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ABSTRACT

David and Journé discovered a criterion for the continuity on L2 of Calderón-
Zygmund operators defined by singular integrals. In their approach the distri-
butional kernel of the given operator is locally Hölder continuous outside the
diagonal. The aim of this paper is to prove a David-Journé theorem where this
smoothness assumption is replaced by a weaker one. Our approach strongly
relies on an algorithm developed by Beylkin, Coifman, and Rokhlin.
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1. The main theorem

Boundedness of Calderón-Zygmund operators under optimally weak regularity as-
sumptions is an intriguing problem. The ultimate goal is to replace the standard regu-
larity assumptions on the distributional kernel of the operator (see (2)) by Hörmander
condition (see (6)). For the reader’s convenience, the definition of the distributional
kernel K(x, y) of an operator T will be given now. Let T be a linear operator which is
defined on the space S(Rn) of testing functions with values in the dual space S′(Rn)
of tempered distributions. The distributional kernel K(x, y) of T : S(Rn) → S′(Rn)
is a distribution in 2n variables which is defined by the following condition: for every
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pair (f, g) of two testing functions, we have 〈T (f), g〉 =
∫∫

K(x, y)g(x)f(y) dx dy. In
the standard theory of Calderón-Zygmund operators the distributional kernel K(x, y)
of T is locally Hölder continuous in the open set Ω = { (x, y) ∈ R2n; x 6= y } and
satisfies the following properties:

|K(x, y)| ≤ C
|x−y|n for every x and every y 6= x. (1)

There exists an exponent γ belonging to (0, 1) and a constant C such
that |K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)| ≤ C|y−y′|γ

|x−y|n+γ when |x− y| ≥
2|y − y′| > 0.

(2)

These two properties are describing the restriction to Ω = { (x, y) ∈ R2n; x 6= y }
of the distributional kernel of T . This kernel is not locally integrable and the integral
Tf(x) =

∫
K(x, y)f(y) dy is a singular integral. That is why T is often referred to

as a singular integral operator. In [3] David and Journé proved a theorem which
immediately became famous under the name of the “T (1) theorem.” It says the
following. Let T be an operator whose kernel satisfies (1) and (2). Then T is bounded
on L2 if and only if the following two conditions are satisfied:

|
∫∫

K(x, y)f(x)g(y) dx dy| ≤ C|Q|(‖f‖∞ + |Q| 1n ‖f ′‖∞)(‖g‖∞ + |Q| 1n ‖g′‖∞)
for every cube Q with volume |Q| and every pair (f, g) of two continuously
differentiable functions supported by Q.

(3)

α = T (1) ∈ BMO, β = T ∗(1) ∈ BMO . (4)

Let us comment on (3) and (4). Property (3) is usually referred as the “weak
boundedness property.” It is a scale invariant version of the hypothesis that T is
defined on the space of compactly supported testing functions with values in the
space of tempered distributions. The continuity on L2 obviously implies (3). In (4)
1 stands for the constant function 1. The meaning of T (1) is not clear. It is a
tempered distribution modulo a constant function. Indeed if ψ denotes a test function
in the Schwartz class with a vanishing integral then 〈T (1), ψ〉 = 〈1, T ∗(ψ)〉 which
is well defined since (2) implies that T ∗(ψ) is O(|x|−n−γ) at infinity. The space
BMO of functions with bounded mean oscillations was defined and studied by John
and Nirenberg in [7]. This space consists of all functions f(x) ∈ L2

loc for which
a constant C exists with the following property: for every ball B ⊂ Rn we have
( 1
|B|

∫
B
|f(x)−mBf |2dx)

1
2 ≤ C where mBf = 1

|B|
∫

B
fdx. The optimal C is the norm

of f in BMO which implies that constant functions have a zero norm. Therefore a
function in BMO is only defined modulo a constant. The space BMO contains L∞ but
enjoys some important properties which are not shared by L∞. Calderón-Zygmund
operators are not bounded on L∞ but are bounded on BMO. More precisely Jack
Peetre proved that any operator T which is bounded on L2 and satisfies (2) maps L∞

into the space BMO. Furthermore T maps BMO into itself if and only if T (1) = 0.
The argument used by Peetre gives more as it will be told below. To conclude (3)
and (4) are necessary to the continuity of T on L2.
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The converse implication in the “T (1) theorem” is deeper and says that (2),
(3), and (4) imply the continuity on L2. To prove it David and Journé intro-
duced two auxiliary operators Tα and Tβ which are defined by the following con-
ditions: Tα(f) is the paraproduct between f and α ∈ BMO and similarly the adjoint
of Tβ is the paraproduct between f and β ∈ BMO. We remind the reader that
Tα(f) =

∑∞
−∞ ∆j(α)Sj−3(f) where the notations refer to the classical Littlewood-

Paley analysis. We then obviously have Tα(1) = α and T ∗α(1) = 0. Nowadays the
boundedness of these two operators on L2 is an easy exercise using the famous char-
acterization of BMO by Carleson measures (see Theorem 2.2). The continuity of T
on L2 is then reduced to the boundedness of R = T − Tα − Tβ . In other words (4)
can be replaced by

T (1) = T ∗(1) = 0. (5)

If (2), (3), and (5) are satisfied the continuity of T can be proved using a beautiful
lemma devised by Mischa Cotlar and improved by Cotlar and Stein. We do not say
more since Cotlar’s lemma does not apply to our framework and the reader is referred
to [11,12].

This decomposition of T as a sum T = Tα + Tβ + R can be used for proving
estimates on most of the functional spaces. When T satisfies (1), (2), (3), and (5) one
writes T ∈ OpEγ . For T ∈ OpEγ and 0 ≤ s < γ, P. G. Lemarié-Rieusset proved that
T is continuous on the homogeneous Besov spaces Ḃs,q

p [9]. Frazier, Jawerth, Han,
and Weiss extended this theorem to the Triebel-Lizorkin spaces Ḟ s,q

p . Indeed, they
proved in [5] that an atom is mapped into a molecule by T .

More difficult problems arise if one tries to replace (2) by a weaker condition.

Definition 1.1. One writes T ∈ OpH if (3) and (5) are satisfied together with the
following Hörmander condition:

There exists a constant C such that for every y ∈ Rn and every y′ 6= y, we
have

∫
|x−y|≥2|y−y′|{|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)|} dx ≤ C. (6)

The Hörmander condition is weaker than (2) and is needed to give a meaning to
T (1) and T ∗(1) in (5). At the present time we do not know whether any operator
T ∈ OpH is bounded on L2 or not. More generally the continuity of T ∈ OpH on
Besov or Triebel-Lizorkin spaces is raising many interesting problems. Let us begin
with two observations.

Lemma 1.2. If T ∈ OpH, then T maps the homogeneous Besov space Ḃ0,1
1 into L1.

This is proved in [10] and it does not require the boundedness of T on L2. We
obviously have Ḃ0,1

1 ⊂ H1 where H1 denotes the Hardy space. Then a remarkable
result by Jack Peetre says more.

Lemma 1.3. Any T ∈ OpH which is bounded on L2 maps the Hardy space H1

into L1.
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We say that T is a convolution operator if T (f) = f ∗ S for some generalized
function S. If T ∈ OpH is a convolution operator then T is bounded on L2 and on
the Hardy space H1. Let us sketch the proof of these results. Let ψj(x) = 2njψ(2jx)
where ψ is a function in the Schwartz class with a vanishing integral. This sequence
ψj is bounded in Ḃ0,1

1 . Therefore ‖S ∗ ψj‖1 is bounded by Lemma 1.2. Moving to
the Fourier transforms Ŝψ̂j is a bounded sequence in L∞ and this implies Ŝ ∈ L∞.
Therefore T is bounded on L2. We now treat the Hardy space case when T ∈ OpH
is a convolution operator. If Rj , 1 ≤ j ≤ n, denote the Riesz transforms then
f ∈ H1 means that f and its n Riesz transforms Rj(f) altogether belong to L1.
Moreover the Riesz transforms are bounded on H1. These properties imply that
every convolution operator T which maps H1 into L1 is mapping H1 into H1. Indeed
we have RjT = TRj which ends the proof. Arguing by duality it implies that T is
bounded on the space BMO. One would like to extend this result to every T ∈ OpH.
Theorem 1.6 below yields a partial answer. The kernel K(x, y) is assumed to be
locally integrable in Ω = { (x, y) ∈ R2n; x 6= y } and new moduli of continuity are
now defined as in [10]:

Definition 1.4. For (u, v, y) ∈ R3n, for r > 0 and for each integer R ∈ N, one
considers the integrals

I(R, r, u, v, y) =
∫

2Rr≤|x−y|<2R+1r

{|K(x+u, y+v)−K(x, y)|+ |K(y+u, x+v)−K(y, x)|} dx.

One then defines ε(K,R) = ε(R) as being the supremum of I(R, r, u, v, y) over all
r > 0, all (u, v) ∈ R2n fulfilling |u|+ |v| ≤ r, and all y ∈ Rn.

For a > 0 and u ∈ Rn, the kernels K(x, y) and K̃(x, y) = anK(ax+ u, ay+ u) are
defining two operators T and T̃ which have the same operator norm acting on Lp.
One immediately notices that ε(K̃,R) = ε(K,R).

One could also consider the double integral

J(R, r, u, v, z) = r−n

∫∫
2Rr≤|x−y|<2R+1r

|y−z|≤r

{|K(x+u, y+v)−K(x, y)|+|K(y+u, x+v)−K(y, x)|} dx dy

and define η(R) as being the supremum of J(R, r, u, v, z) over (r, u, v, z) as above.
All the theorems which will be proved in this paper will remain valid if ε(R) is being
replaced by η(R).

Let µ ≥ 0 be an exponent. A new class of Calderón-Zygmund operators is now
defined:

Definition 1.5. One writes T ∈ OpMµ if (3), (5) are satisfied together with∑
R≥1

Rµε(R) < +∞.
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We have OpMµ ⊂ OpMν if ν ≤ µ. If T ∈ OpMµ and µ ≥ 0, then T ∈ OpH.
The property T ∈ OpM0 is slightly more precise that Hörmander’s condition (6). If
T ∈ OpMµ so does its adjoint T ∗.

Theorem 2.6 in the next section says that T ∈ OpEγ implies ε(R) < C2−Rγ . But
ε(R) ≤ CR−β and β > 1 + µ imply T ∈ OpMµ. Obviously OpEγ ⊂ OpMµ.

Meyer proved the following: if T ∈ OpM1 then T and its adjoint T ∗ are bounded
on Ḃ0,1

1 . Therefore T is bounded on L2. The hypothesis T ∈ OpM1 was at that
time the weakest regularity assumption implying L2 estimates. The proof uses the
action of T on the so-called weak molecules [10]. Afterwards Han and Hofmann
proved that if T belongs to a space which is slightly different from OpM1 then for
1 ≤ p, q ≤ ∞, T is bounded on Ḃ0,q

p . Moreover for 1 < p, q < ∞, T is bounded
on Ḟ 0,q

p [8]. But these methods do not extend to the continuity on BMO = (Ḟ 0,2
1 )∗.

