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ABSTRACT

A multiset batch code is a variation of information retrieval where a t-multiset of
items can be retrieved by reading at most one bit from each server. We study a
problem at the other end of the spectrum, namely that of retrieving a t-multiset
of items by accessing exactly one server. Our solution to the problem is a
combinatorial notion called an extended Steiner system, which was first studied
by Johnson and Mendelsohn [11]. An extended Steiner system ES(t, k, v) is a
collection of k-multisets (thus, allowing repetition of elements in a block) of
a v-set such that every t-multiset belongs to exactly one block. An extended
triple system, with t = 2 and k = 3, has been investigated and constructed
previously [3, 11]. We study extended systems over v elements with k = t + 1,
denoted as ES(t, t + 1, v). We show constructions of ES(t, t + 1, v) for all t ≥ 3
and v ≥ t + 1.
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Introduction

Information retrieval in distributed systems addresses the problem of reconstructing
data reliably in the occurrence of server failures, transmitting information securely in
the presence of an adversary and making an efficient use of database storage. While
Asmuth and Blakely [1] used the Chinese remainder theorem to reconstruct data,
Rabin [13] devised an information dispersal algorithm in which a file is decomposed
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into n pieces and can be reconstructed from every m pieces, m < n. It uses an
error-correcting code technique and is efficient in storage and reliable in transmis-
sion. This problem has been studied widely in different settings since then. (See, for
example, [4–8,12].)

Recently, a new combinatorial notion, called a batch code, was introduced in [10],
which is a variation of the information retrieval problem. A batch code encodes v data
items into N bits and distributes them into b servers such that any t (distinct) items
can be retrieved by reading at most one bit from each server. If each server stores one
bit, hence, N = b, it is called a primitive batch code. If t items can be a multiset, it
is called a multiset batch code. The aim of [10] is to design a multiset primitive batch
code with the minimum number of servers b and the maximum retrieval parameter t
for a given size v of the database. The best known primitive batch code is a subset
code [10]. It has b ≈ 2H(α)l servers for v =

(
l
w

)
data items and is able to retrieve

t = 2Ω(w) multiset items where 0 < α = w/l < 0.5 and H(·) denotes a binary entropy
function.

We observe that while the batch code resides at one extreme of a variation of
information retrieval problem, at the other end of the spectrum, we face the problem
of accessing exactly one server to retrieve a set of t items. In this case, clearly, several
items are stored in each server. Note that a Steiner system, denoted as S(t, k, v),
provides a natural solution to the problem if the set consists of t distinct items.
Every t-subset of the v-set belongs to exactly one block (server).

Then, a collection of k-multisets (called blocks) from a v-set such that every t-
multiset belongs to exactly one block would provide a natural solution to the analogous
problem of a multiset-batch code. In the literature, this combinatorial object is known
as an extended design [2, 3, 11].

An extended triple system was introduced in [11] as a collection of 3-multisets
(called blocks) chosen from a v-set such that every 2-multiset belongs to exactly one
block. Johnson and Mendelsohn [11] showed necessary conditions for the existence
of extended triple systems and conjectured that necessary conditions are also suffi-
cient [11]. In [3], Bennett and Mendelsohn proved the conjecture and showed various
constructions. A striking characteristic of an extended design is that the number of
blocks is not unique for the given parameters t, k, and v. Bennett and Mendelsohn’s
constructions in [3] show extended triple systems with different numbers of blocks for
a given value of v. An extended (2, 4)-design was introduced in [2] as a collection of
4-multisets from a v-set such that every 2-multiset belongs to exactly one block.

Since the number of blocks affects storage, we are interested in extended designs
with minimum numbers of blocks. Hence, unlike previous work where the number
of blocks was not the primary focus, we derive the minimum number of blocks for a
given set of parameters and construct extended designs with minimum numbers of
blocks.

While the information retrieval problems motivated this work, it has to be men-
tioned that both primitive batch codes and extended systems are far from practical
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at this point. It is nonetheless important to study them for the insight they provide
for the problem.

