349 12 17.307 9 20.964
0.15 18 3.057 15 5.506 12 7.627 10 9.260
0.20 18 1.964 15 3.189 13 4.320 11 5.210
0.25 18 1.486 16 2.170 14 2.786 12 3.371
0.30 19 1.251 17 1.642 15 2.046 13 2.398
0.35 19 1.132 17 1.352 16 1.601 14 1.833
0.40 19 1.061 18 1.187 16 1.337 15 1.488
0.45 19 1.019 18 1.085 17 1.177 16 1.272
0.50 20 1.000 19 1.036 18 1.082 17 1.137

Table 4 – Optimal Winsorized estimator of θ and relative efficiency when p outliers
(with θ/τ = h) are in the sample

exponential model, the optimal choice m∗ of m for various choices of h, n and p were
determined in [16]. For n = 20, these values are presented in table 4. Similar results
are presented in table 5 for the optimal choice m∗∗ of m for the one-sided trimmed
mean

Tm,n =
1
m

m∑
i=1

Xi:n (138)

that yields the smallest mean square error for given values of n and h = θ/τ .
The values in tables 4 and 5 reveal that the relative efficiency of the optimal

trimmed estimator compared to the optimal Winsorized estimator increases signif-
icantly as h decreases and/or p increases. This means that the optimal trimmed
estimator provides greater protection than the optimal Winsorized estimator when
more (or few pronounced) outliers are present in the sample, but that it comes at a
higher premium when at most one or few non-pronounced outliers are present.

7.6. Robustness of various linear estimators

Let us consider the following linear estimators of θ:

(i) Complete sample estimator Wn,n,

(ii) Winsorized estimator in (137) based on m = 90% of n,

(iii) Winsorized estimator in (137) based on m = 80% of n,

(iv) Winsorized estimator in (137) based on m = 70% of n,

(v) trimmed estimator in (138) based on m = 90% of n,
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n h p = 1 p = 2 p = 3 p = 4
m∗∗ RE m∗∗ RE m∗∗ RE m∗∗ RE

20 0.05 19 1.295 18 1.813 17 2.424 16 3.135
0.10 19 1.268 18 1.702 17 2.190 16 2.718
0.15 19 1.230 18 1.574 17 1.930 17 2.541
0.20 19 1.188 18 1.444 18 1.866 17 2.449
0.25 19 1.149 18 1.315 18 1.822 17 2.188
0.30 19 1.109 19 1.316 18 1.694 18 2.036
0.35 19 1.065 19 1.302 18 1.537 18 1.953
0.40 19 1.028 19 1.255 19 1.399 18 1.787
0.45 19 0.998 19 1.206 19 1.371 18 1.586
0.50 19 0.967 19 1.139 19 1.309 19 1.438

Table 5 – Optimal trimmed estimator of θ and relative efficiency when p outliers (with
θ/τ = h) are in the sample

(vi) trimmed estimator in (138) based on m = 80% of n,

(vii) trimmed estimator in (138) based on m = 70% of n, and

(viii) Chikkagoudar-Kunchur [48] estimator defined as

CKn =
1
n

n∑
i=1

(
1− 2i

n(n + 1)

)
Xi:n. (139)

We have presented in table 6 the values of bias and mean square error for the above
eight estimators when n = 20, p = 1(1)4 and h = 0.25(0.25)0.75.

From table 6, we observe that while the complete sample estimator and the
Chikkagoudar-Kunchur estimator in (139) are most efficient when there is no outlier
or when there are few non-pronounced outliers, they develop serious bias and possess
large mean square error when the outliers become pronounced. Once again, from this
table we observe that the trimmed estimators provide good protection against the
presence of few pronounced outliers, but it is attained with a higher premium.

Remark 7.8. After noting that the Chikkagoudar-Kunchur estimator is non-robust to
the presence of outliers, [22] modified the estimator CKn in (139) by downweighing
the larger order statistics. Though this resulted in an improvement, yet pronounced
outliers had an adverse effect on this estimator as well.

Remark 7.9. Some recurrence relations for the single and product moments of order
statistics from multiple-outlier exponential models were derived directly in [49], and
used to carry out a rather extensive evaluation and comparison of several different
linear estimators of the exponential mean.
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h p = 1 p = 2 p = 3 p = 4
Bias MSE Bias MSE Bias MSE Bias MSE

0.75 (i) −0.0317 0.0481 −0.0159 0.0491 0.0000 0.0506 0.0159 0.0527
(ii) −0.0381 0.0530 −0.0234 0.0538 −0.0085 0.0550 0.0066 0.0568
(iii) −0.0450 0.0591 −0.0309 0.0598 −0.0166 0.0609 −0.0021 0.0625
(iv) −0.0534 0.0669 −0.0398 0.0675 −0.0260 0.0686 −0.0120 0.0701
(v) −0.2217 0.0841 −0.2101 0.0802 −0.1983 0.0765 −0.1864 0.0731
(vi) −0.3697 0.1634 −0.3607 0.1576 −0.3515 0.1519 −0.3422 0.1462
(vii) −0.4848 0.2560 −0.4777 0.2497 −0.4703 0.2434 −0.4629 0.2370
(viii) −0.0572 0.0479 −0.0418 0.0481 −0.0264 0.0487 −0.0110 0.0498

0.50 (i) 0.0000 0.0522 0.0476 0.0612 0.0952 0.0748 0.1429 0.0930
(ii) −0.0157 0.0546 0.0231 0.0600 0.0638 0.0691 0.1061 0.0825
(iii) −0.0257 0.0603 0.0093 0.0645 0.0459 0.0717 0.0844 0.0824
(iv) −0.0360 0.0679 −0.0037 0.0714 0.0303 0.0775 0.0660 0.0867
(v) −0.2052 0.0787 −0.1759 0.0704 −0.1451 0.0637 −0.1129 0.0589
(vi) −0.3581 0.1560 −0.3366 0.1429 −0.3139 0.1303 −0.2901 0.1182
(vii) −0.4761 0.2484 −0.4596 0.2343 −0.4421 0.2201 −0.4238 0.2058
(viii) −0.0266 0.0500 0.0194 0.0560 0.0655 0.0662 0.1116 0.0808

0.25 (i) 0.0952 0.0884 0.2381 0.1701 0.3810 0.2925 0.5238 0.4558
(ii) 0.0203 0.0595 0.1071 0.0841 0.2131 0.1414 0.3353 0.2402
(iii) 0.0019 0.0633 0.0708 0.0784 0.1496 0.1089 0.2403 0.1619
(iv) −0.0130 0.0701 0.0468 0.0814 0.1139 0.1035 0.1895 0.1405
(v) −0.1805 0.0714 −0.1194 0.0596 −0.0471 0.0568 0.0360 0.0686
(vi) −0.3426 0.1464 −0.3023 0.1240 −0.2569 0.1030 −0.2054 0.0848
(vii) −0.4653 0.2390 −0.4359 0.2150 −0.4032 0.1905 −0.3667 0.1659
(viii) 0.0645 0.0782 0.2017 0.1459 0.3392 0.2515 0.4770 0.3954

Table 6 – Bias and mean square error of eight estimators of θ when p outliers
(with θ/τ = h) are present in the sample of size n = 20
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Remark 7.10. In order to illustrate the usefulness of the differential equation technique
described in sections 7.2 and 7.3, a “complete set” of recurrence relations for the
single and product moments of order statistics from INID right-truncated exponential
random variables were derived in [17].

8. Robust estimation for logistic distribution

8.1. Introduction

In the last section, we presented the results of [16] on a recursive algorithm for the
computation of single and product moments of order statistics from INID exponential
random variables and their use in the robust estimation of the exponential mean in
the presence of multiple outliers. Arnold [16, pp. 243–246], in his discussion of this
work, presented a direct approach for the computation of these moments and then
remarked that

“Bala’s specialized differential equation techniques may have their finest
hour in dealing with Xi’s for which minima and maxima are not nice. His
proposed work in this direction will be interesting.”