Deng, Yan, and Yang constructed an operator T ∈ OpH which is neither bounded
on Ḃ0,1

1 nor bounded on Ḟ 0,2
1 [5]. This operator is not a convolution operator. This

construction raises the following problem. What is the smallest exponent µ such that
every T ∈ OpMµ is bounded on BMO? The answer given by Theorem 1.6 says that
this exponent belongs to the interval [1, 3/2]. Concerning the continuity on L2 the
author proved that the minimal exponent ν with the property that every T ∈ OpMν

is bounded on L2 belongs to [0, 1/2]. This is striking since it says that for T ∈ OpH
the continuity on L2 does not imply the continuity on BMO. This sharply contrasts
with the case of a convolution operator.

We will construct an operator T belonging to OpMµ for every µ ∈ (0, 1) with the
following two properties: for 1 ≤ p < ∞, 1 ≤ q ≤ ∞, T is bounded on Ḟ 0,q

p but T is
not bounded on BMO. On the other hand, we will prove that every T ∈ OpM3/2 is
bounded on BMO. Our main result reads as follows:

Theorem 1.6.

(i) Every T ∈ OpM3/2 is bounded on BMO.

(ii) There exists an operator T with the following properties:

(a) For all µ ∈ (0, 1) we have T ∈ OpMµ.

(b) For all 1 ≤ p <∞, 1 ≤ q ≤ ∞, T is bounded on Ḟ 0,q
p and on Ḃ0,q

p .

(c) However T is not bounded on BMO.

Theorem 5.2 in section 5 slightly improves (i). The proof of (i) begins with writing
the BCR analysis of T . The BCR algorithm of Beylkin, Coifman, and Rokhlin will
be described in section 2. Next an improved analysis of T will be introduced and the
building blocks TR, R ≥ 0, provided by this analysis will be named “band operators.”
Then the norm of TR acting on BMO will be estimated. These norm estimates will
imply Theorem 1.6. The key ingredient in this estimation is the characterization
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of BMO by size estimates on wavelet coefficients. A variation of such method can
also be applied to the approximation of symbol operators, see [15].

This paper is organized as follows. The BCR algorithm will be detailed in section 2.
Using this algorithm, any operator T can be analyzed through 22n− 1 sequences Mε

j ,
ε ∈ {0, 1}2n \ {0}, j ∈ Z, of matrices. These matrices are named the “non-standard
representation” of the given operator and the corresponding entries aε

j,k,l, j ∈ Z,
k, l ∈ Zn, are the “non-standard entries” of T . The action of T on a function f ∈ L2 is
not given by a standard algorithm (see Lemma 2.5 below). Every operator T ∈ OpEγ

will then be characterized by simple size estimates on these non-standard entries. An
improved version of the BCR algorithm yields T =

∑
ε1,ε2

∑
R≥0 T

ε1,ε2
R . These build-

ing blocks T ε1,ε2
R are named “band operators” and this series is the “pseudo-annular

decomposition.” The modulus of continuity ε(R) which is described in Definition 1.1
is now playing a pivotal role. A key result relates the non-standard entries of T ε1,ε2

R

to ε(R). New norms ‖Aε1,ε2
R ‖p will be defined. Finally ‖T ε1,ε2

R ‖L2→L2 is estimated
by ‖Aε1,ε2

R ‖p. A function f ∈ BMO will be identified with its wavelet coefficients
{aε

j,k}(ε,j,k)∈Λ. A characterization of BMO using the famous “Carleson measures” is
given by weighted l2 estimates of the wavelet coefficients {aε

j,k}(ε,j,k). We are led to
computing the wavelet coefficients of T ε1,ε2

R f for each Carleson box Q. The function
f(x) is then split into three pieces f i

Q(x), i = 1, 2, 3 which are adapted to the cube Q.

The L2 norm of the main term T ε1,ε2
R f1

Q is estimated by ‖T (ε1,ε2)
R ‖L2→L2‖f1

Q‖2. The
other terms will be treated as error terms and their bounds only depend on the norm
of f in the Besov space Ḃ0,∞

∞ . In the last section some counter-examples are detailed.

2. Wavelets and generalized functions

For the reader’s convenience some classical results will be listed.

2.1. Daubechies wavelets

For any integer M , Ingrid Daubechies constructed a pair ϕ(x) = ϕM (x), ψ(x) =
ψM (x) of two functions of a real variable x with the following properties. The func-
tion ϕ(x) has qM continuous derivatives (where qM tends to infinity as M tends to
infinity), ϕ(x) is supported by [−2M , 2M ] and the functions ϕ(x − k), k ∈ Z, are
an orthonormal basis of V0. The latter space is the first rung of a ladder Vj ,j ∈ Z,
which is named a multiresolution analysis of L2. Let ψ(x) be the “mother wavelet.”
The wavelet ψ is supported by [−2M , 2M ] and the sequence ψ(x − k), k ∈ Z, is an
orthonormal basis of W0 which orthogonally complements V0 in V1. Similarly Wj

orthogonally complements Vj in Vj+1. Moreover the following property can be fixed
in the construction:

ψ(x) >
1
4

if x ∈ [−2−N , 2−N ] where N is large enough.
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We write Φ(0)(x) = ϕ(x),Φ(1)(x) = ψ(x) and Φ̃(x) = Φ(0)(2x). A sequence
{hu}u∈Z exists such that

hu = 0 if |u| > 2M+1 and
∑

u

hu = 0,

Φ(1)(x) =
∑

u

huΦ(0)(2x− u).

Let us introduce

h̃u =
u∑

v=−∞
hv.

Then we have

ψ(x) = Φ(1)(x) =
∑
u∈Z

h̃u

{
Φ̃

(
x− u

2

)
− Φ̃

(
x− u+ 1

2

)}
. (7)

We now turn to the n-dimensional wavelets. For j ∈ Z, k ∈ Zn, ε ∈ {0, 1}n,
x ∈ Rn, the scaling function and the wavelets are

Φ(ε)(x) =
n∏

i=1

Φ(εi)(xi),Φ
(ε)
j,k = 2

nj
2

n∏
i=1

Φ(εi)(2jxi − ki).

More precisely Φ(ε)
j,k(x), ε ∈ {0, 1}n \ {0}, j ∈ Z, k ∈ Zn, are the n-dimensional

wavelets. These wavelets provide us with an orthonormal basis of L2(Rn). They are
labeled by Λn = {λ = (ε, j, k); ε ∈ {0, 1}n\{0}, j ∈ Z, k ∈ Zn }. The function Φ(0)(x)
which is excluded is the n−dimensional scaling function. We denote by iε the smallest
subscript i such that εi 6= 0 and let eε ∈ {0, 1}n be defined by eε

i = 1 if i = iε and
eε
i = 0 if i 6= iε. Finally one sets

Φ̃(ε)(x) = Φ(0)(2xiε
)
−1+iε∏

i=1

Φ(εi)(xi)
n∏

i=1+iε

Φ(εi)(xi) and Φ̃(ε)
u (x) = Φ̃(ε)

(
x− u

2
eε

)
.

Summarizing our introduction to the n-dimensional wavelets we have

Theorem 2.1. Keeping the preceding notations we have

(i) {Φ(ε)
j,k}λ∈Λn is an orthonormal basis of L2(Rn).

(ii) Φ(ε)(2jx− k) =
∑

u h̃u{Φ̃(ε)
u (2jx− k)− Φ̃(ε)

u (2jx− k − 1
2e

ε)}.

Each Φ̃(ε)
u is supported by [−2M+1, 2M+1]n.

The proof of (i) can be found in [11] and (7) implies (ii).
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2.2. Wavelets and BMO

For each dyadic cube Qs,p = 2−sp + 2−s[0, 1[n, ∀ s ∈ Z, p ∈ Zn and for t > 0, the
enlarged cube is defined by

Qt,s,p = 2−sp+ 2−s[0, 1[n+2−s[−t, t]n = 2−sp+ 2−s[−t, 1 + t[n.

The space BMO is characterized by simple size conditions on wavelet coefficients [11]:

Theorem 2.2. For every function f ∈ L2
loc(Rn) the following three properties are

equivalent:

(i) f(x) =
∑

λ∈Λn
a
(ε)
j,kΦ(ε)

j,k(x) ∈ BMO.

(ii) There exists a constant C such that for every dyadic cube Qs,p and every
ε ∈ {0, 1}n \ {0} one has ∑

Qj,k⊂Qs,p

|a(ε)
j,k|

2 ≤ C|Qs,p|.

(iii) For every t ≥ 0, there exists a constant C = C(t) such that∑
Qj,k⊂Qt,s,p

|a(ε)
j,k|

2 ≤ C|Qs,p|.

A proof can be found in [11].

The following lemma will be used in sections 5 and 6 to estimate norms in the
Hardy space H1. This Hardy space contains the homogeneous Besov space Ḃ0,1

1 and
the norm in the former space does not exceed the norm in the latter. We have

Lemma 2.3. If φ(x) is continuously differentiable and if the diameter of the support
of φ does not exceed C there exists a constant C ′ > 0 such that if R ≥ 1 and if∑

|k|≤R ak = 0, we have∥∥∥ ∑
|k|≤R

akφ(x+ k)
∥∥∥

Ḃ0,1
1

≤ C ′ logR
∑
|k|≤R

|ak|. (8)

Every f ∈ H1 or in Ḃ0,1
1 has a vanishing integral. Therefore if

∑
|k|≤R ak 6= 0 the

function
∑

|k|≤R akφ(x + k) cannot belong to Ḃ0,1
1 . Simple examples show that the

logarithmic factor in (8) is optimal. Lemma 2.3 says that, up to a logarithmic factor,
the norm in H1 of functions f ∈ V0 with a vanishing integral and a (large) compact
support does not exceed the L1 norm. Let us provide the reader with a proof of this
simple estimate. Since the integral of f vanishes we have f = ∂1g1 + · · ·+∂ngn where
the L1 norms of gp ,1 ≤ p ≤ n, are bounded by CR‖f‖1. This is well known when R =
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1 and a simple rescaling gives the general case. For computing the Besov norm we
consider a Littlewood-Paley analysis where Sj(f) = f ∗ φj and φj(x) = 2njφ(2jx).
The function φ is smooth, radial, compactly supported and the integral of φ is 1. We
consider ∆j = Sj+1 − Sj and the homogeneous Besov space Ḃ0,1

1 is then defined by
‖∆j(f)‖1 ∈ l1(Z). This l1 norm is the Besov norm of f . The properties of f which
will be used as j tends to +∞ are the trivial estimates of the L1 norms of f and of
its gradient. When j ≥ 0 the smoothness of f yields ‖∆j(f)‖1 ≤ C2−j‖∇f‖1. These
estimates sum up to C‖∇f‖1 = O(‖f‖1). Then we define j0 = logR and we estimate
‖∆j(f)‖1 by C‖f‖1 when −j0 ≤ j < 0. This is the trivial estimate. These trivial
estimates sum up to C logR‖f‖1. When j < −j0 we use the fact that f is a sum of
derivatives of functions in L1 and we obtain ‖∆j(f)‖1 ≤ 2jR‖f‖1. These estimates
sum up to C2−j0R‖f‖1 = O(‖f‖1) and Lemma 2.3 is proved.