In section 1, we introduce our notation and generalize an extended design to
define an extended Steiner system. In section 2, we derive the minimum number of
blocks in an extended triple system, ES(2, 3, v). This shows that constructions in [3]
give an extended triple system with the minimum number of blocks. In section 3, we
study the conditions imposed on extended quadruple systems, ES(3, 4, v) and compute
the minimum number of blocks for this case. In section 4, we show a construction
for a minimal extended quadruple system for all values of v ≥ 4. This nice and
simple construction was given by an anonymous referee. In section 5, we present a
construction for an extended Steiner system ES(t, t+ 1, v) for all v ≥ t+ 1. In section
6, we construct extended designs from finite projective planes for t = 2, k = q+2 and
v = q2 +q+1 for all prime powers q. This is a natural extension of the construction of
MES(3, 4, v) given by the anonymous referee. Then, we draw conclusions and suggest
problems for further research in section 7.

1. Preliminaries

An extended triple system was defined in [11] and an extended (2, 4)-design was
defined in [2]. We generalize an extended design and define an extended Steiner
system.

Definition 1.1. An extended Steiner system, denoted as ES(t, k, v), is a collection
of k-multisets (called blocks) of a v-set such that every t-multiset belongs to exactly
one block.

We note that an an ES(2, 3, v) is called an extended triple system in [3,11]. Simi-
larly, we call an ES(3, 4, v) an extended quadruple system.

Recall that a Steiner system S(t, k, v) is a collection of k-subsets (called blocks)
of a v-set such that every t-subset belongs to exactly one block. The definition of
an ES(t, k, v) is identical to that of a Steiner system except that the term, “subset,”
is replaced with “multiset.” In spite of the similarity in definitions of these two
systems, the presence of repeated elements in a block changes the object significantly.
In particular, as mentioned earlier, the number of blocks in an extended Steiner system
is not unique and this has been already shown in [3].

The minimum number of blocks b is a function of t, k and v. But this function
itself changes and depends on v to make the number of blocks an integer. This will
be discussed in detail in later sections.

The types of the blocks and t-multisets, the number of blocks and the number
of t-multisets of a given type play an important role in determining the minimum
number of blocks in an extended Steiner system.

With the exception of section 5, where we study ES(2, q+ 2, q2 + q+ 1), we study
constructions of E(t, t + 1, v) with an emphasis on extended triple systems and ex-
tended quadruple systems. We use round brackets to denote t-multiset types and
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square brackets to denote block types. Let (1a1 , 2a2 , . . . ,mam) be a t-multiset with m
distinct elements, with the ith element repeated ai times for all i = 1, 2, . . . ,m. Hence,
a1 + a2 + · · ·+ am = t, m ≤ t. Then, if Pk(n) denotes the number of unordered parti-
tions of n into k distinct parts, there are

∑t
i=1 Pi(t) types of t-multisets. We say that

a t-multiset is a (1a1 , 2a2 , . . . ,mam) t-multiset, if it is of the type (1a1 , 2a2 , . . . ,mam).
We use this notation only to indicate the structure of a t-multiset. An actual t-multiset
composed of elements, α1, α2, . . . , αt will be denoted as {α1, . . . , αt}.

Similarly, let [1d1 , 2d2 , . . . , ldl ] be a block (a (t + 1)-multiset) with l distinct ele-
ments, with the jth element repeated dj times where dj > 0 for all j = 1, 2, . . . , l.
Hence, d1 + d2 + · · · + dl = t + 1, l ≤ t + 1. Therefore, there are

∑t+1
i=1 Pi(t + 1)

types of blocks. We say that B is a [1d1 , 2d2 , . . . , ldl ] block if a block B is of the
type [1d1 , 2d2 , . . . , ldl ]. Again, this notation is only to indicate the structure of the
block ((t+ 1)-multiset). An actual block composed of the elements, α1, α2, . . . , αt+1

will be denoted as {α1, α2, . . . , αt+1} where of course these t + 1 elements need not
be distinct.

We use [v] to denote the set {0, 1, . . . , v − 2, v − 1}.

2. A minimal extended triple system

In this section, we define a minimal extended triple system and determine the min-
imum number of blocks for an extended triple system for a given v. We show that
constructions in [3] are minimal. We denote an extended triple system over v elements
as ES(2, 3, v) and a minimal extended triple system over v elements as MES(2, 3, v).

2.1. The minimum number of blocks in an extended triple system and the
construction

Given an S(2, 3, v), an extended triple system can be trivially constructed by adding v
blocks of the type [13]. Addition of v blocks of type [13] of the form {i, i, i} to S(2, 3, v),
1 ≤ i ≤ v, generates an extended triple system with(

v
2

)
3

+ v =
v(v + 5)

6

blocks.
However, it is possible to have a smaller number of blocks than in the above

construction. In particular, we are interested in constructions with the minimum
number of blocks. In an extended triple system, there can be three types of blocks:
[13], [12, 2], and [1, 2, 3]. Let b1 denote the number of blocks of the type [13], b2 the
number of the blocks of the type [12, 2], b3 the number of the blocks of the type [1, 2, 3].