Motivated by this comment, the differential equation technique was recently used
successfully in [51] to derive recurrence relations for the single moments of order statis-
tics from INID logistic variables. These results were then applied to examine the effect
of multiple outliers on various linear estimators of the location and scale parameters
of the logistic distribution. These results, which extend the discussion in [15] on
the robustness issues for a single-outlier model, are described in this section. In this
regard, let X1, X2, . . . , Xn be independent logistic random variables having cumula-
tive distribution functions F1(x), F2(x), . . . , Fn(x) and probability density functions
f1(x), f2(x), . . . , fn(x), respectively. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order
statistics obtained by arranging the n Xi’s in increasing order of magnitude. Then
the density function of Xr:n (1 ≤ r ≤ n) is [see (8)]

fr:n(x) =
1

(r − 1)!(n− r)!

∑
P

r−1∏
a=1

Fia(x)fir (x)
n∏

b=r+1

{1− Fib
(x)}, (140)

where
∑

P denotes the summation over all n! permutations (i1, i2, . . . , in) of (1, . . . , n).

Similarly, if another independent random variable Xn+1
d= Xi (that is, with

cumulative distribution function Fi(x) and probability density function fi(x)) is
added to the original n variables X1, X2, . . . , Xn, then the density function of Xr:n+1
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(1 ≤ r ≤ n + 1) can be written as [see (8)]

f
[i]+

r:n+1(x) =
Fi(x)

(r − 2)!(n− r + 1)!

∑
P

r−2∏
a=1

Fia
(x)fir−1(x)

n∏
b=r

{1− Fib
(x)}

+
fi(x)

(r − 1)!(n− r + 1)!

∑
P

r−1∏
a=1

Fia
(x)

n∏
b=r

{1− Fib
(x)}

+
1− Fi(x)

(r − 1)!(n− r)!

∑
P

r−1∏
a=1

Fia
(x)fir

(x)
n∏

b=r+1

{1− Fib
(x)}, x ∈ R, (141)

with the conventions that
∏s

i=r = 1 if s − r = −1 and
∏s

i=r = 0 if s − r = −2, so
that the first term is omitted if r = 1 and the last term is omitted if r = n + 1. The
superscript [i]+ indicates that the random variable Xi is repeated.

Now, let us consider X1, . . . , Xn to be INID logistic random variables, with Xi

(for i = 1, . . . , n) having its probability density function as

fi(x) =
ce−c(x−µi)/σi

σi(1 + e−c(x−µi)/σi)2
, x ∈ R, µi ∈ R, σi > 0, (142)

and cumulative distribution function as

Fi(x) =
1

1 + e−c(x−µi)/σi
, x ∈ R, µi ∈ R, σi > 0, (143)

for i = 1, 2, . . . , n, where c = π/
√

3.
From (142) and (143), we see that the distributions satisfy the differential equa-

tions
fi(x) =

c

σi
Fi(x){1− Fi(x)}, x ∈ R, σi > 0, (144)

for i = 1, 2, . . . , n.
Let us denote the single moments E(Xk

r:n) by µ
(k)
r:n, 1 ≤ r ≤ n and k = 1, 2, . . ..

Let us also use µ
[i](k)
r:n−1 and µ

[i]+(k)
r:n+1 to denote the single moments of order statistics

arising from n − 1 variables obtained by deleting Xi from the original n variables
X1, X2, . . . , Xn and the single moments of order statistics arising from n + 1 vari-
ables obtained by adding an independent Xn+1

d= Xi to the original n variables
X1, X2, . . . , Xn, respectively.

8.2. Relations for single moments

In this section, we present the following recurrence relations for the single moments
established in [51] by making use of the differential equations in (144).
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Theorem 8.1. For n ≥ 1 and k = 0, 1, 2, . . .,

n∑
i=1

1
σi

µ
[i]+(k+1)
1:n+1 = − (k + 1)

c
µ

(k)
1:n +

( n∑
i=1

1
σi

)
µ

(k+1)
1:n ; (145)

for 2 ≤ r ≤ n and k = 0, 1, 2, . . .,

n∑
i=1

1
σi

µ
[i]+(k+1)
r:n+1 =

(k + 1)
c

{µ(k)
r−1:n − µ(k)

r:n} −
n∑

i=1

1
σi

µ
[i](k+1)
r−1:n−1

+
( n∑

i=1

1
σi

)
{µ(k+1)

r−1:n + µ(k+1)
r:n }; (146)

for n ≥ 1 and k = 0, 1, 2, . . .,

n∑
i=1

1
σi

µ
[i]+(k+1)
n+1:n+1 =

(k + 1)
c

µ(k)
n:n +

( n∑
i=1

1
σi

)
µ(k+1)

n:n . (147)

Proof. We shall present here the proof for the recurrence relation in (146), while the
relations in (145) and (147) can be proved in a similar manner; see [51].

For 2 ≤ r ≤ n, we can first of all write from (141) that

f
[i]+

r:n+1(x) =
Fi(x)

(r − 2)!(n− r + 1)!

∑
P : ir−1=i

[r−2∑
j=1

r−1∑
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r

{1− Fib
(x)}

+
n∑

j=r−1

r−2∏
a=1

Fia
(x)fij

(x)
n∏

b=r−1
b 6=j

{1− Fib
(x)}

]

+
fi(x)

(r − 1)!(n− r + 1)!

[ ∑
P : ir−1=i

(r − 1)
r−1∏
a=1

Fia
(x)

n∏
b=r

{1− Fib
(x)}

+
∑

P : ir=i

(n− r + 1)
r−1∏
a=1

Fia
(x)

n∏
b=r

{1− Fib
(x)}

]

+
1− Fi(x)

(r − 1)!(n− r)!

∑
P : ir=i

[r−1∑
j=1

r∑
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r+1

{1− Fib
(x)}

+
n∑

j=r

r−1∏
a=1

Fia(x)fij (x)
n∏

b=r
b 6=j

{1− Fib
(x)}

]
, x ∈ R. (148)
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Now, from (140), let us consider for 2 ≤ r ≤ n, and k = 0, 1, 2, . . .,

(k + 1)
c

{µ(k)
r−1:n − µ(k)

r:n}

=
k + 1

c(r − 2)!(n− r + 1)!

∑
P

∫ ∞

−∞
xk

r−2∏
a=1

Fia
(x)fir−1(x)

n∏
b=r

{1− Fib
(x)} dx

− k + 1
c(r − 1)!(n− r)!

∑
P

∫ ∞

−∞
xk

r−1∏
a=1

Fia
(x)fir

(x)
n∏

b=r+1

{1− Fib
(x)} dx

=
k + 1

(r − 2)!(n− r + 1)!

∑
P

1
σir−1

∫ ∞

−∞
xk

r−1∏
a=1

Fia
(x)

n∏
b=r−1

{1− Fib
(x)} dx

− k + 1
(r − 1)!(n− r)!

∑
P

1
σir

∫ ∞

−∞
xk

r∏
a=1

Fia
(x)

n∏
b=r

{1− Fib
(x)} dx

upon using (144). Integrating now by parts in both integrals above, treating xk for
integration and the rest of the integrand for differentiation, we obtain

(k + 1)
c

{µ(k)
r−1:n − µ(k)

r:n}

=
1

(r − 2)!(n− r + 1)!

∑
P

1
σir−1

[
−

r−1∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia
(x)fij

(x)

×
n∏

b=r−1

{1− Fib
(x)} dx +

n∑
j=r−1

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia
(x)fij

(x)
n∏

b=r−1
b 6=j

{1− Fib
(x)} dx

]

− 1
(r − 1)!(n− r)!

∑
P

1
σir

[
−

r∑
j=1

∫ ∞

−∞
xk+1

r∏
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r

{1− Fib
(x)} dx

+
n∑

j=r

∫ ∞

−∞
xk+1

r∏
a=1

Fia
(x)fij

(x)
n∏

b=r
b 6=j

{1− Fib
(x)} dx

]
. (149)

We now split the first term in the first sum above into three by separating out the
j = r− 1 term from

∑r−1
j=1 and splitting the remaining sum,

∑r−2
j=1, into two through

{1−Fir−1(x)}. We also split the first term in the second sum above by separating out
the j = r term from

∑r
j=1. And we split the second term in the second sum above
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into two through Fir
(x) = 1− {1− Fir

(x)}. Equation (149) now becomes

(k + 1)
c

{µ(k)
r−1:n − µ(k)

r:n}

=
1

(r − 2)!(n− r + 1)!

