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ABSTRACT

The roots of a smooth curve of hyperbolic polynomials may not in general be
parameterized smoothly, even not C1,α for any α > 0. A sufficient condition for
the existence of a smooth parameterization is that no two of the increasingly
ordered continuous roots meet of infinite order. We give refined sufficient con-
ditions for smooth solvability if the polynomials have certain symmetries. In
general a C3n curve of hyperbolic polynomials of degree n admits twice differen-
tiable parameterizations of its roots. If the polynomials have certain symmetries
we are able to weaken the assumptions in that statement.
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Introduction

Consider a smooth curve of monic hyperbolic (i.e., all roots real) polynomials with
fixed degree n:

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t) (t ∈ R).

Is it possible to find n smooth functions x1(t), . . . , xn(t) which parameterize the roots
of P (t) for each t? It has been shown in [28] that real analytic curves P (t) allow
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real analytic parameterizations of its roots, and in [1] that the roots of smooth curves
P (t) may be chosen smoothly if no two of the increasingly ordered continuous roots
meet of infinite order. In general, as shown in [15], the roots of a C3n curve P (t) of
hyperbolic polynomials can be parameterized twice differentiable. That regularity of
the roots is best possible: In general no C1,α parameterizations of the roots for any
α > 0 exist which is shown by examples in [1,6,11]. Further references related to that
topic are [8, 21,34].

The space Hypn of monic hyperbolic polynomials P of fixed degree n may be iden-
tified with a semialgebraic subset in Rn, the coefficients of P being the coordinates.
Then P (t) is a smooth curve in Hypn ⊆ Rn. If the curve P (t) lies in some semialge-
braic subset of Hypn, then it is evident that in general the conditions which guarantee
smooth parameterizations of the roots of P (t) are weaker than those mentioned in the
previous paragraph. In the present paper we are going to study that phenomenon.

In section 2 we present a class of semialgebraic subsets in spaces of hyperbolic
polynomials for which we are able to apply the described strategy. The construction
of that class is based on results due to [32].

Our main goal is to investigate the problem of finding smooth roots of P under
the assumption that the polynomials P (t) satisfy certain symmetries. More precisely,
we shall assume that the roots x1(t), . . . , xn(t) of P (t) fulfill some linear relations,
i.e., there is a linear subspace U of Rn such that (x1(t), . . . , xn(t)) ∈ U for all t.
Then the curve P (t) lies in the semialgebraic subset E(U) of the space of hyperbolic
polynomials Hypn = E(Rn) = Rn/ Sn of degree n, where E = (E1, . . . , En) and Ei

denotes the i-th elementary symmetric function. The symmetries of the roots of P (t)
are represented by the action of the group W on U which is inherited from the action
of the symmetric group Sn on Rn by permuting the coordinates:

W = W (U) := N(U)/Z(U),

where N(U) := {τ ∈ Sn : τ · U = U} and Z(U) := {τ ∈ Sn : τ · x = x for all x ∈ U}.
Under the additional assumption that the restrictions Ei|U , 1 ≤ i ≤ n, generate

the algebra R[U ]W of W -invariant polynomials on U , we will show that the conditions
imposed on P (t) in order to guarantee the existence of a smooth parameterization of
its roots may be weakened. These conditions will be formulated in terms of the two
natural stratifications carried by U and E(U) = U/W : the orbit type stratification
with respect to W and the restriction of the orbit type stratification with respect
to Sn. The latter will be called ambient stratification. See section 3. It will turn out
(section 4) that we may find global smooth parameterizations of the roots of P (t),
provided that P (t) is normally nonflat with respect to the orbit type stratification of
E(U) = U/W at any t. This condition is in general weaker than the condition found
in [1], since we prove in section 3 that normal nonflatness with respect to the ambient
stratification implies normal nonflatness with respect to the orbit type stratification.
For a definition of ‘normally nonflat’ see 1.5.

These improvements are essentially applications of the lifting problem tackled
in [2]. See also [16,17]. This generalization of the above problem studies the question
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whether it is possible to lift smoothly a smooth curve in the orbit space V/G of
an orthogonal finite dimensional representation of a compact Lie group G into the
representation space V . Here the orbit space V/G is identified with the semialgebraic
subset σ(V ) in Rn given by the image of the orbit map σ = (σ1, . . . , σn) : V → Rn,
where σ1, . . . , σn constitute a system of homogeneous generators of the algebra R[V ]G

of G-invariant polynomials on V . See section 1 for details.
As mentioned before a C3n curve P (t) of hyperbolic polynomials of degree n allows

twice differentiable parameterizations of its roots. Using results found for the general
lifting problem in [17], we are able to lower the degree of regularity in the assumption
of that statement, if the polynomials P (t) satisfy certain symmetries. See section 5.

A class of examples for which the described refinements apply will be constructed
in section 6. For illustration we consider the case when W is a finite reflection group
in section 7. Moreover, explicit examples will be treated.

The problem of finding regular roots of families of hyperbolic polynomials has
relevance in the perturbation theory of selfadjoint operators (e.g., [14, 18, 28]) and in
the theory of partial differential equations for the well-posedness of hyperbolic Cauchy
problems (e.g., [9, 12]).

1. Preliminaries

1.1. Representations of compact Lie groups

Let G be a compact Lie group and let ρ : G → O(V ) be an orthogonal repre-
sentation in a real finite dimensional Euclidean vector space V with inner product
〈 | 〉. By a classical theorem of Hilbert and Nagata, the algebra R[V ]G of in-
variant polynomials on V is finitely generated. So let σ1, . . . , σn be a system of
homogeneous generators of R[V ]G of positive degrees d1, . . . , dn. Consider the or-
bit map σ = (σ1, . . . , σn) : V → Rn. The image σ(V ) is a semialgebraic set in
Z := {y ∈ Rn : P (y) = 0 for all P ∈ I} where I is the ideal of relations between
σ1, . . . , σn. Since G is compact, σ is proper and separates orbits of G, it thus induces
a homeomorphism between V/G and σ(V ), by the following lemma.

Lemma. Suppose that X and Y are locally compact, Hausdorff spaces and that
f : X → Y is bijective, continuous, and proper. Then f is a homeomorphism.

Proof (E.g., [7]). By defining f̃(∞) = ∞, f extends to a continuous map f̃ : X ∪
{∞} → Y ∪ {∞} between the one point compactifications, since it is proper. If
A ⊆ X is closed in X, then A ∪ {∞} is closed in X ∪ {∞} and hence compact.
Then, f̃(A ∪ {∞}) is compact and hence closed in Y ∪ {∞}. Consequently, f(A) =
f̃(A ∪ {∞}) ∩ Y is closed in Y .
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1.2. Description of σ(V )

Let 〈 | 〉 denote also the G-invariant dual inner product on V ∗. The differentials
dσi : V → V ∗ are G-equivariant, and the polynomials v 7→ 〈dσi(v) | dσj(v)〉 are in
R[V ]G and are entries of an n× n symmetric matrix valued polynomial

B(v) :=

〈dσ1(v) | dσ1(v)〉 · · · 〈dσ1(v) | dσn(v)〉
...

. . .
...

〈dσn(v) | dσ1(v)〉 · · · 〈dσn(v) | dσn(v)〉

 .

There is a unique matrix valued polynomial B̃ on Z such that B = B̃ ◦ σ. The
following theorem is due to Procesi and Schwarz [27].

Theorem. σ(V ) = {z ∈ Z : B̃(z) positive semidefinite}.

This theorem provides finitely many equations and inequalities describing σ(V ).
Changing the choice of generators may change the equations and inequalities, but not
the set they describe.