Let p1 be the number of pairs of the type (12) and p2 be the number of pairs
of the type (1, 2). Then, a [13] block contains one (12) pair; a [12, 2] block contains
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Table 1 – Pairs in each type of blocks

Number of Blocks Block Type p1 p2

b1 [13] 1 0
b2 [12, 2] 1 1
b3 [1, 2, 3] 0 3

Total Number of Pairs v
(
v
2

)
one (12) pair and one (1, 2) pair; a [1, 2, 3] block contains three (1, 2) pairs. Table 1
shows the types and the number of pairs each block type contains.

Since there are v pairs of identical elements and
(
v
2

)
pairs of distinct elements,

b1 + b2 = v,

b2 + 3b3 =
(
v

2

)
.

Then,

b1 = v − b2, b3 =

(
v
2

)
− b2
3

,

Hence,

b = b1 + b2 + b3 = −b2
3

+ v +
v(v − 1)

6
, given b1, b2, b3 ≥ 0

is minimized by maximizing b2 while satisfying the above conditions. Hence, the
minimum number of blocks is given by

b1 = 0, b2 = v, b3 =
v(v − 3)

6
,

and the total number of blocks b equals

b = b1 + b2 + b3 =
v(v + 3)

6
.

Since the number of blocks of different types b1, b2, b3 must all be integers, v must
be a multiple of 3.

When v is not a multiple of 3, the maximum value of b2 which leads to an integer
solution is b2 = v− 1. Note that b1 and b3 are also integers when b2 = v− 1 for v 6≡ 0
(mod 3). Hence, the minimum number of blocks for v ≡ 1, 2 (mod 3) is given by

b1 = 1, b2 = v − 1, b3 =
(v − 1)(v − 2)

6
,

and the total number of blocks b equals

b = b1 + b2 + b3 =
(v + 1)(v + 2)

6
.

Now we give the definition of a minimal extended triple system over v elements.
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Definition 2.1. An MES(2, 3, v) (a minimal extended triple system) for v ≡ 0
(mod 3) is an extended triple system with v(v+3)

6 blocks. An MES(2, 3, v) for v ≡ 1, 2
(mod 3) is an extended triple system with (v+1)(v+2)

6 blocks.

In [3], the authors proved the existence of ES(2, 3, v) by showing various con-
structions for all v. It turns out that these constructions include constructions of
MES(2, 3, v). Therefore, we refer to the original construction in [3] for the construc-
tions of MES(2, 3, v).

Theorem 2.2 ([3, Theorem 3.1 ]). A minimal extended triple system MES(2, 3, v)
exists for all v ≥ 3.

3. The minimal number of blocks in an extended quadruple
system

In this section, we compute the minimum number of blocks in an extended quadruple
system over v elements, denoted as ES(3, 4, v). First, we note that an ES(3, 4, v)
exists for all v ≡ 2, 4 (mod 6).

Theorem 3.1. An ES(3, 4, v) exists for all v ≡ 2, 4 (mod 6).

Proof. Hanani showed that an S(3, 4, v) exists if and only if v ≡ 2 or 4 (mod 6) [9].
Given an S(3, 4, v), add

(
v
2

)
blocks of the form {i, i, j, j} and v blocks of the form

{i, i, i, i}, for all i, j ∈ [v], i 6= j. Every triple of the type (1, 2, 3) belongs to exactly
one block in an S(3, 4, v). Every triple of the type (12, 2) belongs to exactly one block
of the form {i, i, j, j} and every triple of the type (13) belong to exactly one block of
the form {i, i, i, i}. Hence we have an ES(3, 4, v) with(

v
3

)
4

+
(
v

2

)
+ v =

v(v + 2)(v + 7)
24

blocks.