∑
P

1
σir−1

[r−2∑
j=1

∫ ∞

−∞
xk+1Fir−1(x)

r−1∏
a=1
a6=j

Fia
(x)fij

(x)

×
n∏

b=r

{1− Fib
(x)} dx−

∫ ∞

−∞
xk+1

r−2∏
a=1

Fia(x)fir−1(x)
n∏

b=r−1

{1− Fib
(x)} dx

−
r−2∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r

{1− Fib
(x)} dx

+
n∑

j=r−1

∫ ∞

−∞
xk+1Fir−1(x)

r−2∏
a=1

Fia(x)fij (x)
n∏

b=r−1
b 6=j

{1− Fib
(x)} dx

]

− 1
(r − 1)!(n− r)!

∑
P

1
σir

[
−

r−1∑
j=1

∫ ∞

−∞
xk+1{1− Fir

(x)}
r∏

a=1
a6=j

Fia
(x)fij

(x)

×
n∏

b=r+1

{1− Fib
(x)}dx−

∫ ∞

−∞
xk+1fir

(x)
r−1∏
a=1

Fia
(x)

n∏
b=r

{1− Fib
(x)} dx

−
n∑

j=r

∫ ∞

−∞
xk+1{1− Fir (x)}

r−1∏
a=1

Fia(x)fij (x)
n∏

b=r
b 6=j

{1− Fib
(x)} dx

+
n∑

j=r

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia
(x)fij

(x)
n∏

b=r
b 6=j

{1− Fib
(x)} dx

]
.

We now split the second term in the first sum above through {1− Fir−1(x)} to get

(k + 1)
c

{µ(k)
r−1:n − µ(k)

r:n}

=
1

(r − 2)!(n− r + 1)!

∑
P

1
σir−1

[r−2∑
j=1

∫ ∞

−∞
xk+1Fir−1(x)

r−1∏
a=1
a6=j

Fia(x)fij (x)

×
n∏

b=r

{1− Fib
(x)} dx +

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia
(x)fir−1(x)

n∏
b=r

{1− Fib
(x)} dx

−
∫ ∞

−∞
xk+1

r−2∏
a=1

Fia
(x)fir−1(x)

n∏
b=r

{1− Fib
(x)} dx
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−
r−2∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r

{1− Fib
(x)} dx

+
n∑

j=r−1

∫ ∞

−∞
xk+1Fir−1(x)

r−2∏
a=1

Fia
(x)fij

(x)
n∏

b=r−1
b 6=j

{1− Fib
(x)} dx

]

− 1
(r − 1)!(n− r)!

∑
P

1
σir

[
−

r−1∑
j=1

∫ ∞

−∞
xk+1{1− Fir

(x)}
r∏

a=1
a6=j

Fia
(x)fij

(x)

×
n∏

b=r+1

{1− Fib
(x)} dx−

∫ ∞

−∞
xk+1fir (x)

r−1∏
a=1

Fia(x)
n∏

b=r

{1− Fib
(x)} dx

−
n∑

j=r

∫ ∞

−∞
xk+1{1− Fir

(x)}
r−1∏
a=1

Fia
(x)fij

(x)
n∏

b=r

b 6=j

{1− Fib
(x)} dx

+
n∑

j=r

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia(x)fij (x)
n∏

b=r
b 6=j

{1− Fib
(x)} dx

]
.

Now, comparison with (148) shows that the first, second, and fifth terms in the first
sum above combine with the first, second, and third terms in the second sum above
to give

(k + 1)
c

{µ(k)
r−1:n − µ(k)

r:n}

=
n∑

i=1

1
σi

µ
[i]+(k+1)
r:n+1 +

1
(r − 2)!(n− r + 1)!

∑
P

1
σir−1

×
[
−
∫ ∞

−∞
xk+1

r−2∏
a=1

Fia
(x)fir−1(x)

n∏
b=r

{1− Fib
(x)} dx

−
r−2∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r

{1− Fib
(x)} dx

]

− 1
(r − 1)!(n− r)!

∑
P

1
σir

[ n∑
j=r

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia
(x)fij

(x)

×
n∏

b=r
b 6=j

{1− Fib
(x)} dx

]
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=
n∑

i=1

1
σi

µ
[i]+(k+1)
r:n+1

+
1

(r − 2)!(n− r + 1)!

∑
P

1
σir−1

[
−

r−1∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia(x)fij (x)

×
n∏

b=r

{1− Fib
(x)} dx

]

− 1
(r − 1)!(n− r)!

∑
P

1
σir

[ n∑
j=r

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia
(x)fij

(x)

×
n∏

b=r
b 6=j

{1− Fib
(x)} dx

]
. (150)

We now use the fact that

1
(r − 1)!(n− r)!

∑
P

1
σir

[r−1∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r

{1− Fib
(x)} dx

]

=
1

(r − 2)!(n− r + 1)!

∑
P

1
σir−1

[ n∑
j=r

∫ ∞

−∞
xk+1

r−2∏
a=1

Fia(x)fij (x)

×
n∏

b=r−1
b 6=j

{1− Fib
(x)} dx

]

to rewrite (150) as follows:

(k + 1)
c

{µ(k)
r−1:n−µ(k)

r:n}

=
n∑

i=1

1
σi

µ
[i]+(k+1)
r:n+1 +

1
(r − 2)!(n− r + 1)!

∑
P

1
σir−1

×
[
−

r−1∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia
(x)fir

(x)
n∏

b=r

{1− Fib
(x)} dx

−
n∑

j=r

∫ ∞

−∞
xk+1

r−2∏
a=1

Fia(x)fij (x)
n∏

b=r−1
b 6=j

{1− Fib
(x)} dx

]
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− 1
(r − 1)!(n− r)!

∑
P

1
σir

[ n∑
j=r

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia
(x)fij

(x)

×
n∏

b=r
b 6=j

{1− Fib
(x)} dx−

r−1∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia
(x)fij

(x)

×
n∏

b=r

{1− Fib
(x)} dx

]
.

We now recognize the first sum above as −(
∑n

i=1 1/σi)µ
(k+1)
r−1:n, and we split the second

term in the second sum above into two through {1− Fir
(x)} to obtain

(k + 1)
c

{µ(k)
r−1:n − µ(k)

r:n}

=
n∑

i=1

1
σi

µ
[i]+(k+1)
r:n+1 −

( n∑
i=1

1
σi

)
µ

(k+1)
r−1:n

− 1
(r − 1)!(n− r)!

∑
P

1
σir

[ n∑
j=r

∫ ∞

−∞
xk+1

r−1∏
a=1

Fia
(x)fij

(x)
n∏

b=r
b 6=j

{1− Fib
(x)} dx

+
r−1∑
j=1

∫ ∞

−∞
xk+1

r∏
a=1
a6=j

Fia
(x)fij

(x)
n∏

b=r+1

{1− Fib
(x)} dx

−
r−1∑
j=1

∫ ∞

−∞
xk+1

r−1∏
a=1
a6=j

Fia(x)fij (x)
n∏

b=r+1

{1− Fib
(x)} dx

]

=
n∑

i=1

1
σi

µ
[i]+(k+1)
r:n+1 −

( n∑
i=1

1
σi

)
µ

(k+1)
r−1:n −

( n∑
i=1

1
σi

)
µ(k+1)

r:n +
n∑

i=1

1
σi

µ
[i](k+1)
r−1:n−1.

The relation in (146) readily follows when we rewrite the above equation.

8.3. Results for the multiple-outlier model

In this section, we consider the special case when X1, X2, . . . , Xn−p are independent
logistic random variables with location parameter µ and scale parameter σ, while
Xn−p+1, . . . , Xn are independent logistic random variables with location parameter µ1

and scale parameter σ1 (and independent of X1, X2, . . . , Xn−p).
Here, we denote the single moments by µ

(k)
r:n[p], and the results presented in The-

orem 8.1 then readily reduce to the following recurrence relations:
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(i) For n ≥ 1,

µ
(k+1)
1:n+1[p + 1]

=
σ1

p

{(n− p

σ
+

p

σ1

)
µ

(k+1)
1:n [p]− n− p

σ
µ

(k+1)
1:n+1[p]− (k + 1)

c
µ

(k)
1:n[p]

}
.