For each 1 ≤ i1 < · · · < is ≤ n and 1 ≤ j1 < · · · < js ≤ n (s ≤ n) consider
the matrix with entries 〈dσip

| dσjq
〉 for 1 ≤ p, q ≤ s. Denote its determinant by

∆j1,...,js

i1,...,is
. Then, ∆j1,...,js

i1,...,is
is a G-invariant polynomial on V , and thus there is a unique

polynomial ∆̃j1,...,js

i1,...,is
on Z such that ∆j1,...,js

i1,...,is
= ∆̃j1,...,js

i1,...,is
◦ σ.

1.3. The problem of lifting curves

Let c : R → V/G = σ(V ) ⊆ Rn be a smooth curve in the orbit space; smooth as curve
in Rn. A curve c̄ : R → V is called lift of c to V , if c = σ ◦ c̄ holds. The problem
of lifting smooth curves over invariants is independent of the choice of a system of
homogeneous generators of R[V ]G in the following sense: Suppose σ1, . . . , σn and
τ1, . . . , τm both generate R[V ]G. Then for all i and j we have σi = pi(τ1, . . . , τm) and
τj = qj(σ1, . . . , σn) for polynomials pi and qj . If cσ = (c1, . . . , cn) is a curve in σ(V ),
then cτ = (q1(cσ), . . . , qm(cσ)) defines a curve in τ(V ) of the same regularity. Any
lift c̄ to V of the curve cσ, i.e., cσ = σ ◦ c̄, is a lift of cτ as well (and conversely):

cτ = (q1(cσ), . . . , qm(cσ)) = (q1(σ(c̄)), . . . , qm(σ(c̄))) = (τ1(c̄), . . . , τm(c̄)) = τ ◦ c̄.

1.4. Stratification of the orbit space

Let H = Gv be the isotropy group of v ∈ V and (H) the conjugacy class of H in G
which is called the type of an orbit G ·v. The union V(H) of orbits of type (H) is called
an orbit type submanifold of the representation ρ and V(H)/G is called an orbit type
submanifold of the orbit space V/G. The collection of connected components of the
manifolds {V(H)/G} forms a stratification of V/G called orbit type stratification, see
[26, 30]. The semialgebraic subset σ(V ) ⊆ Rn is naturally Whitney stratified ([19]).
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The homeomorphism of V/G and σ(V ) induced by σ provides an isomorphism between
the orbit type stratification of V/G and the primary Whitney stratification of σ(V ),
see [5]. These facts are essentially consequences of the slice theorem, see, e.g., [30].

The inclusion relation on the set of subgroups of G induces a partial ordering on the
family of conjugacy classes. There is a unique minimum orbit type, the principal orbit
type, corresponding to the open and dense submanifold Vreg (respectively Vreg/G)
consisting of regular points, i.e., points where the isotropy representation is trivial.
The points in the complement Vsing (respectively Vsing/G) are called singular.

Theorem. [27] Let B̃ be as in 1.2. The k-dimensional primary strata of σ(V ) are
the connected components of the set {z ∈ σ(V ) : rank B̃(z) = k}.

1.5. Smooth lifts

Let us recall some results from [2].
Let s ∈ N0. Denote by As the union of all strata X of the orbit space V/G

with dim X ≤ s, and by Is the ideal of R[Z] = R[V ]G consisting of all polynomials
vanishing on As−1. Let c : R → V/G = σ(V ) ⊆ Rn be a smooth curve, t ∈ R,
and s = s(c, t) a minimal integer such that, for a neighborhood J of t in R, we have
c(J) ⊆ As. The curve c is called normally nonflat at t if there is f ∈ Is such that
f ◦ c is nonflat at t, i.e., the Taylor series of f ◦ c at t is not identically zero. A smooth
curve c : R → σ(V ) ⊆ Rn is called generic, if c is normally nonflat at t for each t ∈ R.

It is easy to see, that c is normally nonflat at t ∈ R if there is some integer
1 ≤ r ≤ n such that:

(i) The functions ∆̃j1,...,jk

i1,...,ik
◦ c vanish in a neighborhood of t whenever k > r.

(ii) There exists a minor ∆̃j1,...,jr

i1,...,ir
such that ∆̃j1,...,jr

i1,...,ir
◦ c is nonflat at t.

Theorem. Let c : R → σ(V ) ⊆ Rn be a smooth curve which is normally nonflat
at t ∈ R. Then there exists a smooth lift c̄ in V of c, locally near t. If c is generic
then there exists a global smooth lift c̄ of c.

1.6. Smooth roots

In the special case that the symmetric group Sn is acting on Rn by permuting the
coordinates there is the following interpretation of the described lifting problem. As
generators of R[Rn]Sn we may take the elementary symmetric functions

Ej(x) =
∑

1≤i1<···<ij≤n

xi1 · · ·xij
(1 ≤ j ≤ n),

which constitute the coefficients aj of a monic polynomial

P (x) = xn − a1x
n−1 + · · ·+ (−1)an
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with roots x1, . . . , xn via Vieta’s formulas. Then a curve in the orbit space
Rn/ Sn = E(Rn) corresponds to a curve P (t) of monic polynomials of degree n with
only real roots (such polynomials are called hyperbolic), and a lift of P (t) may be
interpreted as a parameterization of the roots of P (t).

The first n Newton polynomials

Ni(x1, . . . , xn) =
n∑

j=1

xi
j

which are related to the elementary symmetric functions by

Nk −Nk−1E1 + Nk−2E2 + · · ·+ (−1)k−1N1Ek−1 + (−1)kkEk = 0 (k ≥ 1)

constitute a different system of generators of R[Rn]Sn . For convenience we shall
switch from elementary symmetric functions to Newton polynomials and conversely,
if it seems appropriate.

Let us choose 1
j Nj , 1 ≤ j ≤ n, as generators of R[Rn]Sn and put ∆k := ∆1,...,k

1,...,k

and ∆̃k := ∆̃1,...,k
1,...,k. Then ([1])

∆k(x) =
∑

i1<···<ik

(xi1 − xi2)
2 · · · (xi1 − xik

)2 · · · (xik−1 − xik
)2. (1)

Theorem ([1]). Consider a smooth curve P (t), t ∈ R, of monic hyperbolic polyno-
mials of fixed degree n. Let one of the following two equivalent conditions be satisfied:

(i) If two of the increasingly ordered continuous roots meet of infinite order at t0
then their germs at t0 are equal.

(ii) Let k be maximal with the property that the germ at t0 of ∆̃k(P ) is not 0. Then
∆̃k(P ) is not infinitely flat at t0.

Then P (t) is smoothly solvable near t = t0. If (i) or (ii) are satisfied for any t0 ∈ R,
then the roots of P may be chosen smoothly globally, and any two choices differ by a
permutation.

Lemma. Condition (i) (and thus condition (ii)) in the above theorem is satisfied if
and only if P is normally nonflat at t0 as curve in E(Rn) = Rn/ Sn.

Proof. Let P be normally nonflat at t0. Let s be a minimal integer such that P (t)
lies in As for t near t0 and let f ∈ Is be such that f ◦ P is not infinitely flat at t0.
Denote by Īs the ideal in R[Rn] defining the closed subset π−1(As−1) ⊆ Rn, where
π : Rn → Rn/ Sn is the quotient projection. It is easy to see that the polynomials

fi1...is = (xi1 − xi2) · · · (xi1 − xis) · · · (xis−1 − xis),
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where 1 ≤ i1 < . . . < is ≤ n, generate Īs. So there exist polynomials Qi1...is
∈ R[Rn]

such that
f ◦ π =

∑
i1<···<is

Qi1...is
fi1...is

.