2.3. The Beylkin-Coifman-Rokhlin algorithm

The non-standard representation of operators and the Beylkin-Coifman-Rokhlin al-
gorithm will be defined right now. It is adapted to the analysis of Calderón-Zygmund
operators and of some pseudo-differential operators. This analysis was implicit in [9]
and advocated by G. Beylkin, R. Coifman, and V. Rokhlin. See [4, 5, 11, 13]. Let
us begin with an abstract setting where we are given a Hilbert space H and an in-
creasing sequence Vj , j ∈ Z, of approximation spaces. Each Vj is closed, the union
of the approximation spaces

⋃
Vj is dense in H and their intersection

⋂
Vj = 0. Let

Pj : H 7→ Vj be the orthogonal projector and Qj = Pj+1 − Pj . If we are given a
bounded operator T : H 7→ H, we have

T = lim
j→+∞

PjTPj =
∑

j

(PjTQj +QjTPj +QjTQj) =
∑

j

Tj .

It often occurs that each of the three series
∑

j PjTQj ,
∑

j QjTPj , and
∑

j QjTQj

converges. In the proof of the David-Journé theorem Cotlar almost orthogonality
lemma is applied to this series

∑
j Tj .

Definition 2.4. The non-standard representation of an operator T is defined by the
expansion T =

∑
j∈Z(PjTQj +QjTPj +QjTQj).

From now on we are focusing on a specific example where the Vj are a given by a
multiresolution analysis. Then the non-standard representation of T paves the road
to the BCR algorithm (Beylkin-Coifman-Rokhlin algorithm). The aim of the BCR
algorithm is to decouple the action of T on the dyadic frequency bands provided by the
orthogonal complementsWj of Vj in Vj+1. This decoupling can be boosted by using an
orthogonal wavelet basis. Indeed the building blocks provided by the BCR algorithm
can be further written as local operators. We then obtain T =

∑
ε

∑
j T

ε
j where

the pieces T ε
j , ε = (ε1, ε2), are defined by explicit matrices Mε

j , ε ∈ {0, 1}2n \ {0},
j ∈ Z. Here and in what follows 0 denotes either the element (0, . . . , 0) of {0, 1}2n or
of {0, 1}n.
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Let us begin with defining two collections of labels or indices:

Λ = Λ2n = {λ = (ε1, ε2, j, k, l); (ε1, ε2) ∈ {0, 1}2n \ {0}, j ∈ Z, k ∈ Zn, l ∈ Zn }

and similarly

Λn = {λ = (ε1, j, k); ε1 ∈ {0, 1}n \ {0}, j ∈ Z, k ∈ Zn }.

Let T be an operator satisfying the version of (3) where functions in the Schwartz class
are now replaced by compactly supported functions with qM continuous derivatives.
We introduce the entries

a(λ) = a
(ε1,ε2)
j,k,l = 〈Φ(ε1)

j,k , TΦ(ε2)
j,l 〉, λ = (ε1, ε2, j, k, l) ∈ Λ.

These entries {a(ε1,ε2)
j,k,l }λ∈Λ provide us with a full information on T . Indeed the dis-

tributional kernel K(x, y) of T is given by the following series expansion:

K(x, y) =
∑
λ∈Λ

a
(ε1,ε2)
j,k,l Φ(ε1)

j,k (x)Φ(ε2)
j,l (y). (9)

One should notice that the right-hand side of (9) is simply the wavelet expansion of
K(x, y) viewed as a function of 2n variables. This distributional kernel K(x, y) is now
written as a sum K =

∑∞
−∞Kj where Kj(x, y) =

∑
ε1,ε2,k,l a

(ε1,ε2)
j,k,l Φ(ε1)

j,k (x)Φ(ε2)
j,l (y).

Therefore the support of Kj(x, y) is contained in the union over k and l of the balls
defined by |x − k2−j | ≤ 2M−j , |y − l2−j | ≤ 2M−j . This support is too large and
will be partitioned in the next section. If K̃j(x, y) = 2−njKj(2−jx, 2−jy) then the
estimates on K̃j will be uniform in j. Meyer says that (9) is the “non-standard
analysis” of T and that the coefficients {a(λ)}λ∈Λ = {a(ε1,ε2)

j,k,l }λ∈Λ are the coefficients
of the non-standard representation of T .

The following result will be used to compute T (f) when T is given by its non-
standard coefficients:

Lemma 2.5. With the above notations, if the wavelet expansion of f is given by
f(x) =

∑
(ε,j,k)∈Λn

αε(j, k)Φε
j,k(x) then one has T (f) =

∑
j,k

∑
ε∈{0,1}n bε(j, k)Φε

j,k.
This is not a wavelet expansion. The coefficients bε(j, k) are given by bε(j, k) =
βε(j, k) or γε(j, k) where

βε(j, k) =
∑

l,η 6=0

a
(ε,η)
j,k,l α

η(j, l)

and
γε(j, k) =

∑
{j′<j, l,l′,η 6=0}

a
(ε,0)
j,k,l ω

η(j, l, j′, l′)αη(j′, l′)

with ωη(j, l, j′, l′) = 〈Φ0
j,l,Φ

η
j′,l′〉.
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The proof of this lemma is routine. The expansion of the kernel is used. Indeed

T (f)(x) =
∫
K(x, y)f(y) dy =

∑
λ∈Λ

a
(ε1,ε2)
j,k,l Φ(ε1)

j,k (x)
∫

Φ(ε2)
j,l (y)f(y) dy.

It remains to replace f(y) by its wavelet expansion. Then two cases are occurring.
The first one is defined by ε2 6= 0. In that case α(j, l) =

∫
Φ(ε2)

j,l (y)f(y) dy is a

wavelet coefficient of f . The corresponding sum is
∑

λ∈Λ a
(ε1,ε2)
j,k,l αε2(j, l)Φ(ε2)

j,l (x). The
coefficients γε(j, k) appear when ε2 = 0. Then a scaling function Φ0

j,l is integrated
against all the wavelets which are present in the wavelet expansion of f . We know
that any wavelet Φ(ε)

j′,l′ is orthogonal to any scaling function Φ0
j,l such that j ≤ j′. This

explains why we have j′ < j in the second series of terms occurring in Lemma 2.5.
Lemma 2.5 says that the non-standard decomposition of an operator yields two

types of components. In the first type the dyadic frequency channels are fully decou-
pled and the coefficients β(j, k) are given by a series where j is the same everywhere.
Indeed we are staying inside Wj . In the second type couplings between distinct fre-
quency channels are occurring and the summation runs over j′ < j.

Lemma 2.5 provides an expansion of T (f) where two types of terms appear. The
first type which is defined by ε 6= 0 yields a wavelet expansion. The second component
is defined by ε = 0. Then the coefficients γε(j, k) do not appear. This component
R(x) =

∑
j,k,l

∑
η 6=0 a

(0,η)
j,k,l α

η(j, l)Φ0
j,k(x) is more involved since scaling functions do

not have a vanishing integral. If for every j, l we have
∑

k a
(0,η)
j,k,l = 0 then

∫
R(x) dx = 0

and this remark will play a key role in this paper.

The following theorem will not be used as it stands in this paper since it relies
on a stronger hypothesis. It paves the road between non-standard analysis and the
Calderón-Zygmund theory.

Theorem 2.6. (i) If (3) holds, then there exists a unique sequence {a(ε1,ε2)
j,k,l }λ∈Λ

such that the distributional kernel K(x, y) of T is given by the series (9) which
converges in the distributional sense.

(ii) If T ∈ OpEγ then there exists a constant C such that (1+|k−l|)n+γ |a(ε1,ε2)
j,k,l | ≤ C.

The cancellation provided by (5) implies
∑

m a
(0,ε)
j,m,k = 0,

∑
m a

(ε,0)
j,k,m = 0, for ev-

ery ε 6= 0, every j, and every k.

The proof can be found in [11]. One should observe that the estimates on the
entries a(ε1,ε2)

j,k,l are uniform in j. In other words these estimates are scale-invariant.
This scale invariance will be our guide line in the following section.
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3. Pseudo-annular decompositions of operators

3.1. Pseudo-annular decompositions

Our goal is to prove L2 or BMO estimates for singular integral operators with rough
kernels. Using the David-Journé strategy it suffices to focus on the case where
T (1) = T ∗(1) = 0. When the distributional kernel K(x, y) is not smooth enough
Cotlar almost orthogonality lemma does not apply to the series T =

∑
j Tj given

by the BCR algorithm. Then an improved analysis is needed and new building
blocks which will be used. Here is a sketchy presentation of these new building
blocks. Keeping the notations of the preceding section we have T =

∑
j Tj . Let

Kj be the distributional kernel of Tj and let K̃j(x, y) = 2−njKj(2−jx, 2−jy). As
was said before, the estimates on K̃j(x, y) are uniform in j. These estimates show
that the kernels K̃j(x, y) have a poor localization in the space domain. That is why
each K̃j(x, y) will be further split into a series of terms K̃j(x, y)χR(x, y) where χR

is the indicator function of 2R−1 ≤ |x − y| ≤ 2R, R ∈ N. By an obvious rescal-
ing Kj(x, y) is then written as an expansion

∑
R≥1Kj(x, y)χR(2jx, 2jy). This bru-

tal truncation destroys the cancellations given by T (1) = T ∗(1) = 0 which reads∫
Kj(x, y) dy =

∫
Kj(x, y) dx = 0. Some corrections are needed in our construc-

tion. We now end this line of thought and define the “band operators” by another
approach where the construction is carried on the coefficients of the wavelet expan-
sions of the kernels. We begin with the definition of some partial sums TR

j inside
the expansion of Tj . Then the “band operators” TR are simply TR =

∑
j T

R
j . One

should instead write T (ε1,ε2)
R instead of TR but this is only technical. The coefficients

a
(ε1,ε2,R)
j,k,l arising in the expansion of TR

j = T
R,(ε1,ε2)
j are given by three rules. Before

stating these rules let us explain their raison d’être. We aim at defining a
(ε1,ε2,R)
j,k,l

by a plain truncation where a(ε1,ε2,R)
j,k,l = a

(ε1,ε2)
j,k,l if 2R−1 ≤ |k − l| < 2R and 0 if not.