(ii) For 2 ≤ r ≤ n,

µ
(k+1)
r:n+1[p + 1] =

σ1

p

{(
n− p

σ
+

p

σ1

){
µ(k+1)

r:n [p] + µ
(k+1)
r−1:n[p]

}
− n− p

σ

{
µ

(k+1)
r:n+1[p] + µ

(k+1)
r−1:n−1[p]

}
+

(k + 1)
c

{
µ

(k)
r−1:n[p]− µ(k)

r:n[p]
}}

− µ
(k+1)
r−1:n−1[p− 1].

(iii) For n ≥ 1,

µ
(k+1)
n+1:n+1[p + 1] =

σ1

p

{(n− p

σ
+

p

σ1

)
µ(k+1)

n:n [p]− n− p

σ
µ

(k+1)
n+1:n+1[p]

+
(k + 1)

c
µ(k)

n:n[p]
}

.

Note that if we replace p by n−p, we get a set of equivalent relations by regarding
the first p Xi’s as the outliers.

Remark 8.2. If we now multiply each of the above relations by p/σ1 and then set p = 0
and σ = 1 (or simply set p = n and σ = 1), we obtain the following recurrence relations
for the case when the Xi’s are IID standard logistic random variables (which could
alternatively be obtained by setting σ1 = σ2 = · · · = σn = 1, µ1 = µ2 = · · · = µn = 0
in Theorem 8.1):

µ
(k+1)
1:n+1 = µ

(k+1)
1:n − (k + 1)

cn
µ

(k)
1:n, n ≥ 1,

µ
(k+1)
r:n+1 = µ(k+1)

r:n + µ
(k+1)
r−1:n − µ

(k+1)
r−1:n−1 +

(k + 1)
cn

{µ(k)
r−1:n − µ(k)

r:n}, 2 ≤ r ≤ n,

and

µ
(k+1)
n+1:n+1 = µ(k+1)

n:n +
(k + 1)

cn
µ(k)

n:n, n ≥ 1.

These relations are equivalent to those in [88].

Remark 8.3. Assuming that the moments of order statistics for the single-outlier
model are known (for example, they can be found in [24]), setting p = 1 in rela-
tions (i)–(iii), along with the above IID results, will enable one to compute all of the
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moments of order statistics from a 2-outlier model. One can then set p = 2 in rela-
tions (i)–(iii) to obtain all of the moments of order statistics from a 3-outlier model.
Continuing in this manner, we see that relations (i)–(iii), the above IID relations, and
knowledge of the moments of order statistics for the single-outlier model, will enable
one to compute all of the moments of order statistics for the multiple-outlier model
in a simple recursive manner.

Remark 8.4. Interestingly, this particular recursive property of moments of order
statistics from a logistic multiple-outlier model was made as a conjecture by Bala-
krishnan [16, pp. 252–253] in his reply to the comments of Arnold [16, pp. 243–246].

8.4. Robustness of estimators of location

Through numerical integration, the means, variances and covariances of order statis-
tics for the single-outlier model were computed in [24], and these values were then
used to examine the bias of various linear estimators of the location parameter µ
under a single location-outlier logistic model. Here, we discuss the bias of these linear
estimators of µ under the multiple location-outlier logistic model.

The omnibus estimators of µ that are considered here are the following:

(i) Sample mean:

X̄n =
1
n

n∑
i=1

Xi:n.

(ii) Median:

for n odd, Xn+1
2 :n,

for n even,
1
2
(
X[n/2]:n + X[n/2]+1:n

)
.

(iii) Trimmed mean:

Tn(r) =
1

n− 2r

n−r∑
i=r+1

Xi:n.

(iv) Winsorized mean:

Wn(r) =
1
n

[
(r + 1)(Xr+1:n + Xn−r:n) +

n−r−1∑
i=r+2

Xi:n

]
.

(v) Modified maximum likelihood (MML) estimator :

µc =
1
m

[
rβ(Xr+1:n + Xn−r:n) +

n−r∑
i=r+1

Xi:n

]
,
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where m = n − 2r + 2rβ, β = (g(h2) − g(h1))/(h2 − h1), h1 = F−1(1 − q −√
q(1− q)/n), h2 = F−1(1 − q +

√
q(1− q)/n), q = r/n, F (h) =

∫ h

−∞ f(z) dz,

f(z) = 1√
2π

e−z2/2, and g(h) = f(h)/(1− F (h)).

(vi) Linearly weighted means:

for n odd,

Ln(r) =
1

2(n−1
2 − r)2 + (n− 2r)

[n−1
2 −r∑
i=1

(2i− 1)(Xr+i:n + Xn−r−i+1:n)

+ (n− 2r)Xn+1
2 :n

]
,

for n even,

Ln(r) =
1

2(n
2 − r)2

[n
2−r∑
i=1

(2i− 1)(Xr+i:n + Xn−r−i+1:n)

]
.

(vii) Gastwirth mean:

Tn =
3
10

(X[n/3]+1:n + Xn−[n/3]:n) +
2
5
X̃,

where X̃ is the median.

In addition to these omnibus estimators, we also included the following estimators
of µ:

(viii) BLUE :

µ̂(r) =
1ωX ′

1ω1′
,

where 1 = (1, 1, . . . , 1), ω = [(σi,j:n[0]); r + 1 ≤ i, j ≤ n − r]−1, and
X = (Xr+1:n, Xr+2;n, . . . , Xn−r:n);σi,j:n[0] denotes the covariance between the
i-th and j-th order statistics in a sample of size n from the standard logistic
distribution (the [0] indicates that there are no outliers).

(ix) The approximate best linear unbiased estimator in [45]:

µ′ =
6

n(n + 1)(n + 2)

n∑
i=1

i(n + 1− i)Xi:n

which is also discussed in [63].
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(x) RSE (estimator proposed in [83]):

v(i∗) =
1
2
(Xn−i∗+1:n + Xi∗:n)

where i∗ is chosen to minimize the variance of v(i∗) when the X’s are IID.

The recursive computational method presented above was utilized in [51] to ex-
amine the bias of all these estimators of µ when multiple outliers are possibly present
in the sample. In table 7, we have presented the bias of all the estimators for n = 20,
p = 1, 2, different choices of r, and µ = 0, µ1 = 0.5(0.5)3.0, 4.0, σ = σ1 = 1. In
all cases, we observe that median is the estimator with the smallest bias. For large
values of r, the linearly weighted mean and the BLUE are quite comparable to the
median in terms of bias, with the linearly weighted mean having a smaller bias than
the BLUE. For small values of µ1, the modified maximum likelihood estimator, the
Gastwirth mean and the Winsorized mean are also comparable to the BLUE and lin-
early weighted mean, but for larger values of µ1 their bias becomes much larger. For
small values of r, however, all of these estimators are quite sensitive to the presence
of outliers, as one would expect.

The fact that all of the estimators have similar bias for small values of µ1 is
explained by the fact that these estimators are all unbiased in the IID case. Therefore,
all of the biases become the same as µ1 approaches zero.
Remark 8.5. Note that the outlier model considered in table 7 is a multiple location-
outlier model. Since all the linear estimators of µ considered here are symmetric
functions of order statistics, they will all be unbiased under the multiple scale-outlier
model. Hence, a comparison of these estimators under the multiple-scale outlier
model would have to be made on the basis of their variance. Symmetric functions are
most appropriate when the direction of the slippage is not known. However, if the
direction is known then some asymmetric unbiased estimators will naturally perform
better than the symmetric ones. For example, any estimator that gives less weight to
the larger order statistics (and more to the smaller ones) will be expected to perform
better if µ1 is positive.