Denote by P̄ (t) the lift of P (t) given by the increasingly ordered continuous roots
x1(t), . . . , xn(t) of the polynomial P (t). Then we have

f ◦ P (t) =
∑

i1<···<is

Qi1...is
◦ P̄ (t) · fi1...is

◦ P̄ (t).

Since f ◦ P is not infinitely flat at t0, at least one of the summands in this sum is
not infinitely flat at t0 and thus there is a polynomial fi1...is

such that fi1...is
◦ P̄ is

not infinitely flat at t0. By assumption, among the roots x1(t), . . . , xn(t) there are
precisely s distinct for t near t0. Hence the germs at t0 of the roots xi1(t), . . . , xis(t)
are distinct, and no two of them meet of infinite order at t0. Therefore, condition (i)
in the above theorem is satisfied.

The other direction is evident by (1).

2. Lifting smooth curves in spaces of hyperbolic polynomials

2.1. The problem

Let us denote by Hypn the space of hyperbolic polynomials of degree n

P (x) = xn +
n∑

j=1

(−1)jajx
n−j .

We may naturally view Hypn as a semialgebraic subset of Rn by identifying P with
(a1, . . . , an). We have Hypn = E(Rn) = Rn/ Sn, and, by means of 1.2, we may
calculate explicitly a set of inequalities defining Hypn (no equalities since the ring
R[Rn]Sn is polynomial).

Suppose X is a semialgebraic subset of Hypn. Let c : R → X be a smooth curve
in X; smooth as curve in Rn. We may view c as a curve in Hypn, i.e., as a smooth
curve of monic hyperbolic polynomials of degree n. In 1.6 sufficient conditions for the
existence of a smooth lift c̄ to Rn, i.e., a smooth parameterization of its roots, are
presented. It is evident that a smooth curve c in X in order to be liftable smoothly
over E to E−1(X) must in general fulfill weaker genericity conditions. Our purpose
is to investigate that phenomenon.

2.2. Orbit spaces embedded in spaces of hyperbolic polynomials

We recall a construction due to L. Smith and R. E. Strong [32] (see also [3]) related to
E. Noether’s [25] proof of Hilbert’s finiteness theorem as recounted by H. Weyl [35].
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Let ρ : G → GL(V ) be a representation of a finite group G in a finite dimensional
vector space V . Consider its induced representation in the dual V ∗. For an orbit
B ⊆ V ∗ set

φB(X) =
∏
b∈B

(X + b)

which we regard as an element of the ring R[V ][X], with X a new variable. The
polynomial φB(X) is called the orbit polynomial of B. Evidently, φB ∈ R[V ]G[X]. If
|B| denotes the cardinality of the orbit B, we may expand φB(X) to a polynomial of
degree |B| in X,

φB(X) =
∑

i+j=|B|

Ci(B)Xj ,

defining classes Ci(B) ∈ R[V ]G called the orbit Chern classes of B.

Theorem (L. Smith and R. E. Strong [32]). Let ρ : G ↪→ GL(V ) be a faithful
representation of a finite group G. Then there exist orbits B1, . . . , Bl ⊆ V ∗ such that
the associated orbit Chern classes Ci(Bj), 1 ≤ i ≤ |Bj |, 1 ≤ j ≤ l, generate R[V ]G.

The field of real numbers may be replaced by any field of either characteristic zero
or characteristic larger than the order of G. For our purpose the reals will suffice.

The Chern classes of the orbit are exactly the elementary symmetric functions in
the elements of the orbit. If B ⊆ V ∗ is an orbit and V ∗

B is a vector space with basis
identified with the elements of B, then there is a natural map V ∗

B → V ∗ given by
the identification. This map induces a map R[VB ]S|B| → R[V ]G which sends the k-th
elementary symmetric function to the k-th orbit Chern class of B.

In this notation the above theorem says that there exist orbits B1, . . . , Bl ⊆ V ∗

such that the induced map

l⊗
i=1

R[VBi ]
S|Bi| −→ R[V ]G

is surjective.
The orbit Chern classes Ci(B) of an orbit B, viewed as invariant polynomials

on V , define a G-invariant map

C(B) = (C1(B), . . . , C|B|(B)) : V −→ R|B|

whose image C(B)(V ) is a semialgebraic subset of the space Hyp|B| of hyperbolic
polynomials of degree |B|.

According to 1.1 and the above theorem, for any faithful representation ρ : G ↪→
GL(V ) of a finite group G there exist orbits B1, . . . , Bl ⊆ V ∗ such that the map

C(ρ) = (C(B1), . . . , C(Bl)) : V −→ Hyp|B1|× · · · ×Hyp|Bl| ⊆ R|B1|+···+|Bl|
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induces a homeomorphism between the orbit space V/G and the image C(ρ)(V ) which
is a semialgebraic subset of Hyp|B1|× · · · × Hyp|Bl|. By increasing the number of
orbits Bi if necessary, we may assume that each irreducible subspace of V contributes
at least one orbit Bi. Then, the linear forms b ∈ B1 ∪ · · · ∪ Bl induce an injective
inclusion V ↪→ R|B1|+···+|Bl|.

Let c : R → C(ρ)(V ) be a smooth curve. Then c = (c1, . . . , cl) where each
ci : R → C(Bi)(V ) is smooth. Since C(Bi)(V ) ⊆ Hyp|Bi| we may view ci as a
curve in Hyp|Bi|. If there exist smooth lifts c̄i : R → R|Bi| with respect to the
representations S|Bi| : R|Bi|, then c̄ = (c̄1, . . . , c̄l) : R → R|B1|+···+|Bl| is a smooth lift
with respect to S|B1|× · · · × S|Bl| : R|B1|+···+|Bl|. Consequently, it suffices to study
the case when there is given a smooth curve in a semialgebraic subset of some Hypn.
That is exactly the problem introduced in 2.1.

Suppose c̃ : R → V is a smooth lift of c with respect to ρ. Then, there exists a
smooth lift c̄ : R → R|B1|+···+|Bl| of c with respect to the representation of S|B1|× · · ·×
S|Bl| on R|B1|+···+|Bl|, namely

V
� � //

��

R|B1|+···+|Bl|

��
R c

//

c̃

;;xxxxxxxxxx
C(ρ)(V ) � � // Hyp|B1|× · · · ×Hyp|Bl|

It follows, by 1.5, that conditions which guarantee that c is generic as curve in the
orbit space V/G suffice to imply the existence of a smooth lift of c with respect to
S|B1|× · · · × S|Bl| : R|B1|+···+|Bl|.

We have seen that the above construction provides a class of semialgebraic sub-
sets of spaces of hyperbolic polynomials, namely orbit spaces of faithful finite group
representations, for which we are able to apply the strategy described in 2.1, thanks
to the results of 1.5.

In the remaining sections we shall change the point of view. Assume we are
given a curve of hyperbolic polynomials with certain symmetries. We will investigate
whether we can weaken the conditions in 1.6 which guarantee the existence of smooth
parameterizations of the roots. This will be performed in section 4. The following
section provides the necessary preparation.

3. Orbit type and ambient stratification

Suppose U is a linear subspace of Rn. Let the symmetric group Sn act on Rn by
permuting the coordinates and endow U with the induced effective action of

W = W (U) := N(U)/Z(U),

where N(U) := {τ ∈ Sn : τ · U = U} and Z(U) := {τ ∈ Sn : τ · x = x for all x ∈ U}.
Then U carries two natural stratifications: the orbit type stratification with respect
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to the W -action and the restriction to U of the orbit type stratification of Rn with
respect to the Sn-action. It is easily seen that the latter indeed provides a Whitney
stratification of U . Let us denote it as the ambient stratification of U .

Proposition 3.1. Let U be a linear subspace in Rn endowed with the induced action
by W = W (U). Then for the ambient and orbit type stratification of U we have:

(i) Each ambient stratum is contained in a unique orbit type stratum.

