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ABSTRACT

For certain classes of negative definite symbols q(x, ξ) and state space dependent
Bernstein function f(x, s) we prove that −p(x, D), the pseudo-differential oper-
ator with symbol −p(x, ξ) = −f(x, q(x, ξ)), extends to the generator of a Feller
semigroup. Our result extends previously known results related to operators of
variable (fractional) order of differentiation, or variable order fractional powers.
New concrete examples are given.
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Introduction

In the early days of the theory of pseudo-differential operators, pseudo differential
operators of variable order had already been studied, compare A. Unterberger and
J. Bokobza [21]. These considerations were taken up by H.-G. Leopold [16, 17] who
gave more emphasis on the function space point of view. On the other hand, also in
the early days of the theory of pseudo-differential operators Ph. Courrège [2] pointed
out that (most) generators of Feller semigroups are pseudo-differential operators, but
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their symbols do not belong to “nice” or “classical” symbol classes. Indeed, on S(Rn)
the generator of a Feller semigroup has the representation

Au(x) = −q(x,D)u(x) = −(2π)−
n
2

∫
Rn

eix·ξq(x, ξ)û(ξ) dξ

where the symbol q : Rn×Rn → C is measurable and locally bounded and for x ∈ Rn
fixed q(x, ·) is a continuous negative definite function, i.e., we have the Lèvy-Khinchin
representation

q(x, ξ) = c(x) + id(x)ξ +
n∑

k,l=1

ak,l(x)ξkξl +
∫

Rn\{0}

(
1− e−iy·ξ − iy · ξ

1 + |y|2

)
ν(x, dy)

with c(x) ≥ 0, d(x) ∈ Rn, akl(x) = alk(x) ∈ R and
∑n
k,l=1 akl(x)ξkξl ≥ 0, and∫

Rn\{0}(1∧|y|
2)ν(x, dy) <∞. Thus these symbols need not to be smooth with respect

to ξ nor do they need to have a nice expansion into homogeneous functions. Maybe
the fact that these symbols are a bit exotic is the reason why Courrège’s result was
almost ignored for around 25 years. In [10], see also [9], Courrège’s idea was taken up
and a systematic study of pseudo-differential operators generating Markov processes
was initiated, see also [11–13].

The fact that the composition of a Bernstein function f with a continuous negative
definite function ψ is again a continuous negative definite function gives a powerful
tool to construct new (Feller) semigroups from given ones. If q(x, ξ) is a suitable
symbol such that −q(x,D) generates a Feller semigroup, then (f ◦q)(x, ξ) = f(q(x.ξ))
is a symbol with the property that ξ → (f ◦ q)(x, ξ) is a continuous negative definite
function and therefore −(f ◦ q)(x,D) is a candidate for being a generator of a Feller
semigroup. Of course, this procedure is closely linked to subordination in the sense
of Bochner.

In a joint paper [14] with H.-G. Leopold it was suggested to study Feller semigroups
obtained by subordination of variable order, more precisely, to consider “fractional
powers of variable order” in case of the symbol (1 + |ξ|2), i.e., to study (x, ξ) →
(1 + |ξ|2)α(x). These ideas were taken up and further investigations on fractional
powers of variable order are due to A. Negoro [20], K. Kikuchi and A. Negoro [15], as
well as F. Baldus [1]. Finally, W. Hoh in [7] could combine his symbolic calculus [5]
with these ideas, compare W. Hoh [6,8].

The purpose of this note is twofold. First we suggest a method to study “vari-
able order subordination” for more general Bernstein functions than fα(s) = sα,
0 < α < 1. More precisely, we consider symbols of the form

p(x, ξ) = f(x, q(x, ξ))

where q is a suitable symbol from Hoh’s class and f : Rn × [0,∞) → R is a smooth
function such that for fixed x ∈ Rn the function s → f(x, s) is a Bernstein function.
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Our method uses some ideas from the theory of t-coercive (differential) operators as
investigated by I. S. Louhivaara and C. Simader [18,19] in order to establish the result
that −p(x,D) generates a Feller semigroup. Secondly, we enrich the class of examples
by studying the Bernstein function

s→ s
α
2 (1− e−4s

α
2 ).

Since we depend on Hoh’s symbolic calculus we recollect some basic facts of this
calculus in our first section. All our methods are standard, i.e., they are as in [11–13].