8.5. Robustness of estimators of scale

By considering both the single location-outlier and single scale-outlier model, the bias
of the following linear estimators of the scale parameter σ were determined in [15]:

(i) BLUE :

σ̂(r) =
µωX ′

µωµ′ ,

where µ = (µr+1:n[0], µr+2:n[0], . . . , µn−r:n[0]), ω = [(σi,j:n[0]; r + 1 ≤ i,
j ≤ n − r]−1, and X = (Xr+1:n, Xr+2:n, . . . , Xn−r:n);µs:n[0] denotes the mean
of the s-th order statistic in a sample of size n from the standard logistic dis-
tribution (the [0] indicates that there are no outliers), and
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µ1 0.5 1.0 1.5 2.0 2.5 3.0 4.0
n = 20, p = 1
BLUE0 0.0245 0.0460 0.0629 0.0751 0.0837 0.0900 0.0990
BLUE2 0.0244 0.0455 0.0612 0.0712 0.0768 0.0769 0.0814
BLUE4 0.0242 0.0438 0.0565 0.0634 0.0666 0.0679 0.0687
BLUE7 0.0236 0.0408 0.0504 0.0550 0.0570 0.0578 0.0583
RSE 0.0241 0.0433 0.0556 0.0620 0.0650 0.0663 0.0670
Mean 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500 0.2000
Trimm2 0.0245 0.0459 0.0622 0.0728 0.0787 0.0817 0.0836
Trimm4 0.0241 0.0434 0.0559 0.0626 0.0658 0.0672 0.0681
Median 0.0236 0.0407 0.0503 0.0548 0.0568 0.0576 0.0581
Winsor2 0.0248 0.0479 0.0673 0.0812 0.0897 0.0943 0.0974
Winsor4 0.0244 0.0451 0.0598 0.0683 0.0726 0.0745 0.0756
Winsor8 0.0237 0.0411 0.0510 0.0558 0.0579 0.0588 0.0593
MML2 0.0247 0.0477 0.0666 0.0801 0.0883 0.0926 0.0956
MML4 0.0243 0.0449 0.0592 0.0675 0.0716 0.0735 0.0746
MML8 0.0237 0.0411 0.0510 0.0558 0.0579 0.0587 0.0592
LinWei2 0.0240 0.0432 0.0556 0.0624 0.0658 0.0673 0.0682
LinWei4 0.0239 0.0420 0.0529 0.0585 0.0610 0.0620 0.0627
LinWei8 0.0236 0.0408 0.0505 0.0551 0.0571 0.0580 0.0584
Gastw 0.0239 0.0423 0.0535 0.0591 0.0617 0.0628 0.0634
Blom 0.0245 0.0464 0.0642 0.0781 0.0889 0.0978 0.1126

n = 20, p = 2
BLUE0 0.0491 0.0933 0.1297 0.1584 0.1811 0.1996 0.2303
BLUE2 0.0490 0.0925 0.1272 0.1526 0.1698 0.1806 0.1904
BLUE4 0.0486 0.0895 0.1182 0.1350 0.1433 0.1470 0.1492
BLUE7 0.0477 0.0838 0.1051 0.1156 0.1203 0.1223 0.1234
RSE 0.0485 0.0887 0.1162 0.1318 0.1394 0.1428 0.1449
Mean 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.4000
Trimm2 0.0491 0.0933 0.1293 0.1562 0.1746 0.1862 0.1968
Trimm4 0.0485 0.0887 0.1167 0.1332 0.1418 0.1458 0.1482
Median 0.0476 0.0836 0.1048 0.1153 0.1200 0.1219 0.1231
Winsor2 0.0496 0.0969 0.1394 0.1751 0.2029 0.2224 0.2420
Winsor4 0.0490 0.0920 0.1249 0.1464 0.1584 0.1643 0.1680
Winsor8 0.0478 0.0843 0.1064 0.1175 0.1226 0.1247 0.1259
MML2 0.0496 0.0964 0.1380 0.1726 0.1991 0.2176 0.2360
MML4 0.0489 0.0916 0.1238 0.1446 0.1561 0.1617 0.1652
MML8 0.0478 0.0843 0.1064 0.1175 0.1225 0.1246 0.1258
LinWei2 0.0484 0.0883 0.1160 0.1328 0.1420 0.1467 0.1500
LinWei4 0.0480 0.0861 0.1105 0.1236 0.1299 0.1327 0.1343
LinWei8 0.0477 0.0838 0.1053 0.1159 0.1207 0.1227 0.1239
Gastw 0.0481 0.0866 0.1116 0.1252 0.1317 0.1345 0.1361
Blom 0.0492 0.0939 0.1318 0.1631 0.1892 0.2121 0.2528

Table 7 – Bias of various estimators of the location of logistic distribution in the
presence of multiple location-outliers
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(ii) RSE (estimator proposed in [83]):

C

[n/2]∑
i=r+1

ai(Xn−i+1:n −Xi:n),

where each ai takes the values 0 or 1, and C is a constant. The ai’s and C are
chosen so as to make the estimator unbiased and have minimum variance when
the X’s are IID.

Here, we use the recursive method presented earlier to examine the bias of the
above estimators of σ under the multiple location-outlier and multiple scale-outlier
models. We also consider the following approximate best linear unbiased estimator
presented in [45]:

(iii)

σ′ =
n∑

i=1

αiXi:n,

where αi = ci(n+1−i)(ci−ci−1)/(d(n+1)2), ci = (ci(n+1−i)/(n+1)2)µi:n[0]−
(c(i + 1)(n− i)/(n + 1)2)µi+1:n[0], and d =

∑n
i=0 c2

i .

(iv) The following modified Jung’s estimator in [74]:

σ̂ = cn

n∑
i=1

γiXi:n,

where γi = 9c/(n(n + 1)2(3 + π2)){−(n + 1)2 + 2i(n + 1) + 2i(n + 1 − i)
ln(i/(n + 1 − i))}, and cn = 1/(

∑n
i=1 γiµi:n[0]) (both of the above estimators

are discussed in [63]).

(v) Winsorized median absolute deviation (WMAD):

for n odd,

σ̂(r) =
1

n− 2r

[
r(Xn−r:n −Xr+1:n) +

n−r∑
i=n−1

2 +2

Xi:n −

n−1
2∑

i=r+1

Xi:n

]
,

for n even,

σ̂(r) =
1

n− 2r

[
r(Xn−r:n −Xr+1:n) +

n−r∑
i=n

2+1

Xi:n −
n
2∑

i=r+1

Xi:n

]
,

which, incidentally, is the MLE of σ for a symmetrically Type-II censored sample
from a Laplace distribution; see [27].
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µ1 0.5 1.0 1.5 2.0 2.5 3.0 4.0
n = 20, p = 1
BLUE0 0.0070 0.0263 0.0542 0.0871 0.1223 0.1584 0.2313
BLUE2 0.0078 0.0275 0.0511 0.0710 0.0842 0.0914 0.0965
BLUE4 0.0082 0.0275 0.0471 0.0606 0.0678 0.0712 0.0733
BLUE8 0.0088 0.0266 0.0413 0.0496 0.0535 0.0552 0.0562
RSE0 0.0070 0.0262 0.0542 0.0871 0.1226 0.1592 0.2337
RSE2 0.0078 0.0275 0.0511 0.0708 0.0838 0.0909 0.0959
RSE4 0.0082 0.0274 0.0468 0.0600 0.0671 0.0704 0.0724
RSE9 0.0088 0.0265 0.0410 0.0490 0.0528 0.0544 0.0554
WMAD0 −0.2573 −0.2432 −0.2233 −0.2006 −0.1765 −0.1519 −0.1022
WMAD2 −0.2213 −0.2061 −0.1885 −0.1739 −0.1645 −0.1594 −0.1558
WMAD4 −0.1860 −0.1707 −0.1556 −0.1454 −0.1401 −0.1376 −0.1361
WMAD6 −0.1626 −0.1474 −0.1341 −0.1261 −0.1222 −0.1205 −0.1195
Blom 0.0066 0.0257 0.0555 0.0940 0.1390 0.1886 0.2955
Jung 0.0069 0.0262 0.0545 0.0882 0.1247 0.1625 0.2393

n = 20, p = 2
BLUE0 0.0132 0.0502 0.1043 0.1692 0.2397 0.3131 0.4631
BLUE2 0.0148 0.0540 0.1058 0.1584 0.2032 0.2363 0.2708
BLUE4 0.0158 0.0550 0.0998 0.1357 0.1580 0.1695 0.1770
BLUE8 0.0170 0.0543 0.0884 0.1092 0.1195 0.1240 0.1267
RSE0 0.0132 0.0501 0.1041 0.1687 0.2389 0.3117 0.4604
RSE2 0.0148 0.0541 0.1058 0.1579 0.2021 0.2346 0.2685
RSE4 0.0159 0.0549 0.0992 0.1343 0.1560 0.1672 0.1746
RSE9 0.0171 0.0542 0.0876 0.1078 0.1176 0.1220 0.1245
WMAD0 −0.2526 −0.2253 −0.1865 −0.1415 −0.0936 −0.0445 0.0550
WMAD2 −0.2157 −0.1855 −0.1467 −0.1084 −0.0764 −0.0531 −0.0292
WMAD4 −0.1798 −0.1484 −0.1137 −0.0870 −0.0708 −0.0627 −0.0573
WMAD(r) −0.1560 −0.1244 −0.0935 −0.0730 −0.0623 −0.0235 0.0812
r 6 6 6 6 6 1 1
Blom 0.0125 0.0485 0.1038 0.1730 0.2511 0.3343 0.5069
Jung 0.0131 0.0500 0.1045 0.1702 0.2423 0.3175 0.4717