But this construction by no means yields the minimum possible number of blocks.
In fact, it can be trivially reduced to v(v2+9v+2)

24 blocks. Remove all [14] blocks and
the blocks {2i + 1, 2i + 1, 2i + 2, 2i + 2}, 0 ≤ i ≤ v−2

2 . Then, insert the set of new
blocks {2i + 1, 2i + 1, 2i + 1, 2i + 2} and {2i + 2, 2i + 2, 2i + 2, 2i + 1}, 0 ≤ i ≤ v−2

2 .
Clearly, this is an ES(3, 4, v) with

v(v + 2)(v + 7)
24

− v

2
=
v(v2 + 9v + 2)

24

blocks.
Since we are interested in an ES(3, 4, v) with the minimum number of blocks, we

develop notation and necessary conditions for the existence of ES(3, 4, v).

Revista Matemática Complutense
2008: vol. 21, num. 1, pags. 179–190 184



E.-Y. Park/I. Blake Construction of extended Steiner systems for information retrieval

3.1. Notation for ES(3, 4, v)

In preparation for defining a minimal ES(3, 4, v), we define some notation.
If repeated elements are allowed in a triple (3-multiset), there are three possible

types of triples, (13), (12, 2), and (1, 2, 3).

• Let T1 denote the set of all triples of the form (13); then, |T1| = v.

• Let T2 denote the set of all triples of the form (12, 2); then, |T2| = 2
(
v
2

)
.

• Let T3 denote the set of all triples of the form (1, 2, 3); then, |T3| =
(
v
3

)
.

Note that there are five possible block types in ES(3, 4, v): [14], [13, 2], [12, 22],
[12, 2, 3], and [1, 2, 3, 4]. Throughout the paper, let B1 denote the set of all [14] blocks,
B2 the set of all [13, 2] blocks, B3 the set of all [12, 22], B4 the set of all [12, 2, 3] blocks,
and B5 the set of all [1, 2, 3, 4] blocks. Let bi denote the cardinality of Bi.

Definition 3.2. The element α is called the head of a triple if it is repeated in a
triple. The triple {α, α, β} is is called a headed pair and is said to be headed by α.
In this case, α heads the element β.

Remark 3.3. Every element, α ∈ [v], must head (v − 1) headed pairs, (α, α, β),
β ∈ [v] \ {α}.

Definition 3.4. The element α is called the head of the block if it is repeated in the
block. The block {α, α, β, γ} is said to be headed by α.

Remark 3.5. Every block in B3 (the set of [12, 22] blocks) has two heads while every
block in B2 and B4 has one head.

3.2. The minimum number of blocks in an ES(3, 4, v) if v ≡ 0 (mod 2)

The type and the number of triples in each block depends on the block type.

• A [14] block contains one (13) only.

• A [13, 2] block contains one (13) and one (12, 2).

• A [12, 22] block contains two (12, 2) 3-multisets.

• A [12, 2, 3] block contains two (12, 2) and one (1, 2, 3).

• Lastly, a [1, 2, 3, 4] block contains four (1, 2, 3).

Table 2 summarizes this.
Recall that b1 denotes the number of blocks of type [14], b2 type [13, 2], b3 type

[12, 22], b4 type [12, 2, 3], and b5 type [1, 2, 3, 4]. Then, in any given construction of
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Table 2 – Triples in Each Type of Block

Number of Blocks Type t1 t2 t3
b1 [14] 1 0 0
b2 [13, 2] 1 1 0
b3 [12, 22] 0 2 0
b4 [12, 2, 3] 0 2 1
b5 [1, 2, 3, 4] 0 0 4

total number of triples v 2
(
v
2

) (
v
3

)

ES(3, 4, v), we must have

b1 + b2 = v, (1)

b2 + 2b3 + 2b4 = 2
(
v

2

)
, (2)

b4 + 4b5 =
(
v

3

)
, (3)

and we are interested in integer solutions to these equations that minimize the total
number of blocks

b = b1 + b2 + b3 + b4 + b5.

Note that

b2 = v − b1, b4 =
(
v

2

)
+

(b1 − 2b3)− v
2

, b5 =
2
(
v
3

)
− 2
(
v
2

)
+ v − (b1 − 2b3)

8
.