But this recipe destroys the cancellations given by T (1) = T ∗(1) = 0. That is why
an extra diagonal term is needed to restore the broken cancellations. Let us begin
with the example of the Hilbert transform H. Then the non-standard entries can be
ranged in three sequences. The first sequence is a(j, k, l) = 〈H(φj,k), ψj,l〉 = β(k− l).
The second sequence is b(j, k, l) = 〈H(ψj,k), φj,l〉 = γ(k − l) and the third one is
c(j, k, l) = 〈H(ψj,k), ψj,l〉 = ω(k − l). The three sequences β, γ, and ω are rapidly
decreasing at infinity. Then the Hilbert transform H can be written as a sum of three
series H(i)

R , i = 1, 2 or 3, and for the sake of simplicity we will focus on the first series.
The distributional kernel of H(1)

R is
∑

j,k,l γR(k − l)ψj,k(x)φj,l(y) where γR(k − l) is
the product between γ(k− l) and the indicator function of 2R−1 ≤ |k− l| < 2R. This
brutal truncation produces unbounded operators TR. Indeed an obvious computation
yields TR(1) = cR

∑
sin(2jx) where cR =

∑
l γR(l) 6= 0. This function does not be-

long to BMO. Therefore HR is not bounded on L2. It is ridiculous to write a bounded
operator as a series of unbounded pieces. This crucial remark paves the road to the
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construction which follows.

Definition 3.1. The distributional kernel of T (ε1,ε2)
R is

K
(ε1,ε2)
R (x, y) =

∑
j,k,l

a
(ε1,ε2,R)
j,k,l Φ(ε1)

j,k (x)Φ(ε2)
j,l (y)

and the coefficients a(ε1,ε2,R)
j,k,l are defined by the following rules where we first assume

R ≥ 1. (The case R = 0 will be considered afterwards.)
The non-diagonal entries are defined by a

(ε1,ε2,R)
j,k,l = 0 for 1 ≤ |k − l| < 2R−1 or

|k − l| ≥ 2R and a
(ε1,ε2,R)
j,k,l = a

(ε1,ε2)
j,k,l for 2R−1 ≤ |k − l| < 2R. Then the diagonal

entries are defined as follows:

(i) If ε1 6= 0 and ε2 6= 0, then a(ε1,ε2,R)
j,k,k = 0.

(ii) If ε1 = 0, then a(ε1,ε2,R)
j,k,k = −

∑
m6=k a

(ε1,ε2,R)
j,m,k .

(iii) If ε2 = 0, then a(ε1,ε2,R)
j,k,k = −

∑
m6=k a

(ε1,ε2,R)
j,k,m .

One should observe that no diagonal corrections are needed in (i). Indeed the
corresponding piece of the kernel is

∑
j,k,l a

(ε1, ε2,R)
j,k,l Φ(ε1)

j,k (x)Φ(ε2)
j,l (y) and the cancel-

lations are provided by the wavelets Φ(ε1)
j,k and Φ(ε2)

j,k . Let us insist once more on the
fact that the diagonal terms in (ii) and (iii) are needed to ensure:∑

k

a
(0,ε2,R)
j,k,l =

∑
l

a
(ε1,0,R)
j,k,l = 0 (10)

and
T

(ε1,ε2)
R (1) = (T (ε1,ε2

R )∗(1) = 0.

A third observation is playing an important role. We have∑
R≥1

a
(0,ε2,R)
j,k,k = −

∑
m6=k

a
(0,ε2,R)
j,m,k = a

(0,ε2,R)
j,k,k .

It implies that the diagonal terms which have been excluded in the truncation show
up in the sum over R ≥ 1.

These rules are completed by a trivial remark concerning the case R = 0. If R = 0,
if ε1 6= 0 and ε2 6= 0 then we set:

(i) If k 6= l, a(ε1,ε2,0)
j,k,l = 0. If k = l, a(ε1,ε2,0)

j,k,k = a
(ε1,ε2)
j,k,k .

(ii) If ε1 = 0 or ε2 = 0, then a(ε1,ε2,0)
j,k,l = 0. We then obtain

T =
∑

{R≥0, (ε1,ε2)∈{0,1}2n\{0}}

T
(ε1,ε2)
R .

535
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For any fixed R the continuity on L2 of each TR is trivial since TR is a Calderón-
Zygmund operators and the standard T (1) theorem can be used. The weak bound-
edness property (3) suffices to ensure the kernel estimates if do not care about the
dependence in R.

3.2. Modulus of continuity

We now introduce a new estimate A(R) which will be defined by (12) and will be
related to the modulus of continuity ε(R) defined by Definition 1.1. The operator
norms of TR will be estimated by A(R). Finally the spaces OpB̃µ and OpBµ will be
compared to the space OpMµ which is studied by Meyer in [10]. We first introduce
new norms on sequence spaces. For 1 ≤ p ≤ ∞, R ≥ 0, (ε1, ε2) ∈ {0, 1}2n \ {0}, one
defines ‖A(ε1,ε2)

R ‖p by the following:
When R = 1, 2, . . ., one sets

A
(ε1,ε2,R)
j,k =

∑
m:2R−1≤|k−m|<2R

{
|a(ε1,ε2)

j,k,m |+ |a(ε1,ε2)
j,m,k |

}
,

A
(ε1,ε2,R)
j = sup

k
A

(ε1,ε2,R)
j,k ,

A(R) = sup
(ε1,ε2,j)

A
(ε1,ε2,R)
j , (11)

‖A(ε1,ε2)
R ‖p = sup

j

{R−1∑
s=0

(A(ε1,ε2,R)
j+s )p

} 1
p

. (12)

The norm ‖A(ε1,ε2)
R ‖p is decreasing as a function of the exponent p and we have

A(R) = supε1,ε2
‖A(ε1,ε2)

R ‖∞.
Using these norms on sequences, we define some new operator norms

‖T‖B̃µ
=

(1)∑
R

(1 +R)µ− 1
2 ‖A(ε1,ε2)

R ‖2 +
(2)∑
R

‖A(ε1,ε2)
R ‖∞, (13)

‖T‖Bµ =
(3)∑
R

(1 +R)µ− 1
2 ‖A(ε1,0)

R ‖2

+
(4)∑
R

(1 +R)µ− 3
2 ‖A(0,ε2)

R ‖1 +
(5)∑
R

‖A(ε1,ε2)
R ‖2, (14)

where the first sum runs over R = 0, 1, 2, . . . and (ε1, ε2) ∈ {0, 1}2n \ {0}, |ε1||ε2| = 0,
the second one runs over R = 0, 1, 2, . . . and (ε1, ε2) ∈ {0, 1}2n, ε1 6= 0, ε2 6= 0,
the third one runs over R = 1, 2, . . . and ε1 ∈ {0, 1}n \ {0}, the fourth one runs
over R = 1, 2, . . . and ε2 ∈ {0, 1}n \ {0}, and the last one runs over R = 0, 1, 2, . . .,
(ε1, ε2) ∈ {0, 1}2n, ε1 6= 0, ε2 6= 0.

Revista Matemática Complutense
2007: vol. 20, num. 2, pags. 523–554 536



Qixiang Yang Continuity of Calderón-Zygmund operators on the space BMO

Finally some new operator spaces are defined by

Definition 3.2. One writes T ∈ OpB̃µ if ‖T‖B̃µ
is finite when it is defined by (13).

One writes T ∈ OpBµ if ‖T‖Bµ
is finite when it is defined by (14) and if A(ε1,ε2)

0 = 0
when ε1 = 0 or ε2 = 0.

We then have

Theorem 3.3. Let A(R) be defined by (11) and ε(R) be defined by Definition 1.1.
Then we have:

(i) A(R) ≤ C[ε(R− 1) + ε(R) + ε(R+ 1)], R ≥M + 5.

(ii) Moreover for µ ≥ 1/2 one has OpMµ ⊂ OpB̃µ and OpMµ ⊂ OpBµ.

(iii) Every operator T ∈ OpB3/2 is bounded on BMO.

The values R < M+5 can be ignored since we already know that the corresponding
pieces TR are bounded on L2.

The third assertion will be proved in section 5. This is a slight improvement on
Theorem 1.6.

The proof of (i) in Theorem 3.3 begins with a few simple remarks.

(i) If ε1 6= 0, Φ(ε1) is a wavelet, then (ii) in Theorem 2.1 implies

I =
∑

k:2R−1≤|k−l|<2R

|a(ε1,ε2)
j,k,l |

=
∑

k:2R−1≤|k−l|<2R

2jn

∣∣∣∣∫∫
Φ(ε1)(2jx− k)K(x, y)Φ(ε2)(2jy − l) dx dy

∣∣∣∣
≤

∑
k:2R−1≤|k−l|<2R

2jn
∑

u

|h̃u|
∣∣∣∣∫∫ {

Φ̃(ε1)
u (2jx− k)− Φ̃(ε1)

u

(
2jx− k − 1

2
eε1

)}
K(x, y)

× Φ(ε2)(2jy − l) dx dy
∣∣∣∣

=
∑

k:2R−1≤|k−l|<2R

2jn
∑

u

|h̃u|
∣∣∣∣∫∫

Φ̃(ε1)
u (2jx− k){K(x, y)−K(x+ 2−j−1eε1 , y)}

× Φ(ε2)(2jy − l) dx dy
∣∣∣∣.

Since R ≥M +5 and |k− l| ≥ 2R−1, the supports of Φ̃(ε1)(2jx−k) and Φ(ε2)(2jx− l)
are disjoint. Therefore the double integral is performed away form the diagonal and
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the smoothness of the kernel is playing a role. We have

I ≤ C2jn
∑

u

|h̃u|
∫∫

|y−2−j l|<2−j+M

2−j(2R−1−2M+2)<|x−y|<2−j(2R+2M+2)

|K(x, y)−K(x+ 2−j−1eε1 , y)| dx dy.

Using once more R ≥M + 5, we have

I ≤ C sup
y∈Rn

∫
2R−2−j<|x−y|<2R+1−j

|K(x, y)−K(x+ 2−j−1eε1 , y)| dx.

For every frozen y, this integral will be split into three parts where the integration
is performed on 2R−2−j < |x − y| ≤ 2R−1−j , 2R−1−j < |x − y| ≤ 2R−j , and 2R−j <
|x − y| < 2R+1−j . We then obtain I ≤ C(ε(R − 1) + ε(R) + ε(R + 1)). In fact we
proved a better estimate where ε(R) is replaced by η(R). If ε1 = 0, then ε2 6= 0
and the same arguments are used to obtain A(R) ≤ C[ε(R − 1) + ε(R) + ε(R + 1)],
R ≥M + 5.

(ii) Let us check the inclusion OpMµ ⊂ OpBµ, µ ≥ 0.

If R ≥ 1, we then have ‖A(ε1,ε2)
R ‖2 ≤ CR

1
2A(R), ‖A(ε1,ε2)

R ‖1 ≤ CRA(R). It implies
the following:∑

R≥M+5
ε1∈{0,1}n\{0}

(1 +R)µ− 1
2 ‖A(ε1,0)

R ‖2 +
∑

R≥M+5
ε2∈{0,1}n\{0}

(1 +R)µ− 3
2 ‖A(0,ε2)

R ‖1

+
∑

R≥M+5
(ε1,ε2)∈{0,1}2n

|ε1||ε2|6=0

‖A(ε1,ε2)
R ‖2 ≤ C

∑
R≥M+5

RµA(R) ≤ C
∑

R≥M+4

Rµε(R). (a)

We then use (3). If R = 0, |ε1||ε2| 6= 0, then ‖A(ε1,ε2)
0 ‖p ≤ C. Next if 1 ≤ R ≤M + 4,

then we have A(ε1,ε2)
R ≤ C, a property which will be named (b).