1. Hoh’s symbolic calculus

Before starting with our main considerations we need to recollect some basic results
from Hoh’s symbolic calculus, see W. Hoh [5] or [6], compare also [12].

Definition 1.1. A continuous negative definite function ψ : Rn → Rn belongs to the
class Λ if for all α ∈ N0

n it satisfies

|∂αξ (1 + ψ(ξ))| ≤ c|α|(1 + ψ(ξ))
2−ρ(|α|)

2 ,

where ρ(k) = k ∧ 2 for k ∈ N0
n.

Definition 1.2.

(i) Let m ∈ R and ψ ∈ Λ. We then call a C∞-function q : Rn×Rn −→ C a symbol
in the class Sm,ψρ (Rn) if for all α, β ∈ N0

n there are constants cα,β ≥ 0 such
that

|∂βx∂αξ q(x, ξ)| ≤ cα,β(1 + ψ(ξ))
m−ρ(|α|)

2

holds for all x ∈ Rn and ξ ∈ Rn. We call m ∈ R the order of the symbol q(x, ξ).

(ii) Let ψ ∈ Λ and suppose that for an arbitrarily often differentiable function
q : Rn × Rn −→ C the estimate

|∂αξ ∂βx q(x, ξ)| ≤ c̃α,β(1 + ψ(ξ))
m
2

holds for all α, β ∈ N0
n and x, ξ ∈ Rn. In this case we call q a symbol of the

class Sm,ψ0 (Rn).

Note that Sm,ψρ (Rn) ⊂ Sm,ψ0 (Rn). For q ∈ Sm,ψ0 (Rn), hence also for q ∈ Sm,ψρ (Rn),
we can define on S(Rn) the pseudo-differential operator q(x,D) by

q(x,D)u(x) := (2π)−
n
2

∫
Rn

eix·ξq(x, ξ)û(ξ) dξ

and we denote the classes of these operators by Ψm,ψ
ρ (Rn) and Ψm,ψ

0 (Rn), respectively.
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Theorem 1.3. Let q ∈ Sm,ψ0 (Rn) then q(x,D) maps S(Rn) continuously into itself.

Let ψ : Rn → R be a fixed continuous negative definite function. For s ∈ R and
u ∈ S(Rn) (or u ∈ S′(Rn)) we define the norm

‖u‖2
ψ,s = ‖(1 + ψ(D))

1
2u‖2

0 =
∫

Rn

(1 + ψ(s))s|û(ξ)|2 dξ.

The space Hψ,s(Rn) is defined as

Hψ,s(Rn) := {u ∈ S′(Rn); ‖u‖ψ,s <∞}.

The scale Hψ,s(Rn), s ∈ Rn, and more general spaces have been systematically in-
vestigated in [3, 4], see also [12]. In particular we know that if for some ρ1 > 0 and
c̃1 > 0 the estimate ψ(ξ) ≥ c̃1|ξ|ρ1 holds for all ξ ∈ Rn, |ξ| ≥ R, R ≥ 0, then the
space Hψ,s(Rn) is continuously embedded into C∞(Rn) provided s > n

2ρ1
.

Theorem 1.4. Let q ∈ Sm,ψ0 (Rn) and let q(x,D) be the corresponding pseudo-
differential operator. For all s ∈ R the operator q(x,D) maps the space Hψ,m+s(Rn)
continuously into the space Hψ,s(Rn), and for all u ∈ Hψ,m+s(Rn) we have the esti-
mate

‖q(x,D)u‖ψ,s ≤ c‖u‖ψ,m+s.

On S(Rn) we may define the bilinear form

B(u, v) := (q(x,D)u, v)0, q ∈ Sm,ψρ (Rn).

Theorem 1.5. Let q ∈ Sm,ψρ (Rn) be real valued and m > 0. It follows that

|B(u, v)| ≤ c‖u‖ψ,m
2
‖v‖ψ,m

2

holds for all u, v ∈ S(Rn). Hence the bilinear form B has a continuous extension
onto Hψ,m

2 (Rn). If in addition for all x ∈ Rn

q(x, ξ) ≥ δ0(1 + ψ(ξ))
m
2 for |ξ| ≥ R (1)

with some δ0 > 0 and R ≥ 0, and

lim
|ξ|→∞

ψ(ξ) = ∞ (2)

holds, then we have for all u ∈ Hψ,m
2 (Rn) the G̊arding inequality

ReB(u, u) ≥ δ0
2
‖u‖2

ψ,m
2
− λ0‖u‖2

0.