(ii) Each orbit type stratum contains at least one ambient stratum of the same di-
mension and is the union of all contained ambient strata.

Proof. To (i): Let S be an ambient stratum, i.e., S is a component of Sn ·Rn
H ∩ U ,

where H = (Sn)x for an x ∈ U and Rn
H = {y ∈ Rn : (Sn)y = H}. Since Sn is

finite and the manifolds τ ·Rn
H for τ ∈ Sn either coincide or are pairwise disjoint, the

components of Sn ·Rn
H are open subsets of τ.Rn

H for τ ∈ Sn. Thus, we may assume
that S is a component of Rn

H ∩ U .
Denote by π the quotient projection N(U) → N(U)/Z(U) = W . For any u ∈ U

we have Wu = π(N(U)∩(Sn)u) and thus Rn
H∩U ⊆ {u ∈ U : Wu = Wx}. By definition

and a similar argument as above, the components of the subset {u ∈ U : Wu = Wx}
are orbit type strata of U . So the ambient stratum S is contained in a unique orbit
type stratum RS .

To (ii): Let R be an orbit type stratum and let S be the set of all ambient strata
S such that RS = R, where RS is the unique orbit type stratum from (i). Clearly,
R =

⋃
S and for each S ∈ S we have dim S ≤ dim R. Since the set S is finite, there

is a stratum S ∈ S such that dim S = dim R.

Remarks 3.2. (i) It is easy to see that proposition 3.1 is true if one replaces the
Sn-module Rn by any finite dimensional G-module V , where G is a finite group.

(ii) Proposition 3.1 implies that the orbit type stratification of U is coarser than its
ambient stratification. That means, following [26], that for each ambient stratum S
there exists an orbit type stratum RS such that S ⊆ RS , id |S : S → RS is smooth,
and for all S ⊆ S′ we have RS ⊆ RS′ . It remains to check the last condition: Assume
that S ⊆ S′. Since S ⊆ RS and S ⊆ S′ ⊆ RS′ , we obtain RS ∩ RS′ 6= ∅, and, by the
frontier condition, RS ⊆ RS′ .

Assume that the restrictions Ei|U , 1 ≤ i ≤ n, generate the algebra R[U ]W . It fol-
lows that E|U = (E1|U , . . . , En|U ) induces a homeomorphism between U/W and the
semialgebraic subset E(U) of Rn/ Sn = E(Rn) = Hypn, by 1.1. It is well-known that
U(H) → U(H)/W , where H = Wu for some u ∈ U , is a Riemannian submersion. Since
W is finite, it is even a local diffeomorphism. By proposition 3.1, this implies that
for any ambient stratum S in U the image E(S) is a smooth manifold. The collection
T = {E(S) : S ambient stratum in U} obviously coincides with the collection ob-
tained by restricting to E(U) the orbit type stratification of Rn/ Sn = E(Rn) = Hypn.
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It is easily verified that the frontier condition for the orbit type stratification of
Rn/ Sn = E(Rn) = Hypn implies the frontier condition for T . Consequently, T pro-
vides a stratification of E(U). Let us denote this stratification as the ambient strati-
fication of E(U).

Consider a smooth curve c : R → E(U) = U/W in the sense of 1.3. It may
then be also viewed as a smooth curve in Rn/ Sn = E(Rn) = Hypn. Thus it makes
sense to speak about the normal nonflatness of c at some point t0 with respect to the
orbit type stratification of U/W on the one hand and with respect to the orbit type
stratification of Rn/ Sn on the other hand. To shorten notation we shall say that c
is normally nonflat at t0 with respect to the ambient stratification of U/W iff it is
normally nonflat at t0 with respect to the orbit type stratification of Rn/ Sn.

Proposition 3.3. Let U be a linear subspace in Rn endowed with the induced action
by W = W (U) and assume that the restrictions Ei|U , 1 ≤ i ≤ n, generate R[U ]W .
Consider a smooth curve c : R → E(U) = U/W . If c is normally nonflat at t0 with
respect to the ambient stratification of U/W , then it is normally nonflat at t0 with
respect to the orbit type stratification of U/W .

Proof. The set of reflection hyperplanes H of the reflection group Sn is in bijective
correspondence with the set of linear functionals ωH on Rn of the form xj − xi for
1 ≤ i < j ≤ n, namely H is the kernel of ωH . Let us consider the restrictions ωH |U
to U . If c is normally nonflat at t0 with respect to the ambient stratification, then,
by lemma 1.6, any two of the increasingly ordered continuous roots of the polynomial
c(t) ∈ E(U) ⊆ Hypn either coincide identically near t0 or do not meet at t0 of infinite
order. Then for the continuous lift c̄ of c defined by such a choice of roots any function
ωH ◦ c̄ either vanishes identically near t0 or does not vanish at t0 of infinite order.

Let s be a minimal integer such that c(t) lies in As,orb for t near t0, where As,orb

is the union of all orbit type strata of U/W of dimension ≤ s.
Denote by πU the projection U → U/W . Let R be an orbit type stratum contained

in π−1
U (As−1,orb) and let S1, . . . , Sk be the ambient strata of the same dimension as

R contained in R (see proposition 3.1). For each 1 ≤ j ≤ k denote by Hj the set of
reflection hyperplanes for reflections in Sn fixing Sj pointwise. Let Ωj be the set of
linear functionals ωH |U for H ∈ Hj . Put fR,j =

∑
ω∈Ωj

ω2. By definition the equation
fR,j = 0 defines a linear subspace of U in which Sj is an open subset. Let fR =∏k

j=1 fR,j . Consider the natural action of W on R[U ] and let W · fR = {f1
R, . . . , f l

R}
be the orbit through fR with respect to this action. Define FR = f1

R · · · f l
R. By

construction FR ∈ R[U ]W and the set ZR of zeros of FR viewed as a function on
U/W is contained in As−1,orb. Moreover, As−1,orb is the union of the ZR, where R
ranges over all orbit type strata (of maximal dimension) contained in π−1

U (As−1,orb).
Thus F =

∏
R FR, where the product is taken over all orbit type strata (of maximal

dimension) R contained in π−1
U (As−1,orb), is a regular function on U/W whose set of

zeros equals As−1,orb. By construction, the function F ◦ c is nonflat at t0.
This proves the statement.
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We define Famb(c) (resp. Forb(c)) to be the set of all t ∈ R such that c is normally
flat at t with respect to the ambient (resp. orbit type) stratification of E(U). It follows
that in the situation of proposition 3.3 we have Forb(c) ⊆ Famb(c).

4. Choosing roots of polynomials with symmetries smoothly

Consider a smooth curve of hyperbolic polynomials

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t) (t ∈ R).

We are interested in conditions that guarantee the existence of a smooth parameter-
ization of the roots of P . Such conditions have been found in [1], see 1.6. There no
additional assumptions on the polynomials P (t) have been made.

In this section we are going to improve those results if the set of roots x1(t), . . . ,
xn(t) of P (t) has symmetries additional to its invariance under permutations.

Let as assume that the additional symmetries of P (t) are given by linear relations
between the roots of P (t). Otherwise put, there is a linear subspace U of Rn such that
(x1(t), . . . , xn(t)) ∈ U for all t ∈ R. Then, the curve P (t) lies in the semialgebraic
subset E(U) of Hypn = E(Rn) = Rn/ Sn, the space of hyperbolic polynomials of
degree n.

The linear subspace U ⊆ Rn inherits an effective action by the group W = W (U).
Let us suppose that the restrictions Ei|U , 1 ≤ i ≤ n, generate the algebra R[U ]W .