Properties (a), (b) together with T ∈ OpMµ imply T ∈ OpBµ.

(iii) Similar arguments yield T ∈ OpB̃µ.

4. L2 estimates for T
(ε1,ε2)
R and ‖A

(ε1,ε2)
R ‖p

As announced in the title, our goal is to estimate the operator norm of T (ε1,ε2)
R acting

on L2.
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Theorem 4.1. For every R ∈ N, we have:

(i) If neither ε1 nor ε2 is 0, then ‖T (ε1,ε2)
R ‖L2→L2 ≤ C‖A(ε1,ε2)

R ‖∞.

(ii) If either ε1 or ε2 is 0, then ‖T (ε1,ε2)
R ‖L2→L2 ≤ C‖A(ε1,ε2)

R ‖2.

(iii) Every T ∈ OpM1/2 is bounded on L2.

One observes that the first estimate is obvious since in (i) the operator is fully
decoupled in frequency channels. In other words, T (ε1,ε2)

R maps Wj into itself. More-
over (iii) immediately follows from (i) and (ii). Indeed we have ‖A(ε1,ε2)

R ‖∞ ≤ A(R)
and ‖A(ε1,ε2)

R ‖2 ≤ R1/2A(R). Therefore we will focus on (ii). The author was using
Haar wavelets to prove similar estimates in [4]. One should observe that the definition
of A(R) depends on the wavelet basis. Therefore the proof given in the Haar case
does not yield the result for general wavelets. Here smooth wavelets are being used
to define ‖A(ε1,ε2)

R ‖p. These smooth wavelets are needed in the characterization of
BMO. That is why the proof which is given here differs from the one in [4].

Studying the adjoint operator when needed, one can limit our attention to ε1 = 0,
ε2 6= 0. We will prove the following estimate: ‖T (0,ε2)

R f(x)‖2 ≤ C‖A(0,ε)
R ‖2‖f(x)‖2.

Let f(x) =
∑

λ∈Λn
α

(ε)
j,kΦ(ε)

j,k(x) ∈ L2. Let us consider the partial sum

f
(ε)
j (x) =

∑
k∈Zn

α
(ε)
j,kΦ(ε)

j,k(x).

We then have T
(0,ε2)
R fε

j (x) = 0 if ε2 6= ε. We now assume ε = ε2 and write

T
(0,ε)
R fε

j (x) = gε
j (x). Then T

(0,ε)
R f(x) =

∑
j,ε g

ε
j (x) and an almost-orthogonality

lemma will be used to estimate the L2 norm of the sum of this series.
Since ε 6= 0, we are in the first case of Lemma 2.5 and the non-standard represen-

tation yields gε
j (x) = 2nj/2g̃j

ε(2jx) where

g̃ε
j (x) =

∑
k,l∈Zn

a
(0,ε,R)
j,l,k α

(ε)
jk Φ(0)(x− l). (16)

It is easily seen that
‖gε

j (x)‖2 ≤ CA
(0,ε,R)
j ‖fε

j ‖2. (17)

Indeed, for each frozen j, the expansion given by the right-hand side of (16) is or-
thogonal.

Next the inner products γ = 〈gε
j , g

ε
j′〉 need to be estimated. Without losing gen-

erality one can assume j ≥ j′. We have

γ = 〈gε
j , g

ε
j′〉 = 2

j′−j
2 n〈g̃ε

j (x), g̃
ε
j′(2

j′−jx)〉.
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It implies

γ = 2
j′−j

2 n

〈 ∑
k,l∈Zn

a
(0,ε,R)
j,l,k a

(ε)
j,kΦ(0)(x− l), g̃ε

j′(2
j′−jx)

〉
.

The property
∑

l a
0,ε,R
j,l,k = 0 will now play a key role. Using this cancellation, one

writes

g̃ε
j (x) =

∑
2R−1≤|m|<2R

∑
k

a
(0,ε,R)
j,k+m,kα

(ε)
j,k(Φ(0)(x− k −m)− Φ(0)(x− k)),

which implies

2
j−j′

2 nγ =
〈 ∑

2R−1≤|m|<2R

∑
k

a
(0,ε,R)
j,k+m,kα

(ε)
j,k(Φ(0)(x− k −m)− Φ(0)(x− k)),

g̃ε
j′(2

j′−jx)
〉
.

An obvious change of variables gives

2
j−j′

2 nγ =
∑

2R−1≤|m|<2R

〈∑
k

a
(0,ε,R)
j,k+m,kα

(ε)
j,kΦ(0)(x− k),

g̃ε
j′(2

j′−jx+ 2j′−jm)− g̃ε
j′(2

j′−jx)
〉
.

We then obtain

2
j−j′

2 nγ =
∑

2R−1≤|m|<2R

〈∑
k

a
(0,ε,R)
j,k+m,kα

(ε)
j,kΦ(0)(x− k),

∑
k′

∑
l′

a
(0,ε,R)
j′,l′,k′ α

(ε)
j′,k′Φ

(0)(2j′−jx+ 2j′−jm− l′)

−
∑
k′

∑
l′

a
(0,ε,R)
j′,l′,k′ α

(ε)
j′,k′Φ

(0)(2j′−jx− l′)
〉
.

Finally

2
j−j′

2 nγ =
∑

2R−1≤|m|<2R

〈∑
k

a
(0,ε,R)
j,k+m,kα

(ε)
j,kΦ(0)(x− k),

∑
k′

∑
l′

a
(0,ε,R)
j′,l′,k′ α

(ε)
j′,k′(Φ

(0)(2j′−jx+ 2j′−jm− l′)− Φ(0)(2j′−jx− l′)
〉
.
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The fundamental theorem of calculus yields

2
j−j′

2 n|〈gε
j , g

ε
j′〉|

≤
∑

2R−1≤|m|<2R

∑
k

∣∣a(0,ε,R)
j,k+m,k

∣∣∣∣α(ε)
j,k

∣∣ ∫
|Φ(0)(x− k)|

∑
k′

∑
l′

∣∣a(0,ε,R)
j′,l′,k′

∣∣∣∣α(ε)
j′,k′

∣∣
× |2j′−jm||∇Φ(0)(2j′−jx− l′ + 2j′−jz)| dx,

where z = z(x, j, j′, l,m), 0 ≤ |z| ≤ |m|, ∇Φ(0)(x) is the gradient of Φ(0)(x). On the
other hand we obviously have

∑
l′ |∇Φ(0)(x− l′ + 2j′−jz)| ≤ C uniformly in x.

By a repeated use of Cauchy-Schwarz inequality we obtain∑
l′

∑
k′

∣∣a(0,ε,R)
j′,l′,k′

∣∣∣∣a(ε)
j′,k′

∣∣|∇Φ(0)(2j′−jx− l′ + 2j′−jz)|

≤
∑
l′

(∑
k′

∣∣a(0,ε,R)
j′,l′,k′

∣∣) 1
2
(∑

k′

∣∣a(0,ε,R)
j′,l′,k′

∣∣∣∣a(ε)
j′,k′

∣∣2) 1
2 |∇Φ(0)(2j′−jx− l′ + 2j′−j4m)|

≤ CA
(0,ε,R)
j′

(∑
k′

∣∣a(ε)
j′,k′

∣∣2) 1
2
.

We finally denote by c0 the integral
∫
|Φ(0)(x− k)|dx. Since |m| ≤ 2R, we have

|〈gε
j , g

ε
j′〉| ≤ Cc02

j′−j
2 n

∑
2R−1≤|m|<2R

∑
k

∣∣a(0,ε,R)
j,k+m,k

∣∣∣∣a(ε)
j,k

∣∣|2j′−jm|A(0,ε,R)
j′

(∑
k′

∣∣a(ε)
j′,k′

∣∣2) 1
2

≤ C2j′−j+RA
(0,ε,R)
j′

(∑
k′

|a(ε)
j′,k′ |

2
) 1

2
2

j′−j
2 n

∑
2R−1≤|m|<2R

∑
k

|a(0,ε,R)
j,k+m,k||a

(ε)
j,k|.

This discussion can be rewritten as an almost-orthogonality estimate given by the
following lemma:

Lemma 4.2. Keeping the same notations as above and assuming j ≥ j′+R, we have

|〈gε
j , g

ε
j′〉| ≤ C2(j′−j+R)( n

2 +1)A
(0,ε,R)
j′ A

(0,ε,R)
j ‖fε

j′‖2‖fε
j ‖2. (18)

Finally (17) and (18) imply Theorem 4.1. Indeed,

‖T (0,ε)
R f‖2

2 = ‖T (0,ε)
R fε‖2

2 =
〈∑

j

gε
j (x),

∑
j′

gε
j′(x)

〉
≤ 2

∑ ∑
0≤j−j′≤R

〈|gε
j (x)|, |gε

j′(x)|〉+ 2
∑ ∑

j−j′≥R+1

|〈gε
j (x), g

ε
j′(x)〉|
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≤ 2
∑ ∑

0≤j−j′≤R

A
(0,ε,R)
j A

(0,ε,R)
j′ ‖fε

j ‖2‖fε
j′‖2

+ C
∑ ∑

j−j′≥R+1

2(j′−j+R)( n
2 +1)A

(0,ε,R)
j A

(0,ε,R)
j′ ‖fε

j ‖2‖fε
j′‖2 = S1 + S2.

To estimate the first sum S1, one writes j′ − j = q and freezes q while sum-
ming over j. Cauchy-Schwarz inequality is used and we obtain an estimate given by∑∞

0 (A(0,ε,R)
j )2‖fj‖2

2 ≤ A(R)2‖f‖2
2. These estimates are summed over q ∈ [0, R] which

amounts to multiply everything by O(R). This yields a bound of the operator norm
by R1/2A(R) but a closer look gives a better estimate. For each j, Cauchy-Schwarz in-
equality yields

∑
0≤q≤RA

(0,ε,R)
j+q ‖fj+q‖2 ≤ ‖AR‖2(

∑
0≤q≤R‖fj+q‖2

2)
1/2. We then need

to estimate ‖AR‖2

∑
j A

(0,ε,R)
j ‖fj‖2(

∑
0≤q≤R‖fj+q‖2

2)
1/2. We apply Cauchy-Schwarz

inequality once more and obtain ‖AR‖2‖f‖2(
∑

j

∑
0≤q≤R(A(0,ε,R)

j )2‖fj+q‖2
2)

1/2. We
make the change of variable j′ = j + q we freeze j′ and sum over q. We conclude
as above. We now turn to S2, which is estimated by Schur’s lemma in its most
primitive version. It says that a convolution product between a sequence belonging
to l1 and a sequence belonging to l2 still belongs to l2. We then estimate S2 by∑∞

0 (A(0,ε,R)
j )2‖fj‖2

2 which ends the proof.