Furthermore we have
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Theorem 1.6. If we assume (1) and (2) then for s > −m we have

δ0
2
‖u‖ψ,m+s ≤ ‖q(x,D)u‖2

ψ,s + ‖u‖2
ψ,m+s− 1

2

for q ∈ Sm,ψρ (Rn) real-valued and all u ∈ Hψ,s+m(Rn).

From Theorem 1.5 and 1.6 one may deduce the following regularity result:

Theorem 1.7. Let q ∈ Sm,ψρ (Rn) be as in Theorem 1.6, m ≥ 1. Further suppose
that for f ∈ Hψ,s(Rn), s ≥ 0, there exists u ∈ Hψ,m

2 (Rn) such that

B(u, φ) = (f, φ)L2

holds for all φ ∈ Hψ,m
2 (Rn) (or φ ∈ S(Rn)). Then u belongs already to the space

Hψ,m+s(Rn).

So far we have used properties of symbols to establish mapping properties and
estimates for operators. The real power of a symbolic calculus is that it reduces
calculations for operators to calculations for symbols. The following result is most
important for us

Theorem 1.8. Let ψ ∈ Λ. For q1 ∈ Sm1,ψ
ρ (Rn) and q2 ∈ Sm2,ψ

ρ (Rn) the symbol q
of the operator q(x,D) := q1(x,D) ◦ q2(x,D) is given by

q(x, ξ) = q1(x, ξ) · q2(x, ξ) +
n∑
j=1

∂ξj
q1(x, ξ)Dxj

q2(x, ξ) + qr1(x, ξ) (3)

with qr1 ∈ S
m1+m2−2,ψ
0 (Rn).

Remark 1.9. An easy calculation yields q1 ·q2 ∈ Sm1+m2,ψ
ρ (Rn), ∂ξj

q1 ∈ Sm1−1,ψ
ρ (Rn),

and Dxjq2 ∈ Sm2,ψ
ρ (Rn). Hence the second term on the right hand side in (3) belongs

to Sm1+m2−1,ψ
ρ (Rn).

2. The formal background of our proof that −p(x, D) generates
a Feller semigroup

The proof that −p(x,D) as described in the introduction, see also below, extends to a
generator of a Feller semigroup depends on various estimates which might be different
for different operators. However, once these estimates are established we only need to
apply a piece of “soft” analysis. In this section we discuss this part of the proof, i.e.,
we will assume all crucial estimates hold. Let f : Rn × [0,∞) → R be an arbitrarily
often differentiable function such that for y ∈ Rn fixed the function s → f(y, s) is a
Bernstein function. Moreover we assume

inf
y∈Rn

f(y, s) ≥ f0(s) for all s ∈ [0,∞) (4)
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as well as
sup
y∈Rn

f(y, s) ≤ f1(s) for all s ∈ [0,∞) (5)

where f0 and f1 are Bernstein functions. For a given real-valued negative definite
symbol q(x, ξ) it follows that

p(y;x, ξ) := f(y, q(x, ξ))

give rise to a further negative definite symbol by defining

p(x, ξ) := p(x;x, ξ). (6)

In case where q(x, ξ) is comparable with a fixed continuous negative definite func-
tion ψ, i.e.,

0 < c0 ≤
q(x, ξ)
ψ(ξ)

≤ c1, c1 ≥ 1, (7)

for all x ∈ Rn and ξ ∈ Rn, we find using [11, Lemma 3.9.34.B]

p(x, ξ) ≤ f(y1, q(x, ξ)) ≤ c1f1(ψ(ξ))

and we define
ψ1(ξ) := c1f1(ψ(ξ)). (8)

Moreover it holds
p(x, ξ) ≥ f(y0, q(x, ξ)) ≥ c′0f0(ψ(ξ))

and we set
ψ0(ξ) := c′0f0(ψ(ξ)). (9)

Clearly, ψ0 and ψ1 are continuous negative definite functions. Later on we assume
that for |ξ| large

ψ(ξ) ≥ c̃1|ξ|ρ1 , c̃1 > 0 and ρ1 > 0 (10)

holds as well as
f(y0, s) ≥ c̃0s

ρ0 , c̃0 > 0 and ρ0 > 0. (11)

This implies for |ξ| large that

ψ0(ξ) ≥ c̃2|ξ|ρ0ρ1 , c̃2 > 0, (12)

holds. Since ψ0(ξ) ≤ ψ1(ξ) we have

Hψ1,1(Rn) ↪→ Hψ0,1(Rn).