Table 8 – Bias of various estimators of the scale of logistic distribution in the presence
of multiple location-outliers

In table 8, we have presented the bias of all these estimators of σ under the
multiple location-outlier model for n = 20, p = 1, 2, different choices of r, and µ = 0,
µ1 = 0.5(0.5)3.0, 4.0, σ = σ1 = 1. For the RSE, BLUE, and WMAD, we have included
r = 0, 10, 20% of n as well as the value of r that gave the estimator with the smallest
bias. We also observe from table 8 that for small values of µ1 Blom’s estimator is
usually the one with the smallest bias. For these same small values of µ1, the RSE
and BLUE both increase in bias as r increases while the WMAD decreases in bias as
r increases. On the other hand, as µ1 increases the RSE and BLUE for larger values
of r begin to decrease in bias while no clear pattern can be seen for the WMAD. In
this same situation, the estimators of Blom and Jung, being approximations to the
full sample BLUE, have a very large bias as well. For larger values of p and µ1, it is
the WMAD that has the smallest bias.
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µ1 0.5 1.0 1.5 2.0 3.0 4.0
n = 20, p = 1
BLUE0 −0.0229 0.0000 0.0260 0.0529 0.1079 0.1633
BLUE2 −0.0273 0.0000 0.0212 0.0360 0.0539 0.0640
BLUE4 −0.0318 0.0000 0.0194 0.0313 0.0445 0.0516
BLUE8 −0.0416 0.0000 0.0175 0.0269 0.0365 0.0414
RSE0 −0.0230 0.0000 0.0260 0.0532 0.1089 0.1654
RSE2 −0.0273 0.0000 0.0212 0.0359 0.0537 0.0638
RSE4 −0.0323 0.0000 0.0193 0.0311 0.0441 0.0510
RSE9 −0.0424 0.0000 0.0174 0.0267 0.0361 0.0409
WMAD0 −0.2804 −0.2626 −0.2439 −0.2251 −0.1871 −0.1490
WMAD2 −0.2493 −0.2273 −0.2112 −0.2002 −0.1869 −0.1795
WMAD4 −0.2197 −0.1927 −0.1773 −0.1681 −0.1580 −0.1526
WMAD6 −0.2015 −0.1698 −0.1548 −0.1465 −0.1377 −0.1332
Blom −0.0208 0.0000 0.0281 0.0609 0.1343 0.2129
Jung −0.0225 0.0000 0.0263 0.0540 0.1112 0.1693

n=20, p = 2
BLUE2 −0.0548 0.0000 0.0430 0.0743 0.1152 0.1404
BLUE4 −0.0633 0.0000 0.0395 0.0645 0.0935 0.1095
BLUE8 −0.0811 0.0000 0.0357 0.0552 0.0759 0.0866
RSE0 −0.0462 0.0000 0.0519 0.1061 0.2174 0.3301
RSE2 −0.0547 0.0000 0.0430 0.0741 0.1147 0.1397
RSE4 −0.0643 0.0000 0.0393 0.0640 0.0926 0.1084
RSE9 −0.0824 0.0000 0.0355 0.0548 0.0750 0.0855
WMAD0 −0.2984 −0.2626 −0.2253 −0.1876 −0.1116 −0.0355
WMAD2 −0.2713 −0.2273 −0.1946 −0.1713 −0.1412 −0.1228
WMAD4 −0.2462 −0.1927 −0.1614 −0.1420 −0.1198 −0.1077
WMAD6 −0.2321 −0.1698 −0.1393 −0.1218 −0.1029 −0.0929
Blom −0.0419 0.0000 0.0559 0.1202 0.2624 0.4133
Jung −0.0452 0.0000 0.0524 0.1077 0.2218 0.3380

Table 9 – Bias of various estimators of the scale of logistic distribution in the presence
of multiple scale-outliers

In table 9, we have presented the bias of the above estimators of the scale pa-
rameter σ under the multiple scale-outlier model for n = 10(5)20, p = 0(1)3, and
µ = µ1 = 0, σ = 1, σ1 = 0.5(0.5)2, 3, 4. For the RSE, BLUE, and WMAD, we have
included r = 0, 10, 20% of n as well as the value of r that gave the estimator with
the smallest bias. We also observe from table 9 that each estimator except for the
WMAD is quite sensitive to the presence of outliers. As the value of σ1 increases
from 0.5 to 4.0, the bias of each estimator except for the WMAD increases, although
much less so for large values of r. On the other hand, the WMAD usually decreases
in bias as σ1 increases. Also, for a given value of σ1 and n, the bias of each estima-
tor increases considerably as p increases. The bias of the RSE and BLUE are quite
comparable, with the forms with large values of r giving the smallest bias (except for
the case σ1 = 0.5). But the estimators of Blom and Jung, each involving all of the
order statistics, both have very large bias compared with the censored forms of RSE
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and BLUE. When there are two or more outliers and σ1 is large, the WMAD usually
has the smallest bias, whereas the censored forms of the RSE and BLUE have the
smallest bias for small values of p and σ1.

8.6. Some comments

We have established in Theorem 8.1 some recurrence relations for the single moments
of order statistics from INID logistic random variables which enable the recursive
computation of single moments of order statistics from a multiple-outlier model. From
the values of the bias computed for various linear estimators of the location and
scale parameters of the logistic distribution in the presence of multiple outliers in
the sample, it is observed that the sample median is the least-biased estimator of
the location while the WMAD is the estimator of the scale with the smallest bias in
general.

Open Problem 8.6. A sufficient condition to verify whether the sample median is
the least-biased estimator of the location parameter when a single outlier is present
in the sample was presented in [55] wherein it was also shown that this condition is
satisfied in the case of the logistic distribution. Table 7 reveals that the sample median
remains as the least-biased estimator even when multiple outliers are present in the
sample. This then raises a question whether there is a version of the condition in [55]
for the multiple-outlier situation and that whether this condition is satisfied in the
logistic case?

It is important to mention that an evaluation of the robustness of estimators by
bias alone is not sufficient and that it is necessary to evaluate them by variance or
mean square error as well. This would, of course, require the computation of product
moments of order statistics.

Open Problem 8.7. The relations in Theorem 8.1 generalize the recurrence relations
for the single moments of logistic order statistics in the IID case established in [88]
to the INID case. This leaves a question whether there are similar generalizations of
the recurrence relations for the product moments of logistic order statistics in the IID
case established in [87] to the INID case?

9. Robust estimation for Laplace distribution

Results 6.2 and 6.3 presented earlier can be used to evaluate the robustness proper-
ties of various linear estimators of the location and scale parameters of the Laplace
distribution with regard to the presence of one or more outliers in the sample. To this
end, let us assume that X1, . . . , Xn−p are IID variables from a Laplace distribution
with probability density function

f(x;µ, σ) =
1
2σ

exp
{
−|x− µ|

σ

}
, x ∈ R, µ ∈ R, σ ∈ R+, (151)
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and Xn−p+1, . . . , Xn are IID variables from another Laplace distribution (indepen-
dently of X1, . . . , Xn−p) with probability density function

g(x;µ, aσ) =
1

2aσ
exp
{
−|x− µ|

aσ

}
, x ∈ R, µ ∈ R, a, σ ∈ R+.