Then E|U = (E1|U , . . . , En|U ) induces a homeomorphism between U/W and the
semialgebraic subset E(U) of Hypn, by 1.1.

Lemma 4.1. Consider a continuous curve of hyperbolic polynomials

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t) ( t ∈ R).

Let U be some linear subspace of Rn and assume that the restrictions Ei|U , 1 ≤ i ≤ n,
generate the algebra R[U ]W (U). Then the following two conditions are equivalent:

(i) There exists a continuous parameterization x(t) of the roots x1(t), . . . , xn(t) of
P (t) such that x(t) ∈ U for all t ∈ R.

(ii) P (t) ∈ E(U) for all t ∈ R.

Proof. The implication (i) ⇒ (ii) is trivial. Suppose that P (t) is a continuous curve
in E(U). By assumption, we may view P (t) as a curve in the orbit space U/W (U) ∼=
E(U). It allows a continuous lift x(t) into U , by [16] or [24], which constitutes a
parameterization of the roots of P (t).

The smooth curve of polynomials P (t) which lies in E(U) may be viewed as a
smooth curve in the orbit space U/W in the sense of 1.3. A smooth lift of P (t) over

Revista Matemática Complutense
2007: vol. 20, num. 2, pags. 267–291 278



M. Losik/A. Rainer Choosing roots of polynomials with symmetries smoothly

the orbit map E|U to the W -module U provides a smooth parameterization of the
roots of the polynomials P (t).

By theorem 1.5, we may conclude: If P (t) is normally nonflat at t = t0 with
respect to the orbit type stratification of E(U), then P (t) is smoothly solvable near
t = t0.

Consider the closed sets Famb(P ) and Forb(P ), as defined in section 3. By proposi-
tion 3.3, the set Forb(P ) is contained in Famb(P ). We have found that P (t) is smoothly
solvable locally near any t0 ∈ R \ Forb(P ). Any two smooth parameterizations of the
roots of P (t) near such a t0 differ by a constant permutation, see theorem 1.6. Thus
the local solutions may be glued to a smooth solution on R \ Forb(P ).

It follows from a result in [15] (see also [17]) that any smooth curve of monic
hyperbolic polynomials of fixed degree allows a global twice differentiable parameter-
ization of its roots. By the methods used in [15], it is easy to combine this with the
result above in order to get the following theorem.

Theorem 4.2. Consider a smooth curve of hyperbolic polynomials

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t) ( t ∈ R).

Let U be some linear subspace of Rn such that:

(i) The restrictions Ei|U , 1 ≤ i ≤ n, generate the algebra R[U ]W (U).

(ii) P (t) ∈ E(U) for all t ∈ R.

Then: There exists a global twice differentiable parameterization of the roots of P (t)
on R which is smooth on R \ Forb(P ).

Remark 4.3. The orbit type stratification and the ambient stratification of E(U) do
in general not coincide, whence theorem 4.2 provides an actual improvement of the
statement of theorem 1.6. In other words, in general we have Forb(P ) ( Famb(P ).
It may, for instance, happen that P (0) is regular in E(U) = U/W but singular in
Hypn = Rn/ Sn and P (t) is normally flat at t = 0 with respect to the ambient
stratification. See examples in section 7.

Let us suppose that a linear subspace U of Rn is given. It is then a purely com-
putational problem to check whether the assumptions we have made in the forgoing
discussion are satisfied. There are algorithms in computational invariant theory (e.g.,
[10, 33]) which allow to decide whether the restrictions Ei|U , 1 ≤ i ≤ n, generate the
algebra R[U ]W (U). If the answer is yes, theorem 1.2 provides an explicit way to de-
scribe the semialgebraic subset E(U) ⊆ Hypn by a finite set of polynomial equations
and inequalities. So the condition that the curve P lies in E(U) may again be check
computationally. The orbit type stratification and the ambient stratification of E(U)
can be determined explicitly using theorem 1.4. Then all ingredients are supplied in
order to decide whether the curve P (t) is normally nonflat at some t = t0 with respect
to the one or the other stratification of E(U).
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Note that there are refined approaches and algorithms for computing the orbit
space V/G and its orbit type stratification of a G-module V (when identified with the
image of its orbit map). In [29] rational parameterizations of the strata are obtained,
while [4] provides an algorithm yielding a description of each stratum in terms of a
minimal number of polynomial equations and inequalities, if G is finite.

We shall carry out that procedure explicitly in example 7.8.

5. Choosing roots of polynomials with symmetries differentia-
bly

Consider a curve of hyperbolic polynomials

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t) (t ∈ R).

Then the following results are known:

Result 5.1. We have:

(i) If all ai are of class Cn, then there exists a differentiable parameterization of
the roots of P (t) with locally bounded derivative, [8, 34].

(ii) If all ai are of class C2n, then any differentiable parameterization of the roots
of P (t) is actually C1, [15,21].

(iii) If all ai are of class C3n, then there exists a twice differentiable parameterization
of the roots of P (t), [15].

In [17] we have proved the following generalizations:

Result 5.2. Let ρ : G → O(V ) be a finite dimensional representation of a finite
group G. Let d = d(ρ) be the maximum of the degrees of a minimal system of homo-
geneous generators σ1, . . . , σm of R[V ]G. Write V = V1⊕· · ·⊕Vl as orthogonal direct
sum of irreducible subspaces Vi. Define ki := min{|G · v| : v ∈ Vi \ {0}}, 1 ≤ i ≤ l,
and k := max{d(ρ), k1, . . . , kl}. Let c : R → V/G = σ(V ) ⊆ Rm be a curve in the
orbit space. Then:

(i) If c is of class Ck, then there exists a differentiable lift of c to V with locally
bounded derivative.

(ii) If c is of class Ck+d, then any differentiable lift of c is actually of class C1.

(iii) If c is of class Ck+2d, then there exists a twice differentiable lift of c to V .

Again we may use these facts in order to improve the results for curves P (t) of
hyperbolic polynomials with symmetries.

Let U be some linear subspace of Rn such that the restrictions Ei|U , 1 ≤ i ≤ n,
generate the algebra R[U ]W (U), and P (t) ∈ E(U) for all t ∈ R. It follows that we
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may view P (t) as a curve in the orbit space U/W (U) = E(U), and any lift of P (t)
over the orbit map E|U to U gives a parameterization of the roots of P (t) of the same
regularity.

Provided that the integer k, associated to the W (U)-module U as above, is less
than the degree n of the polynomials in P (t), we are able, using 5.2, to lower the degree
of regularity in the assumptions of the statements in 5.1. We shall give examples in
section 7.

6. Construction of a class of examples

We will present a class of examples which our considerations apply to.
Let G ⊆ O(V ) be a finite group whose action on the vector space V is irreducible

and effective. Choose some non-zero orbit G · v. Introducing some numbering we can
write G · v = {g1 · v, . . . , gn · v}, where |G · v| = n and gi ∈ G. We define a mapping
FG,v : V → Rn by

FG,v(x) := (〈g1 · v | x〉, . . . , 〈gn · v | x〉).

Since the linear span of G · v spans V , the mapping FG,v is a linear isomorphism onto
its image FG,v(V ) =: UG,v. The linear space UG,v ⊆ Rn carries the action of WG,v :=
W (UG,v) and a natural G-action given by transformations from WG,v. Since the G-
action is irreducible, so is the WG,v-action. Hence UG,v ⊆ {y ∈ Rn : y1+· · ·+yn = 0}.
Irreducibility and effectiveness of the G-action induce an injection G ↪→ WG,v. Thus
we may consider G as a subgroup of WG,v, and in this picture FG,v is G-equivariant.