We add the assumption that there exists 0 < σ < 1
2 such that

(1 + ψ1)
1
2 ∈ S1+σ,ψ0

ρ (Rn). (13)
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This will imply that
Hψ0,m(1+σ)(Rn) ↪→ Hψ1,m(Rn) (14)

holds for m ≥ 0. Further, (13) implies that if p1(x, ξ) is any symbol belonging to
Sm,ψ1
ρ (Rn) then it also belongs to Sm(1+σ),ψ0

ρ (Rn) which follows from

|∂αξ ∂βxp1(x, ξ)| ≤ cα,β(1 + ψ1(ξ))
m−ρ(|α|)

2

≤ c̃α,β(1 + ψ0(ξ))
m−ρ(|α|)(1+σ)

2

≤ c̃α,β(1 + ψ0(ξ))
(1+σ)m−ρ(|α|)

2 .

The pseudo-differential operator q(x,D) has the symbol q ∈ S2,ψ
ρ (Rn). We assume

that the pseudo-differential operator p(x,D), defined on S(Rn) by

p(x,D)u(x) = (2π)−
n
2

∫
Rn

eix·ξp(x, ξ)û(ξ) dξ

= (2π)−
n
2

∫
Rn

eix·ξf(x, q(x, ξ))û(ξ) dξ

has a symbol p ∈ S2+τ1,ψ1
ρ (Rn) for some appropriate τ1 ≥ 0. This implies to-

gether with (13) that the operator p(x,D) is continuous from Hψ0,2+τ1+2σ+τ1σ+s(Rn)
toHψ0,s(Rn), in particular it is continuous fromHψ0,1(Rn) toHψ0,−1−τ1−2σ−τ1σ(Rn).
With p(x,D) we can associate the bilinear form

B(u, v) := (p(x,D)u, v)0, u, v ∈ S(Rn).

Assuming the estimate

|B(u, v)| ≤ κ‖u‖ψ1,1‖v‖ψ1,1, κ ≥ 0,

to hold for all u, v ∈ S(Rn), we may extend B to a continuous bilinear form
on Hψ1,1(Rn). This extension is again denoted by B. For u ∈ Hψ1,1(Rn) we as-
sume in addition

B(u, u) ≥ γ‖u‖2
ψ0,1 − λ0‖u‖2

0, fλ0 ≥ 0, γ > 0. (15)

Following ideas from I. S. Louhivaara and Ch. Simader, [18,19], we consider an inter-
mediate space associated with

Bλ0(u, v) := B(u, v) + λ0(u, v)0,

namely the space Hpλ0 (Rn) defined as a completion of S(Rn) (or Hψ1,1(Rn)) with
respect to the scalar product Bλ0 . Obviously we have

Hψ1,1(Rn) ↪→ Hpλ0 (Rn) ↪→ Hψ0,1(Rn) (16)
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in the sense of continuous embeddings. Moreover, by the Lax-Milgram theorem, for
every g ∈ (Hpλ0 (Rn))∗ exists a unique element u ∈ Hpλ0 (Rn) satisfying

Bλ0(u, v) = 〈g, v〉 (17)

for all v ∈ Hpλ0 (Rn). This element we call the variational solution to the equation
p(x,D)u+ λ0u = g.

From (16) we derive

Hψ0,−1(Rn) = (Hψ0,1(Rn))∗ ↪→ (Hpλ0 (Rn))∗,

hence for g ∈ Hψ0,−1(Rn) there exists a unique u ∈ Hpλ0 (Rn) satisfying (17). We
claim now that for every g ∈ Hψ0,−1(Rn) there exists a unique u ∈ Hψ0,1(Rn) such
that

pλ0(x,D)u = p(x,D)u+ λ0u = g (18)

holds. Denote by u ∈ Hpλ0 (Rn) the unique solution to (17) for g ∈ Hψ0,−1(Rn) given
and take a sequence (uk)k∈N, uk ∈ S(Rn), converging in Hpλ0 (Rn) to u. It follows
from

(pλ0(x,D)uk, v)0 = Bλ0(uk, v), v ∈ S(Rn),
and the continuity of pλ0(x,D) from Hψ0,1(Rn) into Hψ0,(−1−2σ)(Rn) that for k →∞

〈pλ0(x,D)u, v〉 = Bλ0(u, v) = 〈g, v〉

for all v ∈ S(Rn). Thus pλ0(x,D)u = g. The uniqueness follows of course once again
from (15).