Since

b1 + b2 + b3 + b4 + b5 =
1
8

(
2
(
v

3

)
+ 6
(
v

2

)
+ 5v + 3b1 + 2b3

)
, (4)

minimizing the total number of blocks is equivalent to minimizing 3b1 + 2b3 given
b1, b2, b3, b4, b5 ≥ 0. Hence, the solution is given by

b1 = 0, b2 = v, b3 = 0, b4 =
v(v − 2)

2
, b5 =

v(v − 2)(v − 4)
24

, (5)

resulting in the total number of blocks of

b = b1 + b2 + b3 + b4 + b5 =
v(v + 2)(v + 4)

24
. (6)

Since the number of blocks, b1, b2, b3, b4, and b5 must all be integers, v must be even.
In addition, this is the unique solution for the minimum number of blocks for v even
since 3b1 + 2b3 is uniquely minimized by setting b1 = b3 = 0 and the values of the
other parameters are determined by equations (1)–(3) as a result.
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Definition 3.6. An MES(3, 4, v) (a minimal extended quadruple system over v ele-
ments), v ≡ 0 (mod 2) is an ES(3, 4, v) with v(v+2)(v+4)

24 blocks.

3.3. The minimum number of blocks in an ES(3, 4, v) if v ≡ 1 (mod 2)

For an odd value of v, the number of blocks given by the equations (5) and (6) is not
an integer. Moreover, note that by equation (2), b2 must be an even integer. Since v
is an odd integer and b1 = v − b2, b1 must be an odd integer. In particular, b1 6= 0.
Recall that the total number of blocks b is minimized by minimizing 3b1 + 2b3 as
shown in equation (4). Let H denote the set of the head elements in [13, 2] blocks.
Since there are b2 = v − b1 [13, 2] blocks and each of these blocks has a unique head,
the cardinality of H is b2. Recall that in ES(3, 4, v), each element must head (v − 1)
headed pairs as observed in Remark 3.3. Consider an arbitrary element h ∈ H. Then,
h heads an even number of elements in B4. Also, h heads exactly one element in B2.
Since h must head v − 1 elements, which is an even integer, h must head an odd
number of elements in B3. Therefore, at least one block of B3 is headed by each
h ∈ H. Since there are two head elements in a [12, 22] block, b3 ≥ b2/2. Therefore,

3b1 + 2b3 ≥ 3b1 + b2 = 3b1 + v − b1 = 2b1 + v.

But since b1 must be an odd integer, b1 ≥ 1. Hence,

3b1 + 2b3 ≥ 2b1 + v ≥ 2 + v.

Therefore, the minimum possible number of blocks is obtained by setting

b1 = 1, b3 =
v − 1

2
,

which achieves the bound with equality and the number of blocks bi being integers.
Therefore, for v odd, the minimum number of blocks is given by

b1 = 1, b2 = v − 1, b3 =
v − 1

2
, b4 =

(v − 1)(v − 2)
2

, b5 =

(
v−1

3

)
4

,

which leads the total number of blocks to be

b = b1 + b2 + b3 + b4 + b5 =

(
v+3

3

)
4

.

Note that this is the minimum possible number of blocks for v odd. Since
b1 = 1 and b3 = (v − 1)/2 uniquely minimizes 3b1 + 2b3 and determines the val-
ues of other parameters, this is a unique solution to the minimum possible number of
blocks for ES(3, 4, v) with v odd.

Definition 3.7. An MES(3, 4, v) (a minimal extended quadruple system over v ele-

ments), v ≡ 1 (mod 2) is an ES(3, 4, v) with (v+3
3 )
4 blocks.

We have calculated the minimum possible number of blocks for v odd. In later
sections, we show a construction of ES(3, 4, v) which meets these figures for v odd.
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4. A construction of MES(3, 4, v)

The following theorem shows the existence of MES(3, 4, v) for all v ≥ 4. This simple
and nice construction was given by an anonymous referee.

Theorem 4.1. An MES(3, 4, v) exists for all v ≥ 4.

Proof. Take the set of all quadruples {x1, x2, x3, x4} for which x1 + x2 + x3 + x4 ≡ 1
(mod v). Since every three multiset appears in exactly one quadruple, this set is an
extended Steiner system ES(3, 4, v).

First, suppose that v is even. Then, in this set, b1 = 0 since there is no solution x
to the equation 4x ≡ 1 (mod v). Note that similarly, b3 = 0 since there is no solution
x to the equation 2x + 2y ≡ 1 (mod v) for any given y. But this set is an extended
quadruple system and b1, b2, b3, b4 and b5 satisfy the equations (1)–(3). Since b1 = 0
and b3 = 0, this set gives an MES(3, 4, v).