Remark 6.1. The linear space UG,v always intersects the submanifold of regular points
in the Sn-module Rn. Namely: For 1 ≤ i < j ≤ n we define Ui,j = {FG,v(x) : 〈gi·v | x〉
= 〈gj · v | x〉, x ∈ V }. By definition, Ui,j is a linear subspace of UG,v and

⋃
i<j Ui,j is

the set of singular points of the Sn-module Rn contained in UG,v. Since, by definition,
gi · v 6= gj · v for any i < j, we have dim Ui,j = n− 1. Thus,

⋃
i<j Ui,j 6= UG,v, which

gives the assertion.

Put PG,v := E ◦ FG,v. Then PG,v is proper, since E and FG,v are proper.

Lemma 6.2. Suppose that PG,v separates G-orbits. Then we have G = WG,v.

Proof. The groups G and WG,v have the same orbits in UG,v. For: Suppose that
τ ∈ WG,v and x, y ∈ V such that FG,v(y) = τ ·FG,v(x). Since PG,v separates orbits, it
follows that there exists some g ∈ G such that y = g·x, whence g·FG,v(x) = τ ·FG,v(x).

Now choose x ∈ V such that FG,v(x) is a regular point of the WG,v-module UG,v.
The regular points of any effective linear finite group representation are precisely
those with trivial isotropy groups. We may conclude that x is a regular point of the
G-module V . So |WG,v| = |WG,v · FG,v(x)| = |G · x| = |G|, and thus G = WG,v.

If PG,v separates G-orbits, then, by lemma 6.2, the G = WG,v-modules V and UG,v

are equivalent. In particular, it follows that the restriction E|UG,v
separates WG,v-
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orbits, FG,v induces a homeomorphism between V/G and UG,v/Wρ,v, and F ∗
G,v :

R[UG,v]WG,v → R[V ]G is an algebra isomorphism.

Proposition 6.3. The following conditions are equivalent:

(i) PG,v separates G-orbits.

(ii) For all x ∈ V we have FG,v(G · x) = Sn ·FG,v(x) ∩ UG,v.

(iii) PG,v induces a homeomorphism between V/G and PG,v(V ).

Proof. Since E separates Sn-orbits, for each x ∈ V there exists a z ∈ Rn such that
E−1(z) = Sn ·FG,v(x). Then the equivalence of (i) and (ii) follows from

P−1
G,v(z) = F−1

G,v(Sn ·FG,v(x)) = F−1
G,v(Sn ·FG,v(x) ∩ UG,v).

The equivalence of (i) and (iii) follows easily from lemma 1.1.

Note that the introduced construction of FG,v and PG,v essentially coincides with
the construction of orbit Chern classes as described in 2.2.

Let us discuss uniqueness of the above construction. Suppose G ⊆ O(V ) is a finite
group. Denote by Aut(G) the group of automorphisms of G. Let S be the set of all
reflections belonging to G. Denote by Aut(G, S) the group of automorphisms of G
preserving the set S. Let a ∈ Aut(G, S). A diffeomorphism T : V → V is called
a-equivariant, if T ◦ g = a(g) ◦ T for any g ∈ G (cf. [20]).

Lemma 6.4. Suppose G ⊆ O(V ) is a finite group. Let a ∈ Aut(G, S) and let
T : V → V be an a-equivariant diffeomorphism. Then the isotropy groups of x and
T (x) are isomorphic, for all x ∈ V , T maps orbits onto orbits, and T induces an
automorphism of the orbit type stratification of V .

Proof. It is easily seen that GT (x) = a(Gx) and T (G.x) = G.T (x) for all x ∈ V .
Further, it is evident that Gx = gHg−1 if and only if GT (x) = a(g)a(H)a(g)−1. The
statement follows.

Let c : R → V/G = σ(V ) ⊆ Rn be a smooth curve and c̄ : R → V a smooth lift
of c. The orbit space V/G has a smooth structure given by the sheaf C∞(V/G) =
C∞(V )G of smooth G-invariant functions on V . Then c induces a continuous algebra
morphism c∗ : C∞(V/G) → C∞(R) and c̄ induces a continuous algebra morphism
c̄∗ : C∞(V ) → C∞(R) such that c∗ = c̄∗ ◦ σ∗. This algebraic lifting problem is
equivalent to the geometrical one. It is evident that to determine c̄∗ it suffices to
know the images under c̄∗ of some system of global coordinate functions x1, . . . , xm,
where m = dim V . The same is true for c∗, and in this case we may take the basic
invariants σ1, . . . , σn as global coordinates functions, by Schwarz’s theorem [31]. If
f : V/G → V/G is a smooth diffeomorphism one can take instead of the σi the
functions f∗(σi) with the same result. Thus, the problem of smooth lifting is invariant
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with respect to the group of diffeomorphisms of V/G. Each such diffeomorphism has
a smooth lift to V which is an a-equivariant diffeomorphism, for some a ∈ Aut(G, S),
see [20]. Conversely, any smooth a-equivariant diffeomorphism of V induces a smooth
diffeomorphism of V/G, by lemma 6.4.

Therefore, we may regard two constructions as described above, carried out for
distinct points v and w in V , as equivalent with respect to our lifting problem, if there
exists a smooth a-equivariant diffeomorphism T : V → V with v = T (w), for some
a ∈ Aut(G, S).

If T is of a particular form, we can even say more.

Proposition 6.5. Suppose G ⊆ O(V ) is a finite group. Let v, w ∈ V \ {0}. If there
exists a homothety or an a-equivariant linear orthogonal map T : V → V , for some
a ∈ Aut(G, S), such that v = T (w), then PG,v(V ) and PG,w(V ) are homeomorphic,
and R[E1 ◦ FG,v, . . . , En ◦ FG,v] and R[E1 ◦ FG,w, . . . , En ◦ FG,w] are isomorphic.

Moreover, in both cases, the ambient stratifications of UG,v and UG,w are iso-
morphic, i.e., there exists a linear isomorphism UG,v → UG,w mapping strata onto
strata.

Proof. If T is a homothety, then it is equivariant (a = id) and UG,v = UG,w. If T is
a-equivariant linear orthogonal, then, by lemma 6.4, the linear subspaces UG,v and
UG,w of Rn differ only by a permutation from Sn. In both cases PG,v(V ) and PG,w(V )
are homeomorphic, and T ∗ : R[E1◦FG,v, . . . , En◦FG,v] → R[E1◦FG,w, . . . , En◦FG,w]
is an algebra isomorphism.

The supplement in the lemma follows immediately from the fact that UG,v and
UG,w differ only by a permutation of Sn.

If P (t) is a smooth curve of hyperbolic polynomials lying in PG,v(V ) and provided
that the polynomials Ei ◦ FG,v, 1 ≤ i ≤ n, generate R[V ]G, we may apply the results
of sections 4 and 5.

We will investigate the case of finite reflection groups in the next section.

7. Finite reflection groups

Suppose U is a linear subspace of Rn. Let the symmetric group Sn act on Rn by
permuting the coordinates and endow U with the induced action of W = W (U). We
shall assume in this section that W is a finite reflection group.
Remark 7.1. If W is a finite reflection group, proposition 3.1 reduces to the following
statement: Any reflection hyperplane of W in U is the intersection with U of some
reflection hyperplane of Sn in Rn. For: Let H be a reflection hyperplane of W in U .
By proposition 3.1, there exists a ambient stratum S of U such that S ⊆ H and
dim S = dim H. Obviously, S ⊆ (Rn)sing ∩U , and so there are reflection hyperplanes
P1, . . . , Pl of Sn in Rn which contain S. Since dim S = dim U −1, there is a 1 ≤ i ≤ n
such that Pi ∩ U is a hyperplane in U . Since S is contained in both H and Pi ∩ U ,
we have H = Pi ∩ U .
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For any finite reflection group W ⊆ O(U) we may write U as the orthogonal
direct sum of W -invariant subspaces U0 = UW , U1, . . . , Ul such that W is isomorphic
to W0 ×W1 × · · · ×Wl, where Wi = {τ |Ui : τ ∈ W}. Each Wi (i ≥ 1) is one of the
groups (e.g., [13])

Am, m ≥ 1; Bm, m ≥ 2; Dm, m ≥ 4; Im2 , m ≥ 5, m 6= 6;
G2; H3; H4; F4; E6; E7; E8 .