In order to get more regularity for variational solutions or equivalently for solutions
to (18) we assume that for λ ≥ λ0 the function p−1

λ (x, ξ) := 1
p(x,ξ)+λ belongs to

S−2+τ0,ψ0
ρ (Rn) for some τ0 > 0. In this case we can prove

Theorem 2.1. Let p(x, ξ) be given by (6) where we assume for q condition (7) and
for f we require (4), (5) to hold. In addition we suppose that p ∈ S2+τ1,ψ1

ρ (Rn) ⊂
S2+τ1+2σ+τ1σ,ψ0
ρ (Rn) and p−1

λ ∈ S−2+τ0,ψ0
ρ (Rn), τ1 + τ0 + 2σ + τ1σ < 1. Let u ∈

Hpλ0 (Rn) ⊂ Hψ0,1(Rn) be the solution to (18) for g ∈ Hψ0,k(Rn), k ≥ 0. Then it
follows that u ∈ Hψ0,2+k−τ0(Rn).

Proof. From Theorem 1.8 it follows that

p−1
λ0

(x,D) ◦ pλ0(x,D) = id+ r(x,D) (19)

with r ∈ S−1+τ1+τ0+2σ+τ1σ,ψ0
0 (Rn). Since pλ0(x,D)u = g we deduce from (19) that

u = p−1
λ0

(x,D) ◦ pλ0(x,D)u− r(x,D)u

= p−1
λ0

(x,D)g − r(x,D)u.

Now, p−1
λ0

(x,D)g ∈ Hψ0,k+2−τ0(Rn) and r(x,D)u ∈ Hψ0,2−τ1−τ0−2σ−τ1σ(Rn) imply-
ing that u ∈ Hψ0,t(Rn) for t = (k + 2 − τ0) ∧ (2 − τ1 − τ0 − 2σ − τ1σ) > 1. With a
finite number of iterations we arrive at u ∈ Hψ0,2+k−τ0(Rn).
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Remark 2.2. From τ1 + τ0 + 2σ + τ1σ < 1 the necessary condition σ < 1
2 follows.

Corollary 2.3. In the situation of Theorem 2.1, if 2+k− τ0 > n
2ρ0ρ1

, compare (12),
then u ∈ C∞(Rn).

Finally we can collect all preparatory material to prove

Theorem 2.4. Let f : Rn× [0,∞) → R be an arbitrarily often differentiable function
such that for y ∈ Rn fixed, the function s→ f(y, s) is a Bernstein function. Moreover
assume (4), (5), and (11). In addition let ψ : Rn → R be a continuous negative
definite function in the class Λ which satisfies in addition (10). For an elliptic symbol
q ∈ S2,ψ

ρ (Rn) satisfying (7) we define p(x, ξ) by (6). For ψ1 and ψ2 defined by (8)
and (9), respectively we assume (14). Suppose that p ∈ S2+τ1,ψ1

ρ (Rn) and 1
p+λ ∈

S−2+τ0,ψ0
ρ (Rn). If τ1 + τ0 + σ(2 + τ1) < 1, σ as in (14), then −p(x,D) extends to a

generator of a Feller semigroup on C∞(Rn).

Proof. We want to apply the Hille-Yosida-Ray theorem, compare [11, Theorem 4.5.3].
We know that p(x,D) maps Hψ0,2+k+2σ+τ1+τ1σ(Rn) into Hψ0,k(Rn). Hence if
k > n

2ρ0ρ1
the operator (−p(x,D),Hψ0,2+k+2σ+τ1+τ1σ(Rn)) is densely defined on

C∞(Rn) with range in C∞(Rn). That −p(x,D) satisfies the positive maximum prin-
ciple on Hψ0,2+k+2σ+τ1+τ1σ(Rn) follows from [12, Theorem 2.6.1]. Now, for λ ≥ λ0 we
know that for g ∈ Hψ0,k+1(Rn) we have a unique solution to pλ(x,D)u = g belonging
to Hψ0,2+k+1−τ0(Rn). But τ1 + τ0 + 2σ + τ1σ < 1 implies that Hψ0,2+k+1−τ0(Rn) ⊂
Hψ0,2+k+2σ+τ1+τ1σ(Rn), hence for g ∈ Hψ0,k+1(Rn) we always have a (unique) solu-
tion u ∈ Hψ0,2+k+2σ+τ1+τ1σ(Rn) implying the theorem.