5. BMO estimates for T
(ε1,ε2)
R

In this section we relate the operator norm of T (ε1,ε2)
R acting on BMO to ‖A(ε1,ε2)

R ‖p.
Let us denote by H1 the Hardy space whose dual is BMO. The following lemma is
an obvious corollary of Lemma 2.3:

Lemma 5.1. If a(ε1,0,R)
j,k,l fulfills (10) we then have∥∥∥∑

l

a
(ε1,0,R)
j,k,l Φ(0)

j,l

∥∥∥
H1

≤
∥∥∥∑

l

a
(ε1,0,R)
j,k,l Φ(0)

j,l

∥∥∥
Ḃ0.1

1

≤ C2−
n
2 jRA

(ε1,0,R)
j .

For keeping notations as simple as possible all wavelets will be written Ψε (they
were denoted by Φε in the preceding calculations) and Φ will denote the scaling
function.

Next new norms B(ε1,ε2)
R will be defined in terms of ‖A(ε1,ε2)

R ‖p. To be specific we
write

B
(ε1,ε2)
R =


R‖A(ε1,0)

R ‖2 if R = 1, 2, . . . and ε1 ∈ {0, 1}n \ {0}, ε2 = 0,
‖A(0,ε2)

R ‖1 if R = 1, 2, . . . and ε1 = 0, ε2 ∈ {0, 1}n \ {0},
‖A(ε1,ε2)

R ‖2 if R = 0, 1, 2, . . . and (ε1, ε2) ∈ {0, 1}2n, ε1 6= 0, ε2 6= 0.

We then have
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Theorem 5.2.

(i) ‖T (ε1,ε2)
R ‖BMO→BMO ≤ CB

(ε1,ε2)
R .

(ii) This estimate is optimal.

Let us first sketch the proof. Let f(x) =
∑
a
(η)
j,kΨ(η)

j,k (x) ∈ BMO. We then have

g
(ε1,ε2)
R (x) = T

(ε1,ε2)
R f(x) =

∑
b
(ε1,ε2,ε)
j,k Ψ(ε)

j,k(x). (19)

Notations used in (19) will be kept in the proof. The indices ε1 and ε2 are labelling
the operator. When both indices are not 0, the operator T (ε1,ε2)

R maps Wj into itself
and this case is easier than the two other cases where ε1 = 0 or ε2 = 0. In the former
case, the operator T (0,ε2)

R maps Wj into Vj , and in the latter case the operator T (ε1,0)
R

maps Vj into Wj . These two cases need to be treated independently since BMO is not
a Hilbert space and the duality argument used in the L2 setting does not apply any
more. The index ε will be used for labelling the frequency channels which are occurring
in the wavelet expansion of T (ε1,ε2)

R (f). We compute the wavelet coefficients b(ε1,ε2,ε)
j,k

as in Lemma 2.5. When ε2 is not 0, we have ε2 = η (see Lemma 2.5). Similarly we
have ε1 = ε when ε1 is not 0.

The characterization of BMO given by Theorem 2.2 is now used. To prove (i) in
Theorem 5.2, it suffices to show that for each ε ∈ {0, 1}n \ {0} and each dyadic cube
Qs,p, s ∈ Z, p ∈ Zn, one has

Λ(ε1,ε2)
s,p =

∑
Qj,k⊂Qs,p

∣∣b(ε1,ε2,ε)
j,k

∣∣2 ≤ C(B(ε1,ε2)
R )2‖f‖2

BMO|Qs,p|.

To estimate |b(ε1,ε2,ε)
j,k |, one decomposes f(x) into a sum of three functions fs,p

i (x),
i = 1, 2, 3, where fs,p

i (x) =
∑
ai(λ)Ψλ(x) and where the coefficients ai(λ) are defined

as indicated below. These three functions are partial sums in the wavelet expansion
of f . Roughly speaking, the first function is the partial sum of the series corresponding
to the wavelets which are supported by the enlarged cubeQAt,s,p. The second function
is given by the wavelets which are located far away from Qt,s,p. The third one is given
by wavelets with a large support which intersects Qt,s,p. For each given size length
the cardinality of these large cubes does not exceed a constant C ′. The notations
which are needed for defining there three functions are given now. First Q̃ denotes
the enlarged cube which is centered as Q is and whose size is C0 times the size of Q.
The constant C0 only depends on the size of the support of the mother wavelet ψ. A
new constant A will be defined in the proof of Lemma 5.4. Let us state that A only
depends on C0. All wavelets are denoted by Ψ. Let us set t = 2M+2. The wavelet
coefficients ai(λ) = a

(ε,i)
j,k of fs,p

i are now unveiled :
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Definition 5.3. We set:

(i) a(ε,1)
j,k = a

(ε)
j,k if Qj,k ⊂ QAt,s,p and a(ε,1)

j,k = 0 if not.

(ii) a(ε,2)
j,k = a

(ε)
j,k if Qj,k is not contained in QAt,s,p and if Q̃j,k ∩ Qt,s,p = ∅ while

a
(ε,2)
j,k = 0 if Qj,k is not contained in QAt,s,p and if Q̃j,k ∩Qt,s,p 6= ∅.

(iii) a(ε,3)
j,k = a

(ε)
j,k − a

(ε,1)
j,k − a

(ε,2)
j,k .

In (iii) Qj,k is not contained in QAt,s,p and Q̃j,k ∩Qt,s,p 6= ∅.

Lemma 5.4. If j ≥ s and if Q̃j,k ∩ Qt,s,p 6= ∅, then Qj,k ⊂ QAt,s,p. This implies
j ≤ s− 1 in (iii).

In other words we cannot have (iii) when j ≥ s. Indeed, if the “small cube” Qj,k

is not contained in QAt,s,p, this small cube cannot intersect Qt,s,p. Once C0 (which
defines the enlarged cube) is defined, A is fixed by this simple remark which ends the
proof of Lemma 5.4. Theorem 2.2 implies ‖fs,p

i ‖BMO ≤ C‖f‖BMO and this estimate
will be seminal in the proof.

The coefficients b(ε1,ε2,ε,i)
j,k , which need to be estimated, show up in the wavelet

expansion of
g
(ε1,ε2)
i = T

(ε1,ε2)
R fs,p

i =
∑

λ∈Λn

b
(ε1,ε2,ε,i)
j,k Ψ(ε)

j,k.

We then write
Λ(ε1,ε2,i)

s,p =
∑

Qjk⊂Qs,p

∣∣b(ε1,ε2,ε,i)
j,k

∣∣2
and we have Λ(ε1,ε2)

s,p ≤
∑3

i=1 Λ(ε1,ε2,i)
s,p .

To prove the first assertion of Theorem 5.2, it suffices to show that, for i = 1, 2, 3,
one has

Λ(ε1,ε2,i)
s,p ≤ C(B(ε1,ε2)

R )2‖f‖2
BMO|Qs,p|. (20)

These fundamental estimates (20) will be proved in subsections (I), (II), and (III),
corresponding to i = 1, 2, 3 respectively. Three cases (denoted by A, B, and C) are
occurring in our treatment of the operator T (ε1,ε2)

R and altogether we are unfortunately
faced to nine cases. For instance II.A means that neither ε1 nor ε1 is 0 and we are
applying our operator to the piece fs,p

2 (x) of f . Some cases are easier than others
and will be only sketched. Three counterexamples will show that the estimates given
by Theorem 5.2 are optimal.

(I) To estimate Λ(ε1,ε2,1)
s,p , it suffices to use Theorem 4.1. The three cases A, B,

and C are identical. Theorem 2.2 is used and yields ‖fs,p
1 ‖2 ≤ C‖f‖BMO|Qs,p|

1
2 .

Finally one obtains

Λ(ε1,ε2,1)
s,p ≤ C(B(ε1,ε2)

R )2‖f‖2
BMO|Qs,p|.
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(II) One then turns to Λ(ε1,ε2,2)
s,p . Depending on the values of (ε1, ε2), three cases

are occurring which are denoted by II.A, II.B and II.C.

The case II.A occurs when neither ε1 nor ε2 is 0. This case is easy since the
non-standard decomposition yields an obvious calculation of the action of the given
operator. One then has b(ε1,ε2,ε,2)

j,k = 0 if ε1 6= ε. If ε1 = ε, one has b(ε1,ε2,ε,2)
j,k =∑

l a
(ε1,ε2,R)
j,k,l a

(ε2,2)
j,l . This says that the action of the operator is fully decoupled in the

frequency channels Wj . Let us remind the reader that fs,p
2 (x) =

∑
a
(ε,2)
j,l Ψ(ε)

j,l (x) We
now prove a lemma:

Lemma 5.5. If ε1 6= 0 and ε2 6= 0 one has b(ε1,ε2,ε,2)
j,k =

∑
l a

(ε1,ε2,R)
j,k,l a

(ε2,2)
j,l . More-

over if j − s ≥ R and if Qj,k ⊂ Qs,p, then b
(ε1,ε2,ε,2)
j,k = 0.

Indeed, ifQj,k ⊂ Qs,p, then, for i = 1, . . . , n, we have 2j−spi ≤ ki ≤ 2j−s(pi+1)−1.
If Q̃j,l∩Qt,s,p = ∅, then this is a fortiori true when Q̃j,l is replaced by Qj,l. Therefore
there exists an index i ∈ {1, . . . , n} such that li ≥ 2j−s(pi + t+1) or li ≤ 2j−s(pi− t).
It implies |k− l| ≥ 2j−s. But if |k− l| ≥ 2R, then a(ε1,ε2,R)

j,k,l = 0. Lemma 5.5 is proved.

We now estimate Λ(ε1,ε2,2)
(s,p) . This estimate will remain valid if f ∈ BMO is replaced

by the weaker hypothesis f ∈ Ḃ0,∞
∞ . Using Lemma 5.5 and the definition of the

coefficients b(ε1,ε2,ε,2)
j,k we have

Λ(ε1,ε2,2)
(s,p) =

∑
Qjk⊂Qs,p

∣∣b(ε1,ε2,ε,2)
j,k

∣∣2
=

∑
Qj,k⊂Qs,p

0≤j−s≤R−1

∣∣∣∑
l

a
(ε1,ε2,R)
j,k,l a

(ε2,2)
j,l

∣∣∣2

≤
∑

0≤j−s≤R−1

∑
2j−spi≤ki≤2j−s(pi+1)−1

i=1,...,n

(∑
l

∣∣a(ε1,ε2,R)
j,k,l

∣∣∣∣aε2,2
j,l

∣∣)2

≤
∑

0≤j−s≤R−1

∑
2j−spi≤ki≤2j−s(pi+1)−1

i=1,...,n

(
sup

k

∑
l

∣∣a(ε1,ε2,R)
j,k,l

∣∣ sup
l

∣∣a(ε2,2)
j,l

∣∣)2

≤ C
∑

0≤j−s≤R−1

2(j−s)n
∣∣A(ε1,ε2,R)

j

∣∣2 sup
l

∣∣a(ε2)
j,l

∣∣2
≤ C

∑
0≤j−s≤R−1

∣∣A(ε1,ε2,R)
j

∣∣22−sn sup
ε2,j,l

2jn
∣∣a(ε2,2)

j,l

∣∣2
≤ C

∥∥A(ε1,ε2)
R

∥∥2

2
‖f‖2

BMO|Qs,p|.