Thus, the two sets of variables are symmetric about µ; let us denote the corresponding
standardized variables by Zi, i.e., Zi = (Xi−µ)/σ (i = 1, . . . , n), and the correspond-
ing order statistics by Z1:n ≤ · · · ≤ Zn:n. Then, Results 6.2 and 6.3 reduce to

µ(k)
r:n[p] =

1
2n

{ p∑
t=0

[min(r−1,n−t)∑
i=p−t

(
p

t

)(
n− p

n− i− t

)
v
(k)
r−i:n−i[t]

+ (−1)k

n−p+t∑
i=max(r,t)

(
p

t

)(
n− p

i− t

)
v
(k)
i−r+1:i[t]

]}
, 1 ≤ r ≤ n, k ≥ 1, (152)

and

µr,s:n[p] =
1
2n

{ p∑
t=0

[min(r−1,n−t)∑
i=p−t

(
p

t

)(
n− p

n− i− t

)
vr−i,s−i:n−i[t]

−
min(s−1,n−t)∑
i=max(r,p−t)

(
p

t

)(
n− p

n− i− t

)
vs−i:n−i[t] vi−r+1:i[p− t]

+
n−p+t∑

i=max(s,t)

(
p

t

)(
n− p

i− t

)
vi−s+1,i−r+1:i[t]

]}
, 1 ≤ r < s ≤ n, (153)

where µ
(k)
r:n[p] and µr,s:n[p] denote the single and product moments of order statistics

from the p-outlier Laplace sample Z1, . . . , Zn, and v
(k)
r:m[t] and vr,s:m[t] denote the

single and product moments of order statistics from the t-outlier exponential sample
(obtained by folding Zi’s around zero).

The relations in (152) and (153) were used in [49] to examine the robustness
features of different linear estimators of the parameters µ and σ of the Laplace dis-
tribution in (151). Through this study, they observed that the Linearly Weighted
Mean

Ln(r) =
1

2(n
2 − r)2

n
2−r∑
i=1

(2i− 1)(Xr+i:n + Xn−r−i+1:n) for n even

and the maximum likelihood estimator (see [27])

ML(r) =
1

n− 2r

{
r(Xn−r:n −Xr+1:n) +

n−r∑
i=n

2+1

Xi:n −
n
2∑

i=r+1

Xi:n

}
for n even
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p a 0.50 1.0 2.0 3.0 4.0 6.0 8.0 10.0
1 LinWei 5 0.0591 0.0639 0.0677 0.0693 0.0702 0.0711 0.0716 0.0719

LinWei 6 0.0589 0.0637 0.0675 0.0690 0.0698 0.0707 0.0711 0.0714
LinWei 7 0.0591 0.0641 0.0678 0.0693 0.0701 0.0709 0.0713 0.0716

2 LinWei 6 0.0544 0.0637 0.0715 0.0749 0.0768 0.0789 0.0800 0.0806
LinWei 7 0.0545 0.0641 0.0718 0.0751 0.0769 0.0788 0.0799 0.0805
LinWei 8 0.0552 0.0651 0.0728 0.0760 0.0778 0.0797 0.0807 0.0813

3 LinWei 6 0.0503 0.0637 0.0759 0.0815 0.0848 0.0885 0.0905 0.0918
LinWei 7 0.0503 0.0641 0.0761 0.0816 0.0847 0.0882 0.0901 0.0912
LinWei 8 0.0509 0.0651 0.0771 0.0825 0.0856 0.0890 0.0908 0.0919

4 LinWei 6 0.0466 0.0637 0.0806 0.0891 0.0942 0.1001 0.1034 0.1055
LinWei 7 0.0465 0.0641 0.0808 0.0890 0.0938 0.0993 0.1024 0.1043
LinWei 8 0.0470 0.0651 0.0818 0.0899 0.0946 0.0999 0.1028 0.1047

Table 10 – Values of (Variance of Ln(r))/σ2 for selected values of r

p a 0.50 1.0 2.0 3.0 4.0 6.0 8.0 10.0
1 ML0 0.0495 0.0494 0.0566 0.0738 0.1009 0.1851 0.3094 0.4736

ML1 0.0549 0.0549 0.0592 0.0640 0.0679 0.0733 0.0768 0.0793
ML2 0.0615 0.0616 0.0654 0.0687 0.0711 0.0742 0.0760 0.0772

2 ML0 0.0508 0.0494 0.0686 0.1176 0.1966 0.4444 0.8122 1.3000
ML(r) 0.0508 0.0494 0.0686 0.1176 0.0949 0.1104 0.1211 0.1289
ML(r) 0.0562 0.0549 0.0676 0.0873 0.0969 0.1067 0.1130 0.1172
ML(r) 0.0629 0.0616 0.0723 0.0845 0.1054 0.1128 0.1173 0.1203

r = 0, 1, 2 r = 2, 3, 4
3 ML0 0.0531 0.0494 0.0855 0.1810 0.3364 0.8271 1.5576 2.5281

ML(r) 0.0531 0.0494 0.0855 0.1115 0.1302 0.1584 0.1782 0.1928
ML(r) 0.0589 0.0549 0.0802 0.1186 0.1328 0.1524 0.1650 0.1738
ML(r) 0.0659 0.0616 0.0829 0.1325 0.1443 0.1598 0.1694 0.1758

r = 0, 1, 2 r = 3, 4, 5

Table 11 – Values of (MSE of ML(r))/σ2 for selected values of r

were the most efficient estimators of µ and σ, respectively, in the presence of one or
more outliers in the sample.

Table 10 presents the values of 1
σ2 Var(Ln(r)) for different choices of r, p, and a

when the sample size n = 20. Similarly, table 11 presents the values of 1
σ2 MSE(ML(r))

for different choices of r, p, and a when the sample size n = 20. The robustness feature
of these two estimators is evident from these two tables and it is also clear that larger
values of r provide more protection against the presence of pronounced outliers but
at the cost of a higher premium.

10. Results for some other distributions

In [50], order statistics arising from INID Pareto random variables with probability
density functions

fi(x) = vix
−(vi+1), x ≥ 1, vi > 0,
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and cumulative distribution functions

Fi(x) = 1− x−vi , x ≥ 1, vi > 0,

for i = 1, 2, . . . , n, were considered. In this case, the characterizing differential equa-
tions are

1− Fi(x) =
1
vi

xfi(x), x ≥ 1, vi > 0, i = 1, . . . , n. (154)

By using the permanent approach along with the characterizing differential equations
in (154), several recurrence relations were derived in [50] for the single and product
moments of order statistics arising from INID Pareto random variables. These re-
sults were then used to examine the robustness of the maximum likelihood estimators
and best linear unbiased estimators of the scale parameter of a one-parameter Pareto
distribution and of the location and scale parameters of a two-parameter Pareto dis-
tribution under the presence of multiple outliers. They observed that the estimators
based on censored samples possess robustness features in general than those based on
complete samples. Of course, these were carried out under the assumption that the
shape parameter is known; see also [52] for related work on Lomax distribution.

Open Problem 10.1. Though robust estimation of the scale or location and scale
parameters of the Pareto distribution has been discussed, the robust estimation of the
shape parameter remains as an open problem and deserves attention.

In [21], order statistics arising from INID power function random variables with
probability density functions

fi(x) = vix
vi−1, 0 < x < 1, vi > 0,

and cumulative distribution functions

Fi(x) = xvi 0 < x < 1, vi > 0,

for i = 1, 2, . . . , n, were considered. The characterizing differential equations in this
case are

Fi(x) =
1
vi

xfi(x), 0 < x < 1, vi > 0, i = 1, . . . , n. (155)

By using the permanent approach along with the characterizing differential equations
in (155), several recurrence relations were derived in [21] for the single and product
moments of order statistics arising from INID power function random variables. They
can be used to determine these moments in the case of multiple-outlier model.

11. Miscellanea

In this section, we briefly describe two recent developments wherein permanent repre-
sentations of distributions of order statistics have proven to be useful. First one con-
cerns ranked set sampling. The basic procedure of obtaining a ranked set sample is as

Revista Matemática Complutense
2007: vol. 20, num. 1, pags. 7–107 100



N. Balakrishnan Permanents, order statistics, outliers, and robustness

follows. First, we draw a random sample of size n from the population and order them
(without actual measurement, for example, visually). Then, the smallest observation
is measured and denoted as X(1), and the remaining are not measured. Next, another
sample of size n is drawn and ordered, and only the second smallest observation is mea-
sured and denoted as X(2). This procedure is continued until the largest observation
of the n-th sample of size n is measured. The collection {X(1), . . . , X(n)} is called as a
one-cycle ranked set sample of size n. If we replicate the above procedure m times, we
finally get a ranked set sample of total size N = mn. The data thus collected in this
case is denoted by XRSS = {X1(1), X2(1), . . . , Xm(1), . . . , X1(n), X2(n), . . . , Xm(n)}.
The ranked set sampling was first proposed in [77] in order to find a more efficient
method to estimate the average yield of pasture. Since then, numerous parametric
and nonparametric inferential procedures based on ranked set samples have been de-
veloped in the literature. For a comprehensive review of various developments on
ranked set sampling, one may refer to [47].