3. Some concrete examples

The first part of this section will consider the work W. Hoh has done on pseudo-differ-
ential operators with variable order of differentiation. We will consider the case where
the Bernstein function s → f(s) is substituted by (x, s) → sr(x) with r : Rn → R
being a continuous function such that 0 ≤ r(x) ≤ 1 holds. Let q : Rn ×Rn → C be a
continuous function such that ξ → q(x, ξ) is a continuous negative definite function.
It then follows that

ξ → q(x, ξ)r(x)

is once again a continuous negative definite function implying that the pseudo-differ-
ential operator

Au(x) := −(2π)−
n
2

∫
Rn

eix·ξq(x, ξ)r(x)û(ξ) dξ

is a candidate for a generator of a Feller semigroup. We now meet Hoh’s result:

Theorem 3.1. Let ψ : Rn → R be a fixed continuous negative definite function such
that its Lévy measure has a compact support and that

ψ(ξ) ≥ c0|ξ|r, |ξ| large and r > 0,
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holds. Let q ∈ S2,ψ
ρ (Rn) be a real-valued negative definite symbol which is elliptic,

i.e., we have
q(x, ξ) ≥ δ0(1 + ψ(ξ)).

Further let m : Rn → (0, 1] be an element in C∞
b (Rn) satisfying

M − µ <
1
2

where M := supm(x) and 0 < µ := infm(x). Consider the symbol

(x, ξ) → p(x, ξ) := q(x, ξ)m(x)

which has the property that ξ → p(x, ξ) is a continuous negative definite function.
The operator

−p(x,D)u(x) := −(2π)−
n
2

∫
Rn

eix·ξp(x, ξ)û(ξ)dξ

maps C∞
0 (Rn) into C∞(Rn), is closeable in C∞(Rn) and its closure is a generator of

a Feller semigroup.

For a proof see W. Hoh [7], compare also [6].
We are now going to consider a further example. First note that the function

s →
√
s(1 − e−4

√
s) is a Bernstein function. Hence, using [11, Corollary 3.9.36], it

follows that for 0 ≤ α ≤ 1 the function s→ s
α
2 (1−e−4s

α
2 ) is also a Bernstein function.

Thus, given a negative definite symbol q ∈ S2,ψ
ρ (Rn) we may consider the new symbol

p(x, ξ) = (1 + q(x, ξ))
α(x)

2

(
1− e−4(1+q(x,ξ))

α(x)
2

)
for α(·) being an appropriate function.

Lemma 3.2. Let q ∈ S2,ψ
ρ (Rn) be a real-valued negative definite symbol which is

elliptic, i.e.,
q(x, ξ) ≥ δ0(1 + ψ(ξ)).

Also let α(·) : Rn → (0, 1] be an element in C∞
b (Rn) satisfying

m− µ <
1
2

where m = sup α(x)
2 and µ = inf α(x)

2 > 0.

Now if we let p(x, ξ) = (1 + q(x, ξ))
α(x)

2

(
1 − e−4(1+q(x,ξ))

α(x)
2

)
, then we have for

all ε > 0 the estimates

|∂αξ ∂βxp(x, ξ)| ≤ cα,β,εp(x, ξ)(1 + ψ(ξ))
−ρ(|α|)+ε

2 (20)

i.e., p ∈ S2m+ε,ψ
ρ (Rn).
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Proof. We have to estimate

∂αξ ∂
β
xp(x, ξ) = ∂αξ ∂

β
x

(
(1 + q(x, ξ))

α(x)
2

(
1− e−4(1+q(x,ξ))

α(x)
2

))
= ∂αξ ∂

β
x

(
e

α(x)
2 log(1+q(x,ξ))

(
1− e−4(1+q(x,ξ))

α(x)
2

))
.

Using [11, (2.19)] we get

∂αξ ∂
β
x

(
e

α(x)
2 log(1+q(x,ξ))

(
1− e−4(1+q(x,ξ))

α(x)
2

))
=

∑
α′≤α

∑
β′≤β

(
α

α′

)(
β

β′

)
(∂α

′

ξ ∂
β′

x e
α(x)

2 log(1+q(x,ξ)))

×
(
∂α−α

′

ξ ∂β−β
′

x

(
1− e−4(1+q(x,ξ))

α(x)
2

))
. (21)

First consider

|(∂α
′

ξ ∂
β′

x e
α(x)

2 log(1+q(x,ξ)))|.