It follows that R[U ]W ∼= R[U1]W1 ⊗ · · · ⊗ R[Ul]Wl and U/W ∼= U1/W1 × · · · × Ul/Wl.
A smooth curve c = (c1, . . . , cl) in the orbit space U/W is then smoothly liftable to U
if and only if, for all 1 ≤ i ≤ l, ci is smoothly liftable to Ui. Note that the orbit
type stratification of U/W coincides with the product stratification of the orbit type
stratifications Zi of the factors Ui/Wi, i.e., the strata of U/W are S1×· · ·×Sl, where
Si ∈ Zi. Consequently, in order to apply the results of section 4 and section 5 we
may consider each factor Ui/Wi separately. So let us assume that U is an irreducible
W -module.

To this end we have to check whether the restrictions Ei|U , 1 ≤ i ≤ n, generate
the algebra R[U ]W . In practice this is easily accomplishable: the unique degrees
d1, . . . , dm, where m = dim U , of the elements in a minimal system of homogeneous
generators of R[U ]W are well known. It suffices to compute the Jacobian J of the
polynomials Edi

|U , 1 ≤ i ≤ m. If J 6= 0 ∈ R[U ] then they generate R[U ]W . Note that
a necessary condition for the Ei|U , 1 ≤ i ≤ n, to generate R[U ]W is that the degrees
d1, . . . , dm must be pairwise distinct, see remark 7.4.

Let us carry out the construction presented in section 6 for finite irreducible re-
flection groups G ⊆ O(V ). Let v ∈ V \ {0}. If the polynomials Ei ◦FG,v generate the
algebra R[V ]G, then WG,v is a finite irreducible reflection group as well, by lemma 6.2.

Fix a system Π of simple roots of G. For any v in the fundamental domain
C = {x ∈ V : 〈x | r〉 ≥ 0 for all r ∈ Π}, the isotropy group Gv is generated by the
simple reflections it contains (e.g., [13]).

Lemma 7.2. Let G ⊆ O(V ) be a finite reflection group. Each automorphism of the
corresponding Coxeter diagram Γ(G) induces an a-equivariant orthogonal automor-
phism of V for some a ∈ Aut(G, S).

Proof ([20]). Since the vertices in the Coxeter diagram Γ(G) represent the simple roots
of G, an automorphism ϕ of Γ(G), defines uniquely an automorphism aϕ ∈ Aut(G, S).
Suppose the simple roots have unit length. Since they form a basis for V the automor-
phism ϕ defines naturally an orthogonal automorphism Tϕ of V . It is easily checked
that Tϕ is aϕ-equivariant.

Theorem 7.3. Suppose G ⊆ O(V ) is a finite irreducible reflection group. Let v ∈
V \{0} such that the cardinality of Gv is maximal. Then: The polynomials Ei ◦FG,v,
1 ≤ i ≤ n, generate R[V ]G and PG,v induces a homeomorphism between V/G and
PG,v(V ) if and only if G 6= Dm, m ≥ 4.
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G Am Bm Dm Im2 G2 H3 H4 F4 E6 E7 E8

k m + 1 2m 2m m 6 12 120 24 27 56 240

Figure 1 – Irreducible Coxeter groups with associated integer k.

Proof. By proposition 6.5 and lemma 7.2 it suffices to check the statement for one
single v 6= 0 with maximal Gv. Choosing e1 + · · · + em − mem+1, e1, and e1 for
Am, Bm, and Im2 , respectively, one obtains the usual systems of basic invariants.
The choice e1 for Dm yields FDm,e1 = FBm,e1 , whence the polynomials Ei ◦ FDm,e1 ,
1 ≤ i ≤ n = 2m, cannot separate Dm-orbits. For the remaining irreducible reflection
groups the necessary computations have been carried out by Mehta [23].

Remark 7.4. If for Dm with m odd one chooses v = e1 + · · · + em, then the polyno-
mials Ei ◦ FDm,v, 1 ≤ i ≤ n = 2m−1, generate R[Rm]Dm , since the Jacobian of the
polynomials Ni ◦ FDm,w, i = 2, 4, . . . , 2n − 2, n, is up to a constant factor given by∏

i<j(x
2
i −x2

j ). If m(≥ 4) is even, this cannot be true since there have to be two basic
invariants of degree m/2.

The following theorem is a corollary of theorem 7.3 and theorem 4.2.

Theorem 7.5. Suppose G ⊆ O(V ) is a finite irreducible reflection group and G 6= Dm,
m ≥ 4. Let v ∈ V \ {0} such that the cardinality of Gv is maximal. Let

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t) ( t ∈ R)

be a smooth curve of hyperbolic polynomials of degree n = |G.v| lying in PG,v(V ) for
all t ∈ R. Then there exists a global twice differentiable parameterization of the roots
of P (t) on R which is smooth on R \ Forb.

Remark 7.6. It is easy to see that, under the assumption that the cardinality of Gv

is maximal, the orbit type stratification and the ambient stratification of UG,v co-
incide only for G = Am,Bm, Im2 . In general, if |Gv| is not maximal, the orbit type
stratification of UG,v will be strictly coarser than its ambient stratification.

It is easy to compute the integer k, associated to orthogonal representations of
finite groups G in 5.2, if G is a finite irreducible reflection group. See figure 1.

In the situation of theorem 7.5 the strategy discussed in section 5 will lead to no
improvement, since k = n by definition. But, if we choose v ∈ V \ {0} such that |Gv|
is not maximal, then k < n and the methods of section 5 will yield refinements.

In many cases the following theorem provides an improvement of 5.1.

Theorem 7.7. Suppose G ⊆ O(V ) is a finite irreducible reflection group. Choose
some v ∈ V \ {0}. Put n = |G · v| and let k be as in figure 1. Suppose that the
restrictions Ei|UG,v

, 1 ≤ i ≤ n, generate R[UG,v]WG,v . Let

P (t)(x) = xn − a1(t)xn−1 + a2(t)xn−2 − · · ·+ (−1)nan(t) ( t ∈ R)
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be a curve of hyperbolic polynomials lying in PG,v(V ) for all t ∈ R. Then:

(i) If all ai are of class Ck, then there exists a differentiable parameterization of
the roots of P (t) with locally bounded derivative.

(ii) If all ai are of class Ck+d, then any differentiable parameterization of the roots
of P (t) is actually C1.

(iii) If all ai are of class Ck+2d, then there exists a twice differentiable parameteri-
zation of the roots of P (t).

Example 7.8. Consider the Coxeter group B3 and choose v = e1 + e2 + e3. We find

FB3,v(x) = (x1 + x2 + x3,−x1 + x2 + x3, x1 − x2 + x3, x1 + x2 − x3,

− x1 − x2 + x3,−x1 + x2 − x3, x1 − x2 − x3,−x1 − x2 − x3)

and UB3,v = {y ∈ R8 : yi + yj = 0 for i + j = 9, y1 = y2 + y3 + y4}. It is easy to
check that N2i ◦ FB3,v, 1 ≤ i ≤ 3, generate R[R3]B3 , by computing their Jacobian.
It is readily verified that the set of all reflection hyperplanes of WB3,v is given by
intersecting the following hyperplanes in R8 with UB3,v (compare with remark 7.1):

{ y1 = y2, y1 = y3, y1 = y4, y1 = y5, y1 = y6, y1 = y7, y2 = y3, y2 = y4, y3 = y4 }.