It is evident that if the ranking (done by visual inspection, for example) is perfect,
then X(i) is distributed exactly as the i-th order statistic from a random sample of
size n from a distribution F (x) and hence has its density function and distribution
function as in (2) and (1), respectively. Note that in this case, however, X(1), . . . , X(n)

are mutually independent. Therefore, if the observations from a one-cycle ranked set
sample are ordered, the distributions of these ordered observations can be expressed
in the permanent form as in (9) and (13) with fi(x) and Fi(x) replaced by fi:n(x)
and Fi:n(x) in (2) and (1), respectively. For example, if XORSS

1:n < · · · < XORSS
n:n

denote these order statistics obtained from a one-cycle ranked set sample, the density
function of XORSS

r:n (1 ≤ r ≤ n) can be expressed as

fXORSS
r:n

(x) =
1

(r − 1)!(n− r)!
Per

 F1:n(x) · · · Fn:n(x)
f1:n(x) · · · fn:n(x)

1− F1:n(x) · · · 1− Fn:n(x)

 } r − 1
} 1
} n− r

,

x ∈ R.

This set of ordered observations has been referred to as ordered ranked set sample
in [31,32], and has been used to develop efficient inferential procedures in this context.

Another scenario in which permanent representations arise naturally is in the
context of progressive censoring. In the model of progressively Type-II censored order
statistics, some of the underlying random variables X1, . . . , Xn are censored during
the observation. In particular, this means that in a life-testing experiment with n
independent units, a pre-fixed number R1 of surviving units are randomly censored
from the sample after the first failure time, min{X1, . . . , Xn}. Then, at the first failure
time of the remaining n − R1 − 1 units, R2 units are censored, and so on. Finally,
at the time of the m-th failure, all the remaining Rm = n − m − R1 − · · · − Rm−1

units are censored. For a detailed description of this progressive censoring scheme
and related developments, one may refer to [19].

Note that while carrying out this life-test, it is assumed that the units being
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tested have IID life-times X1, . . . , Xn with distribution function F (·). Instead, if we
assume that X1, . . . , Xn are INID random variables, then the joint density of these
progressively Type-II censored order statistics (X(R1,...,Rm)

1:m:n , . . . , X
(R1,...,Rm)
m:m:n ) has been

expressed in a permanent form recently in [26] as

f
X

(R1,...,Rm)
1:m:n ,...,X

(R1,...,Rm)
m:m:n

(x1, . . . , xm)

=
1

(n− 1)!

m∏
j=2

γj Per


f1(x1) · · · fn(x1)

1− F1(x1) · · · 1− Fn(x1)
· · · · ·

f1(xm) · · · fn(xm)
1− F1(xm) · · · 1− Fn(xm)


} 1
} R1

} 1
} Rm

,

x1 < x2 < · · · < xm,

where γ1 =
∑m

i=1(Ri+1) = n and γj =
∑m

i=j(Ri+1) is the number of units remaining
in the experiment after the (j−1)-th failure for j = 2, 3, . . . ,m. Such permanent forms
have been used in [26] to establish some interesting properties of these progressively
censored order statistics arising from INID random variables, and have also been
applied to discuss the robustness of the maximum likelihood estimator of the mean
of an exponential distribution when one or more outliers are possibly present in the
observed progressively Type-II censored sample.
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nents, Sankhyā Ser. A 51 (1989), no. 1, 79–93.

[41] , Identities and recurrence relations for order statistics corresponding to nonidentically
distributed variables, Comm. Statist. Theory Methods 18 (1989), no. 5, 1993–2004.

[42] R. B. Bapat and S. C. Kochar, Characterizations of identically distributed independent random
variables using order statistics, Statist. Probab. Lett. 17 (1993), no. 3, 225–230.

[43] V. Barnett and T. Lewis, Outliers in statistical data, 3rd ed., John Wiley & Sons Ltd., Chich-
ester, 1994.

[44] M. I. Beg, Recurrence relations and identities for product moments of order statistics corre-
sponding to non-identically distributed variables, Sankhyā Ser. A 53 (1991), no. 3, 365–374.
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[46] P. Capéraà and L.-P. Rivest, On the variance of the trimmed mean, Statist. Probab. Lett. 22
(1995), no. 1, 79–85.

[47] Z. Chen, Z. Bai, and B. K. Sinha, Ranked set sampling: Theory and applications, Lecture Notes
in Statistics, vol. 176, Springer-Verlag, New York, 2004.

[48] M. S. Chikkagoudar and S. H. Kunchur, Estimation of the mean of an exponential distribution
in the presence of an outlier, Canad. J. Statist. 8 (1980), no. 1, 59–63.

[49] A. Childs and N. Balakrishnan, Some extensions in the robust estimation of parameters of
exponential and double exponential distributions in the presence of multiple outliers, Robust
inference (G. S. Maddala and C. R. Rao, eds.), Handbook of Statistics, vol. 15, North-Holland,
Amsterdam, 1997, pp. 201–235.

[50] , Generalized recurrence relations for moments of order statistics from non-identical
Pareto and truncated Pareto random variables with applications to robustness, Order statistics:
Theory & methods, Handbook of Statistics, vol. 16, North-Holland, Amsterdam, 1998, pp. 403–
438.

[51] , Relations for order statistics from non-identical logistic random variables and assess-
ment of the effect of multiple outliers on the bias of linear estimators, J. Statist. Plann. Inference
136 (2006), no. 7, 2227–2253.

[52] A. Childs, N. Balakrishnan, and M. Moshref, Order statistics from non-identical right-truncated
Lomax random variables with applications, Statist. Papers 42 (2001), no. 2, 187–206.

[53] H. A. David, Order statistics, 2nd ed., John Wiley & Sons Inc., New York, 1981.

[54] H. A. David and N. Balakrishnan, Product moments of order statistics and the variance of a
lightly trimmed mean, Statist. Probab. Lett. 29 (1996), no. 1, 85–87.

[55] H. A. David and J. K. Ghosh, The effect of an outlier on L-estimators of location in symmetric
distributions, Biometrika 72 (1985), no. 1, 216–218.

[56] H. A. David, W. J. Kennedy, and R. D. Knight, Means, variances, and covariances of normal
order statistics in the presence of an outlier, Selected Tables in Mathematical Statistics, vol. 5,
1977, pp. 75–204.

[57] H. A. David and H. N. Nagaraja, Order statistics, 3rd ed., Wiley-Interscience [John Wiley &
Sons], Hoboken, NJ, 2003.

[58] H. A. David and V. S. Shu, Robustness of location estimators in the presence of an outlier,
Contributions to survey sampling and applied statistics: Papers in honour of H. O. Hartley
(H. A. David, ed.), Academic Press, New York, 1978, pp. 235–250.

[59] S. Dharmadhikari and K. Joag-Dev, Unimodality, convexity, and applications, Academic Press
Inc., Boston, MA, 1988.

[60] Z. Govindarajulu, On moments of order statistics and quasi-ranges from normal populations,
Ann. Math. Statist. 34 (1963), 633–651.

[61] , Relationships among moments of order statistics in samples from two related popula-
tions, Technometrics 5 (1963), 514–518.

[62] , Best linear estimates under symmetric censoring of the parameters of a double expo-
nential population, J. Amer. Statist. Assoc. 61 (1966), 248–258.

[63] S. S. Gupta and M. Gnanadesikan, Estimation of the parameters of the logistic distribution,
Biometrika 53 (1966), 565–570.

[64] S. Hande, A note on order statistics for nonidentically distributed variables, Sankhyā Ser. A 56
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A 27 (1965), 357–364.
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