By [11, (2.28)] with l = |α′|+ |β′| we get

|(∂α
′

ξ ∂
β′

x e
α(x)

2 log(1+q(x,ξ)))|

≤ e
α(x)

2 log(1+q(x,ξ))
∑

α′1+···+α′l
′
=α′

β′1+···+β′l
′
=β′

l′=0,1,...,l

∣∣∣∣c{α′j ,β′j} l′∏
j=1

qα′jβ′j (x, ξ)
∣∣∣∣, (22)

where

qα′jβ′j (x, ξ) = ∂α
′j

ξ ∂β
′j

x

(α(x)
2

log(1 + q(x, ξ))
)

=
∑

β̄′j≤β′j

(
β′j

β̄′j

)(
∂β

′j−β̄′j
x

α(x)
2

)
∂α

′j

ξ ∂β̄
′j

x log(1 + q(x, ξ)).

Now, using [11, (2.26)] with k = |α′j |+ |β̄′j | > 0 we get

∂α
′j

ξ ∂β̄
′j

x log(1 + q(x, ξ)) =
∑

α̃′1+···+α̃′l
′

β̃′1+···+β̃′l
′
=β̄′j

c{α̃′j ,β̃′j}

k∏
i=1

∂α̃
′i

ξ ∂β̃
′i

x (1 + q(x, ξ))
(1 + q(x, ξ))

.
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Since we assume that q(x, ξ) is an elliptic symbol in S2,ψ
ρ (Rn), we get

∣∣∂α′jξ ∂β̄
′j

x log(1 + q(x, ξ))
∣∣ ≤ cα′j ,β̄′j

∑
α̃′1+···+α̃′l

′

β̃′1+···+β̃′l
′
=β̄′j

k∏
i=1

(1 + ψ(ξ))
−ρ(|α̃′i|)

2

≤ cαj ,β̄j (1 + ψ(ξ))
−ρ(|α′j |)

2 ,

where we used the subadditivity of ρ. We always have

|log(1 + q(x, ξ))| ≤ cε(1 + ψ(ξ))
ε
2l .

It follows for α ∈ C∞
b (Rn) that

|qα′j ,β′j (x, ξ)| ≤ cα′j ,β′j ,ε

{
(1 + ψ(ξ))

−ρ(|α′j |)
2 , α′j 6= 0

(1 + ψ(ξ))
ε
2l , α′j = 0.

(23)

Putting (22) and (23) together we get∣∣(∂α′ξ ∂β′x eα(x)
2 log(1+q(x,ξ))

)∣∣ ≤ cα′,β′,εe
α(x)

2 log(1+q(x,ξ))(1 + ψ(ξ))
−ρ(|α′|)+ε

2 . (24)

For the desired result we need∣∣∣∂α−α′ξ ∂β−β
′

x

(
1− e−4(1+q(x,ξ))

α(x)
2

)∣∣∣
≤ cα′,β′,α,β,ε(1− e−4(1+q(x,ξ))

α(x)
2 )(1 + ψ(ξ))−

ρ(|α−α′|)
2 .

When α− α′ = 0 and β − β′ = 0 there is nothing to prove.
Otherwise, by [11, (2.28)] with l2 = |α− α′|+ |β − β′|, we get

∣∣∂α−α′ξ ∂β−β
′

x (1− e−4(1+q(x,ξ))
α(x)

2 )
∣∣

≤ e−4(1+q(x,ξ))
α(x)

2

∣∣∣∣∑ c{(α−α′)j ,(β−β′)j}

l′2∏
j=1

q(α−α′)j(β−β′)j (x, ξ)
∣∣∣∣, (25)

where the sum is such that

(α− α′)1 + · · ·+ (α− α′)l
′
2 = (α− α′),

(β − β′)1 + · · ·+ (β − β′)l
′
2 = (β − β′),

l′2 = 1, . . . , l2,

and where

q(α−α′)j(β−β′)j (x, ξ) = ∂
(α−α′)j

ξ ∂(β−β′)j

x (4(1 + q(x, ξ))
α(x)