Here f ∈ Ḃ0,∞
∞ would suffice to conclude.
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The case II.B is defined by ε1 6= 0, ε2 = 0. Here also, the estimate we are going
to prove will remain valid if f ∈ BMO is replaced by the much weaker hypothesis
f ∈ Ḃ0,∞

∞ . If ε1 6= ε, then we have b(ε1,ε2,ε,2)
j,k = 0. Since ε2 = 0 the non-standard

algebra does not coincide with standard matrix algebra and we have instead

b
(ε,0,ε,2)
j,k =

〈∑
l

a
(ε,0,R)
j,k,l Φ(0)

j,l , f
s,p
2

〉
=

〈∑
l

a
(ε,0,R)
j,k,l Φ(0)

j,l ,
∑

j′≤j−1

a
(ε′,2)
j′,k′ Ψ(ε′)

j′,k′

〉
.

The limitation j′ ≤ j − 1 comes from the orthogonality between wavelets and
scaling functions. But the support of the function Ψ(ε′)

j′,k′ is contained in the cube
2−j′k′ + 2−j′ [−2M , 2M ]n ⊂ Q̃j′,k′ . By assumption this cube does not intersect
Qt,s,p. On the other hand the support of

∑
l a

(ε,0,R)
j,k,l Φ(0)

j,l is contained in 2−jk +
2−j [−2R, 2R]n + 2−j [−2M , 2M ]n. This comes from |k − l| ≤ 2R in the preceding
series.

If Qj,k ⊂ Qs,p and j ≥ R + s, the support of
∑

l a
(ε,0,R)
j,k,l Φ(0)

j,l is contained in
Qs,p + 2−s−R[−(2R + 2M ), 2R + 2M ]n ⊂ Qt,s,p. Then (ii) implies that the support of∑

j′≤j−1 a
(ε′,2)
j′,k′ Ψ(ε′)

j′,k′ does not intersect Qt,s,p. We just proved the following:

Lemma 5.6. If Qj,k ⊂ Qs,p and j ≥ R+ s then b
(ε,0,ε,2)
j,k = 0 in the case II.B.

Therefore we have

Λ(ε,0,2)
s,p =

∑
s≤j≤R+s−1

∑
2j−spi<ki<2j−s(pi+1)

i=1,...,n

∣∣∣〈∑
l

a
(ε,0,R)
j,k,l Φ(0)

j,l , f
s,p
2

〉∣∣∣2

≤
∑

s≤j≤R+s−1

∑
2j−spi<ki<2j−s(pi+1)

i=1,...,n

∥∥∥∑
l

a
(ε,0,R)
j,k,l Φ(0)

j,l

∥∥∥2

H1
‖fs,p

2 ‖2
BMO.

Lemma 5.1 is now applied and yields

Λ(ε,0,2)
s,p ≤ C

∑
s≤j≤R+s−1

∑
2j−spi<ki<2j−s(pi+1)

i=1,...,n

2−nj ·R2 · (A(ε,0,R)
j )2‖f‖2

BMO

≤ CR2
∑

s≤j≤R+s−1

(
A

(ε,0,R)
j

)22−ns‖f‖2
BMO

≤ CR2
∥∥A(ε,0)

R

∥∥2

2
‖f‖2

BMO|Qs,p|.

The case II.C is defined by ε1 = 0, ε2 6= 0. We have

b
(0,ε2,ε,2)
j,k =

〈∑
j′∈Z

k′,l′∈Zn

a
(0,ε2,R)
j′,k′,l′ a

(ε2,2)
j′,l′ Φ(0)

j′,k′ , Ψ(ε)
jk

〉
.
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If Qj,k ⊂ Qs,p, the support of Φ(ε)
j,k is contained in Q t

4 ,s,p. Moreover as in II.B the

support of
∑

j′≥R+s a
(0,ε2,R)
j′,k′,l′ Φ(0)

j′,k′a
(ε2,2)
j′,l′ does not intersect Q t

2 ,s,p. It implies:

b
(0,ε2,ε,2)
j,k =

〈 ∑
j+1≤j′<R+s

k′,l′∈Zn

a
(0,ε2,R)
j′,k′,l′ a

(ε2,2)
j′,l′ Φ(0)

j′,k′ , Ψ(ε)
j,k

〉
.

The limitation j′ ≥ j + 1 is coming from the orthogonality between wavelets and
scaling functions. The constraint j ≥ s is coming from Qj,k ⊂ Qs,p.

We now use a local Plancherel identity given by the following lemma:

Lemma 5.7. Let E be a Borel set and let W be the collection of all λ ∈ Λn such
that E contains the support of the wavelet Ψλ = Ψ(ε)

jk labelled by λ. Let us denote by
a(λ) = aε

j,k the wavelet coefficients of a function f . Then we have

∑
λ∈W

|a(λ)|2 ≤
∫

E

|f(x)−mE(f)|2 dx ≤
∫

E

|f(x)|2 dx

where mE(f) is the mean value of f over E.

The proof is easy. The indicator function of E is denoted by χE . Writing f̃ = (f−
mE(f))χE , we observe that if λ ∈W , we have aε

j,k =
∫
fΨε

j,k dx =
∫
f̃Ψε

j,k dx = ãε
j,k.

This implies Lemma 5.7.

Lemma 5.7 is applied to E = Q t
2 ,s,p and to

g(x) =
∑

s+1≤j′<R+s

∑
k′∈Zn

∑
l′∈Zn

a
(0,ε2,R)
j′,k′,l′ a

(ε2,2)
j′,l′ Φ(0)

j′,k′(x).

Lemma 5.7 implies

Λ(0,ε2,2)
s,p =

∑
Qj,k⊂Qs,p

∣∣∣〈 ∑
s+1≤j′<R+s

∑
k′∈Zn

∑
l′∈Zn

a
(0,ε2,R)
j′,k′,l′ a

(ε2,2)
j′,l′ Φ(0)

j′,k′ ,Ψ
(ε)
j,k

〉∣∣2
≤ C

∫
E

∣∣∣ ∑
s+1≤j′<R+s−1

∑
k′∈Zn

∑
l′∈Zn

a
(0,ε2,R)
j′,k′,l′ a

(ε2,2)
j′,l′ Φ(0)

j′,k′(x)
∣∣∣2 dx.
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The following bounds are obvious:

Λ(0,ε2,2)
s,p ≤ C

∫
E

[ ∑
s+1≤j′≤R+s−1

∑
k′∈Zn

∑
l′∈Zn

∣∣a(0,ε2,R)
j′,k′,l′

∣∣∣∣a(ε2,2)
j′,l′

∣∣∣∣Φ(0)
j′,k′(x)

∣∣]2

dx

≤ C

∫
E

[ ∑
s+1≤j′≤R+s−1

∑
k′∈Zn

∑
l′∈Zn

∣∣a(0,ε2,R)
j′,k′,l′

∣∣∣∣a(ε2)
j′,l′

∣∣∣∣Φ(0)
j′,k′(x)

∣∣]2

dx

≤ C

∫
E

[ ∑
s+1≤j′≤R+s−1

sup
k′

∑
l′∈Zn

∣∣a(0,ε2,R)
j′,k′,l

∣∣
× sup

j′,l′,ε2

2
j′n
2

∣∣a(ε2)
j′,l′

∣∣ ∑
k′

∣∣Φ(0)(2j′x− k′)
∣∣]2

dx

≤ C
( ∑

s+1≤j′≤R+s−1

A
(0,ε2,R)
j′

)2

‖f‖2
BMO|Q t

2 ,s,p|

≤ C
∥∥A(0,ε2)

R

∥∥2

1
‖f‖2

BMO|Q t
2 ,s,p|

≤ C
∥∥A(0,ε2)

R

∥∥2

1
‖f‖2

BMO|Qs,p|.

(III) We need to compute Λ(ε1,ε2,3)
s,p . The same arguments which were used in (II)

will now apply again. Three cases are considered. The case III.A is defined by ε1 6= 0,
ε2 6= 0. Then we have

Λ(ε1,ε2,3)
s,p =

∑
Qj,k⊂Qs,p

∣∣∣∑
l

a
(ε1,ε2,R)
j,k,l a

(ε2,3)
j,l

∣∣∣2.
If Qj,k ⊂ Qs,p, we have j ≥ s. Moreover if a(ε2,3)

j,l 6= 0, we have j ≤ s − 1. It yields

Λ(ε1,ε2,3)
s,p = 0.

The case III.B is defined by ε1 = 0, ε2 6= 0. If a(ε2,3)
j′,l′ 6= 0, we have j′ ≤ s−1. More-

over if Qj,k ⊂ Qs,p, we have j ≥ s. It implies j′ ≤ j−1. Since wavelets are orthogonal
to scaling functions we have 〈

∑
k′ a

(0,ε2,R)
j′,k′,l′ Φ(0)

j′,k′ ,Φ
(ε)
j,k〉 = 0 and Λ(0,ε2,3)

s,p = 0.

The case III.C is defined by ε1 6= 0, ε2 = 0. We have

Λ(ε1,0,3)
s,p =

∑
s≤j≤R+s−1
Qj,k⊂Qs,p

∣∣∣〈∑
l

a
(ε1,0,R)
j,k,l Φ(0)

j,l , f
s,p
3

〉∣∣∣2 +
∑

j≥R+s
Qj,k⊂Qs,p

∣∣∣〈∑
l

a
(ε1,0,R)
j,k,l Φ(0)

j,l , f
s,p
3

〉∣∣∣2
= Λ(ε1,0,3,1)

s,p + Λ(ε1,0,3,2)
s,p .
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Let us consider the first term. Lemma 5.1 is used again and we have

Λ(ε1,0,3,1)
s,p ≤

∑
s≤j≤R+s−1
Qj,k⊂Qs,p

(∥∥∥∑
l

a
(ε1,0,R)
j,k,l Φ(0)

j,l (x)
∥∥∥

B0,1
1

)2

(‖fs,p
3 ‖B0.∞

∞
)2

≤ C
∑

s≤j≤R+s−1
Qj,k⊂Qs,p

2−njR2(A(ε1,0,R)
j )2‖fs,p

3 ‖2
BMO

≤ CR2‖A(ε1,0)
R ‖2

2‖f‖2
BMO|Qs,p|.

Let us consider the second term now. We know that j′ ≤ s− 1 in (iii). Therefore
we have

Λ(ε1,0,3,2)
s,p =

∑
j≥R+s

Qj,k⊂Qs,p

∣∣∣〈∑
l

a
(ε1,0,R)
j,k,l Φ(0)

j,l ,
∑

j′≤s−1

∑
k′

∑
ε

a
(ε,3)
j′,k′Ψ

(ε)
j′,k′

〉∣∣∣2

≤
∑

j≥R+s
Qj,k⊂Qs,p

( ∑
j′≤s−1

∑
k′

∑
ε

∣∣a(ε,3)
j′,k′

∣∣∣∣∣〈∑
l

a
(ε1,0,R)
j,k,l Φ(0)

j,l , Ψ(ε)
j′,k′

〉∣∣∣)2

.