Second, suppose that v is odd. Then, there is a unique solution to the equation
4x ≡ 1 (mod v), hence, b1 = 1 for the set. Similarly, for any given y, there is a unique
solution x to the equation 2x+ 2y ≡ 1 (mod v). Note that there are exactly v− 1 y’s
such that x 6≡ y. Hence, b3 = v−1

2 . Then, the equations (1)–(3) determine the values
of b2, b4, and b5 and this set gives an MES(3, 4, v).

5. A construction of ES(t, t + 1, v)

The simple construction for an MES(3, 4, v) suggests a general approach to the con-
struction of MES(t, t + 1, v). We present a construction of ES(t, t + 1, v), which is a
natural consequence of the construction of MES(3, 4, v) given to us by an anonymous
referee.

Theorem 5.1. An ES(t, t+ 1, v) exists for all t ≥ 2 and v ≥ t+ 1.

Proof. Take the set of all (t+1)-tuples (x1, x2, . . . , xt+1) such that x1+x2+· · ·+xt+1 ≡
m (mod v) for some fixed residue m. Clearly, this is an ES(t, t + 1, v) since every t-
tuple belongs to exactly one (t+ 1)-tuple in the set.

We believe that m = 1 gives an MES(t, t + 1, v) but we could not find a simple
proof for all t and v.

6. Extended Steiner systems ES(2, q + 2, q2 + q + 1)

In this section, we show a construction of a special subset of ES(t, k, v)s with k > t+1.
An ES(2, q + 2, q2 + q + 1) is easily constructed from a finite projective plane.

Definition 6.1. A finite projective plane of order n is an S(2, q + 1, q2 + q + 1).
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It is well known that finite projective plane of order q exists for all prime power q.
In a finite projective plane, the number of elements equals the number of blocks in
the system.

Theorem 6.2. An ES(2, q + 2, q2 + q + 1) exists for prime power q.

Proof. Recall that given a collection of m subsets A1, A2, . . . , Am of a set X, a set of
m distinct elements of X, one from each Ai, i = 1, 2, . . . ,m, is called a set of distinct
representatives. Note that any set of k blocks contains k(q + 1) point occurrences.
Since each point occurs in at most q + 1 of these blocks, there must be at least
k distinct points covered. Then, by applying Hall’s theorem, we have a system of
distinct representatives with q2 + q+ 1 elements from the set of blocks. Note that the
block size is q+2 (not q+1) because we repeat one element (namely, the representative)
of the block. This gives a simple construction of an ES(2, q + 2, q2 + q + 1).

7. Conclusions

An extended Steiner system ES(t, k, v) is a collection of k-multisets (called blocks)
of a v-set S such that every t-multiset belongs to exactly one block. It provides a
trade-off between storage and the number of accessed servers for retrieving a multiset
of items. In this paper, we considered constructions of extended Steiner systems
ES(t, t + 1, v) and ES(2, q + 2, q2 + q + 1) for prime powers q. Both ES(2, 3, v) and
ES(2, q + 2, q2 + q + 1) require O(v2) servers for a retrieval of 2-multisets. Generally,
an ES(t, t+1, v) requires O(vt) servers for a retrieval of t-multisets. The total number
of data items equals v. Only one server access is necessary for an ES(t, k, v) for a
retrieval of t-multisets where each server stores k bits. We note that the best known
primitive batch code requires O(2H(α)l) storage for v =

(
l
w

)
where 0 < α = w/l < 0.5

and each server stores only one bit. It can retrieve a multiset of t = 2Ω(w) items where
each server access acquires at most one bit.

Unlike ordinary designs, the number of blocks in an extended Steiner system is
not unique. This leads to the definition of a minimal extended Steiner system. We
have shown the following:

(i) A minimal extended triple system over v elements exists for all v and the con-
structions are in [3].

(ii) A minimal extended quadruple system over v elements exists for all v.

(iii) An ES(t, t+ 1, v) exists for all v ≥ t+ 1.

(iv) An ES(2, q+2, q2 +q+1) is easily constructed by repeating an element in every
block in a finite projective plane of order q where q is a prime power.

A number of interesting questions are open to be explored.
First, it is not known whether m = 1 gives a construction of an MES(t, t+1, v) for

all t and v in Theorem 6.2. Second, Bennett and Mendelsohn investigated ES(2, 4, v)
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and we gave a construction of ES(2, q + 2, q2 + q + 1) but general construction of
ES(t, k, v) is unknown for k > t + 1. We believe that construction and analysis of
extended Steiner systems will prove to be an interesting field for further exploration.
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