2 ).
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Since q(x, ξ) is an elliptic symbol in the class S2,ψ
ρ (Rn) we have the estimate

|q(α−α′)j(β−β′)j (x, ξ)| ≤ L̃(1 + q(x, ξ)) for all (α− α′)j , (β − β′)j ∈ Nn0 ,

where L̃(λ) is a suitable polynomial ≥ 0 which might depend on (α−α′)j and (β−β′)j .
Now returning to (25) we get∣∣∣∂(α−α′)

ξ ∂(β−β′)
x

(
1− e−4(1+q(x,ξ))

α(x)
2

)∣∣∣
≤ L̃(1 + q(x, ξ))e−4(1+q(x,ξ))

α(x)
2

=
4(1 + q(x, ξ))

α(x)
2

1 + 4(1 + q(x, ξ))
α(x)

2

· 1 + 4(1 + q(x, ξ))
α(x)

2

4(1 + q(x, ξ))
α(x)

2

L̃(1 + q(x, ξ))e−4(1+q(x,ξ))
α(x)

2

× (1 + ψ(ξ))−
ρ(|α−α′|)

2 (1 + ψ(ξ))
ρ(|α−α′|)

2

≤ 4(1 + q(x, ξ))
α(x)

2

1 + 4(1 + q(x, ξ))
α(x)

2

(1 + ψ(ξ))−
ρ(|α−α′|)

2 · c0

since∣∣∣∣1 + 4(1 + q(x, ξ))
α(x)

2

4(1 + q(x, ξ))
α(x)

2

(1 + ψ(ξ))
ρ(|α−α′|)

2 L̃(1 + q(x, ξ))e−4(1+q(x,ξ))
α(x)

2

∣∣∣∣ ≤ c0.

Now using [12, (2.7)], i.e., for all a ≥ 0 and t ≥ 0 the estimate
at

1 + at
≤ 1− e−at,

we get∣∣∣∂(α−α′)
ξ ∂(β−β′)

x

(
1− e−4(1+q(x,ξ))

α(x)
2

)∣∣∣
≤ c0

(
1− e−4(1+q(x,ξ))

α(x)
2

)
(1 + ψ(ξ))−

ρ(|α−α′|)
2 . (26)

Substituting (24) and (26) into (21)∣∣∣∂αξ ∂βx(
e

α(x)
2 log(1+q(x,ξ))

(
1− e−4(1+q(x,ξ))

α(x)
2

))∣∣∣
≤

∑
α′≤α

∑
β′≤β

(
α

α′

)(
β

β′

)
cα′,β′,εe

α(x)
2 log(1+q(x,ξ))

× (1 + ψ(ξ))
−ρ(|α′|)+ε

2

(
1− e−4(1+q(x,ξ))

α(x)
2

)
(1 + ψ(ξ))−

ρ(|α−α′|)
2

≤ cα,β,εe
α(x)

2 log(1+q(x,ξ))
(
1− e−4(1+q(x,ξ))

α(x)
2

)
× (1 + ψ(ξ))

−ρ(|α|)+ε
2

≤ cα,β,εp(x, ξ)(1 + ψ(ξ))
−ρ(|α|)+ε

2 .
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Revista Matemática Complutense

2007: vol. 20, num. 2, pags. 293–307



K. P. Evans/N. Jacob Feller semigroups obtained by variable order subordination

The proof now follows from the estimate p(x, ξ) ≤ (1 + ψ(ξ))m.

Lemma 3.3. The function p−1
λ (x, ξ) = 1

p(x,ξ)+λ belongs to the class S−2µ+ε,ψ
ρ (Rn).

Proof. Using [11, (2.27)] we find with l = |α|+ |β| that

|∂αξ ∂βxp−1
λ (x, ξ)| ≤ 1

pλ(x, ξ)

∑
α1+···+αl=α
β1+···+βl=β

c{αj ,βj}

l∏
j=1

∣∣∣∣∣∂α
j

ξ ∂β
j

x pλ(x, ξ)
pλ(x, ξ)

∣∣∣∣∣.
For any ε > 0 we find using (20)∣∣∣∣∣∂α

j

ξ ∂β
j

x pλ(x, ξ)
pλ(x, ξ)

∣∣∣∣∣ ≤ c̃αj ,βj (1 + ψ(ξ))
−ρ(|αj |)+ε

2

and the ellipticity assumption of p(x, ξ) together with the subadditivity of ρ yields

|∂αξ ∂βxp−1
λ (x, ξ)| ≤ c̃α,β,ε(1 + ψ(ξ))−µ(1 + ψ(ξ))

−ρ(|α|)+ε
2

which proves the lemma.
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