Furthermore, the intersections with UB3,v of the following hyperplanes in R8,

{ y1 = y8, y2 = y7, y3 = y6, y4 = y5 },

are not among the set of reflection hyperplanes of WB3,v. Therefore, the orbit type
stratification of UB3,v is strictly coarser than its ambient stratification.

We follow the recipe for computing orbit type and ambient stratification of
E(UB3,v) = N(UB3,v) given at the end of section 4. We will present only the outcome
of the calculations. Using N2i ◦ FB3,v, 1 ≤ i ≤ 3, as basic invariants of R[R3]B3 , we
find that the symmetric matrix B̃ = (b̃ij) from 1.2 has entries

b̃11 = 32z2, b̃12 = 64z4, b̃13 = 96z6, b̃22 = −3z3
2 + 36z2z4 + 32z6,

b̃23 =
1
8
(5z4

2 − 108z2
2z4 + 192z2

4 + 544z2z6),

b̃33 =
1
64

(27z5
2 − 300z3

2z4 − 1140z2z
2
4 + 1140z2

2z6 + 7680z4z6).

Put ∆̃ij = det
(

b̃ii b̃ij

b̃ji b̃jj

)
where i < j. Then N(UB3,v) is the subset in R8 defined by

the following relations

z2 ≥ 0, ∆̃12 ≥ 0, det B̃ ≥ 0,

z1 = z3 = z5 = z7 = 0,

384z8 = 5z4
2 − 72z2

2z4 + 48z2
4 + 256z2z6.
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The 3-dimensional principal orbit type stratum is given by

R(3) = N(UB3,v) ∩ {z2 > 0, ∆̃12 > 0,det B̃ > 0}.

Put

f̃1 = 53z6
2 − 840z4

2z4 + 1680z2
2z2

4 + 6144z3
4 + 2752z3

2z6 − 16128z2z4z6 + 9216z2
6 ,

f̃2 = z3
2 − 12z2z4 + 32z6.

There are three 2-dimensional orbit type strata

R
(2)
1 = N(UB3,v) ∩ {z2 > 0, ∆̃12 > 0, f̃1 = 0},

R
(2)
2 = N(UB3,v) ∩ {z2 > 0, ∆̃12 = 0, ∆̃23 > 0, f̃1 = 0},

R
(2)
3 = N(UB3,v) ∩ {z2 > 0, ∆̃13 > 0, f̃2 = 0},

the three 1-dimensional orbit type strata R
(1)
1 , R

(1)
2 , R

(1)
3 are the connected compo-

nents of

N(UB3,v) ∩ {z2 > 0, ∆̃12 = ∆̃13 = ∆̃23 = 0},

and R(0) = {0} is the only 0-dimensional stratum.
The ambient stratification of N(UB3,v) is obtained by cutting with the surface

{z2
2 − 4z4 = 0}. There are two 3-dimensional ambient strata

S
(3)
1 = R(3) ∩ {z2

2 − 4z4 > 0} and S
(3)
2 = R(3) ∩ {z2

2 − 4z4 < 0},

five 2-dimensional ambient strata

S
(2)
1 = R(3) ∩ {z2

2 − 4z4 = 0}, S
(2)
2 = R

(2)
1 ∩ {z2

2 − 4z4 > 0},

S
(2)
3 = R

(2)
1 ∩ {z2

2 − 4z4 < 0}, S
(2)
4 = R

(2)
2 , S

(2)
5 = R

(2)
3 ,

four 1-dimensional ambient strata S
(1)
1 = R

(1)
1 , S

(1)
2 = R

(1)
2 , S

(1)
3 = R

(1)
3 , S

(1)
4 =

R
(2)
1 ∩ {z2

2 − 4z4 = 0}, and S(0) = R(0) = {0} is the only 0-dimensional ambient
stratum. See figure 2.

Let f , g, h be functions defined in some neighborhood of 0 ∈ R. Suppose that
f and g are infinitely flat at 0 and h(0) = 0. For t near 0 consider the curve of
polynomials P (t)(x) = x8 +

∑8
j=1(−1)jaj(t)x8−j where

a1 = a3 = a5 = a7 = 0,

a2 = −56 + f, a4 = 784 + g, a6 = −2304 + h,

1024a8 = 16a4
2 − 128a2

2a4 + 256a2
4.
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Figure 2 – The projection of N(UB3,v) to the {z2, z4, z6}-subspace and intersection
with the surface {z2

2 − 4z4 = 0}.

Then, for t near 0, P (t) is a curve in N(UB3,v) with P (0) ∈ S
(2)
1 . At t = 0 it is

normally flat with respect to the ambient stratification but normally nonflat with
respect to the orbit type stratification.

If f , g and h are smooth, then P (t) is smoothly solvable near t = 0, by theorem 4.2.
Note that in this example we have d = k = 6 < 8 = n and thus theorem 7.7 provides
an actual improvement, too.

The following example shows that W (U) must not necessarily be a finite reflection
group, even though the Ei|U generate R[U ]W (U).

Example 7.9. Let U be the subspace of R6 defined by the following equations

x1 + x2 + x3 = 0, x4 + x5 + x6 = 0.

The subgroup N(U) of S6 is generated by all permutations of x1, x2, x3, all permu-
tations of x4, x5, x6, and the simultaneous transpositions of x1 and x4, x2 and x5, x3

and x6. The subgroup Z(U) is trivial. Thus W (U) is isomorphic to the semidirect
product of S3×S3 and S2.

One can get the subspace U above as follows. Consider the point v = (x, x, x, y, y, y)
∈ R6, where x, y 6= 0 and x 6= y. The isotropy group H = (S6)v of v is evidently
isomorphic to S3×S3. Then U = ((R6)H)⊥. The group H is the normal subgroup of
W (U) generated by reflections.
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First consider the action of H on U . It is clear that the algebra R[U ]H is a
polynomial algebra generated by the basic generators

y1 = x2
1 + x2

2 + x1x2, z1 = x1x2(x1 + x2),

y2 = x2
4 + x2

5 + x4x5, z2 = x4x5(x4 + x5).

Consider the space R4 with the coordinates y1, z1, y2, z2 and the action of the group S2

on it induced by the action of S2 = W (U)/(S3×S3) on the above basic generators.
It is easy to check that this action coincides with the diagonal action of S2 on (R2)2

for the standard action of S2 on R2. Since the algebra of S2-invariant polynomials on
(R2)2 is generated by the polarizations of basic invariants for the standard action of
S2 on R2 we get the following system of generators of R[U ]W (U):

f1 = y1 + y2, f2 = z1 + z2, f3 = y2
1 + y2

2 , f4 = y1z1 + y2z2, f5 = z2
1 + z2

2 .

Simple calculations for the restrictions of the Newton polynomials Ni on R6 to U
gives the following result:

N1|U = 0, N2|U = 2f1, N3|U = −3f2,

N4|U = 2f3, N5|U = −5f4, N6|U = 3f5 + 3f1f3 − f3
1 .

This proves that the morphism R[R6]S6 → R[U ]W (U) defined by restriction is surjec-
tive.
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Revista Matemática Complutense

2007: vol. 20, num. 2, pags. 267–291



M. Losik/A. Rainer Choosing roots of polynomials with symmetries smoothly

[10] H. Derksen and G. Kemper, Computational invariant theory, Encyclopaedia of Mathematical
Sciences, vol. 130, Springer-Verlag, Berlin, 2002.

[11] G. Glaeser, Racine carrée d’une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963),
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