The cancellations built in the definition of the operators T (ε1,ε2)
R yield

∣∣∣〈∑
l

a
(ε1,0,R)
j,k,l Φ(0)

j,l , Ψ(ε)
j′,k′

〉∣∣∣
= 2

j′−j
2 n

∣∣∣〈∑
l

a
(ε1,0,R)
j,k,l Φ(0)(x− l), Ψ(ε)(2j′−jx− k′)

〉∣∣∣
= 2

j′−j
2 n

∣∣∣〈 ∑
2R−1≤|m|<2R

a
(ε1,0,R)
j,k,k+m

(
Φ(0)(x− k −m)− Φ(0)(x− k)

)
,

Ψ(ε)(2j′−jx− k′)
〉∣∣∣

= 2
j′−j

2 n
∣∣∣ ∑
2R−1≤|m|<2R

〈
a
(ε1,0,R)
j,k,k+mΦ(0)(x− k)),

Ψ(ε)(2j′−jx− k′ + 2j′−jm)−Ψ(ε)(2j′−jx− k′)
〉∣∣∣

≤ C2
j′−j

2 n

×
∑

2R−1≤|m|<2R

∣∣a(ε1,0,R)
j,k,k+m

∣∣‖Ψ(ε)(2j′−jx− k′ + 2j′−jm)−Ψ(ε)(2j′−jx− k′)‖∞

≤ C2(j′−j)(R+ n
2 +1)A

(ε1,0,R)
j .
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Theorem 2.2 implies that for j′ frozen we have
∑

k′
∑

ε|a
(ε,3)
j′,k′ |2nj′/2 ≤ ‖f‖BMO. In-

deed each individual term is estimated as indicated and their cardinality is uniformly
bounded. Here f ∈ Ḃ0,∞

∞ would suffice. We then have

Λ(ε1,0,3,2)
s,p ≤

∑
j≥R+s

Qj,k⊂Qs,p

( ∑
j′≤s−1

2−( n
2 +1)j+j′+RA

(ε1,0,R)
j ‖f‖BMO

)2

≤
∑

j≥R+s
Qj,k⊂Qs,p

2−nj−2(j−R−s)
(
A

(ε1,0,R)
j

)2‖f‖2
BMO

≤ C
∥∥A(ε,0)

R

∥∥2

∞‖f‖
2
BMO|Qs,p|.

Theorem 5.2 is now proved and our last task is to construct some counter-examples.
This will prove that the given estimates are optimal ones. To simplify notations, we
stick to the one dimensional case. We consider three cases

(a) |ε1||ε2| 6= 0, (b) ε1 6= 0, and ε2 = 0, (c) ε1 = 0 with ε2 6= 0.

In case (a), we set

aj,l =

{
2−

j
2 if 2R−1 + 2j+m ≤ l ≤ 2R − 2j+m and 0 ≤ j ≤ R

3 ,

0 if not.

Since 2R−1−j + 2M ≤ 2−j l ≤ 2R−j − 2M , one checks that the BMO norm of fR(x) =∑
j

∑
l aj,lψj,l(x) is O(1), as is the L∞ norm. Then we set a(1,1,R)

j,k,l = 2−R if 2R−1 ≤
l − k ≤ 2R − 1, 0 ≤ j ≤ R

3 , and 0 ≤ k ≤ 2j − 1, 0 if not. We then have B(1,1)
R ∼ R

1
2 .

Moreover we have T (1,1)
R fR(x) =

∑
j,k bj,kψj,k and an easy computation proves that

bj,k has the same order of magnitude as 2−j/2 if 0 ≤ j ≤ R/3 and 0 ≤ k < 2j .
Then one compute the squared L2[−2M+2, 2M+2] norm of T (1,1)

R fR(x). One obtains
C

∑
0≤j≤R

3

∑
0≤k≤2j−1 2−j ≥ CR. This implies ‖T (1,1)

R ‖BMO→BMO ≥ CB
(1,1)
R .

In the second case, one sets gR
j (x) =

∑j−M
s=4+M+j−R ψ(2sx − 11 · 2R−4−j+s) and

fR(x) =
∑[ R

3 ]−M

j=M+3 g
R
j (x). Since the support of gR

j (x) is contained in [2R−1−j , 2R−j ],
we have

‖fR(x)‖BMO ≤ max
j
‖gR

j (x)‖BMO ≤ C.

One considers the operator T (1,0)
R whose distributional kernel is

K
(1,0,R)
(x,y) =

[ R
3 ]−M∑

j=M+3

∑
0≤k≤2j−1

ψj,k(x)(ϕj,11.2R−4(y)− ϕj,13.2R−4(y)).

Revista Matemática Complutense
2007: vol. 20, num. 2, pags. 523–554 550



Qixiang Yang Continuity of Calderón-Zygmund operators on the space BMO

We then have B(1,0)
R ∼ R

3
2 . Moreover one has

aj =
∫
fR(y)(ϕj,11.2R−4(y)− ϕj,13.2R−4(y)) dy

=
∫
gR

j (y)(ϕj,11.2R−4(y)− ϕj,13.2R−4(y) dy

=
∫
gj(y)ϕj,11.2R−4(y) dy ≥ CR · 2−

j
2 .

Therefore we have

T
(1,0)
R fR(x) =

[ R
3 ]−M∑

j=M+3

∑
0≤k≤2j−1

ajψj,k(x).

Finally Theorem 2.2 implies∥∥T (1,0)
R fR(x)

∥∥2

BMO
≥ C

∑
Qj,k⊂[0,1]

M+3≤j≤[R3 ]−M

R2 · 2−j ≥ CR3 ∼
(
B

(1,0)
R

)2
.

In the last case, one sets

aR
j,k =

{
2−

j
2 , if − 2R−1 + 2

1
4 j ≤ k ≤ −2R − 1 + 2

3
4 j and 4M ≤ j ≤ [R

3 ] +M,

0, if not.

Since the support of
∑

k a
R
j,kψj,k(x) is contained in [−2R−1−j ,−2R−2−j ], the BMO

norm of fR(x) =
∑

j

∑
k a

R
j,kψjk(x) is O(1) as is the L∞ norm. Then one sets

K
(0,1,R)
(x,y) =

[ R
3 ]+M∑
j=4M

∑
k

(ϕj,k(x)− ϕj,k+2R−1(x))ψj,k(y).

We obviously have B(0.1)
R ∼ R. But we have

T
(0,1)
R fR(x) =

[ R
3 ]+M∑
j=4M

∑
−2R−1+2

1
4j≤k≤−2R−1+2

3
4j

2−
j
2 (ϕj,k(x)− ϕj,k+2R−1(x))

=
[ R
3 ]+M∑
j=4M

∑
−2R−1+2

1
4j≤k≤−2R−1+2

3
4j

2−
j
2ϕj,k(x)−

[ R
3 ]+M∑
j=4M

∑
2
1
4j≤k≤2

3
4j

2−
j
2ϕj,k(x)

=
[ R
3 ]+M∑
j=4M

gj(x)− g(x).

551
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We have supp gj(x) ⊂ [−2R−1−j ,−2R−2−j ] and supp g(x) ⊂ [ 3
16 , 1]. Then, for

0 < t < 3
16 , we define Bt = [t, 1],

∫
[0,1]

g(x) dx = m0. We then have

m0 =
[ R
3 ]+M∑
j=4M

∑
2

1
4 j≤k≤2

3
4 j

2−j ≤ C

and
mBt

g =
1
|Bt|

∫
Bt

g(x) dx =
m0

1− t
.

Moreover we have
∫
g2(x)dx ≥ CR2. Therefore we have

‖g‖2
BMO ≥ sup

0<t< 3
16

1
|Bt|

∫
(g −mBt

g)2 dx

= sup
0<t< 3

16

1
|Bt|

∫
g2(x) dx− 1

|Bt|
(mBtg)

2

= sup
0<t< 3

16

1
1− t

∫
g2(x) dx− m2

0

(1− t)3

≥ CR2.

Finally we can conclude with

‖T (0,1)
R fR(x)‖BMO ≥ ‖g‖BMO ≥ CB

(0,1)
R .

6. The proof of Theorem 1.6 and some open problems

We first prove Theorem 1.6.

(i) Theorem 5.2 implies that if T ∈ OpB 3
2
, then T and T ∗ are bounded on BMO.

Using Theorem 3.3, we know that if T ∈ OpM 3
2
, then T ∈ OpB 3

2
. Therefore if

T ∈ OpM 3
2
, then T and T ∗ are continuous on BMO.

(ii) One defines b(x) =
∑

k a(k)Φ
(0)(x − k) where (a),

∑
k a(k) = 0; (b), a(k) =

|k|−1(log(2 + |k|))−2, if |k| ≥ 1. Next we define K(x, y) = Φ(1,0,...,0)(x)b(y),
and K(x, y) is the distributional kernel of an operator T ∈ OpMµ (∀µ < 1).
For 1 ≤ p < ∞, 1 ≤ q ≤ ∞, T is bounded on Ḟ 0,q

p and also on Ḃ0,q
p . But

T ∗Φ(1,0,...,0)(x) = b(x) /∈ H1. Therefore T cannot be bounded on BMO.

Three open problems are now discussed.

(i) From Theorem 1.6, we know that every T ∈ OpM 3
2

is bounded on BMO. On
the other hand for µ < 1, there exists an operator T ∈ OpMµ which is not
bounded on BMO. These remarks are raising the following issue. What is the
smallest µ ∈ [1, 3

2 ) such that every T ∈ OpMµ is bounded on BMO?
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(ii) The operator class OpEγ is characterized by a simple decay estimation on the
non-standard coefficients. Is it true for OpH?

(iii) If T belongs to OpM 1
2
, then T is bounded on L2 (Theorem 4.1). If T is given

by a convolution and if T ∈ OpH, then T is bounded on L2. These two remarks
are raising the following problem. Is it true that every operator T ∈ OpM0

or T ∈ OpH is bounded on L2? The author proved in [14] that for any T ∈
OpH the two following properties are equivalent ones: (a) T is bounded on L2,
(b) ‖TχE(x)‖WL1(F ) ≤ C|F | for all cubes F and all Borel sets E ⊂ F . Here
|F | denotes the volume of F and WL1(F ) is denoting the “weak L1 norm.”
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Revista Matemática Complutense

2007: vol. 20, num. 2, pags. 523–554



Qixiang Yang Continuity of Calderón-Zygmund operators on the space BMO

[14] , From weak continuity to strong continuity, J. Jilin Univ. Sci. 40 (2002), no. 4, 331–338
(Chinese, with English and Chinese summaries).

[15] , Symbol operator and the speed of approximation by compact operator, Acta Math.
Sinica, to appear.
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