Invertibility of Operators in Spaces of Real Interpolation

Irina ASEKRITOVA and Natan KRUGLYAK

The School of Mathematics and Systems Engineering Växjö University SE-351 95, Växjö — Sweden irina.asekritova@msi.vxu.se Department of Mathematics Luleå University of Technology SE-971 87, Luleå — Sweden natan@ltu.se

Received: August 18, 2007 Accepted: September 17, 2007

ABSTRACT

Let A be a linear bounded operator from a couple $\vec{X} = (X_0, X_1)$ to a couple $\vec{Y} = (Y_0, Y_1)$ such that the restrictions of A on the spaces X_0 and X_1 have bounded inverses. This condition does not imply that the restriction of A on the real interpolation space $(X_0, X_1)_{\theta,q}$ has a bounded inverse for all values of the parameters θ and q. In this paper under some conditions on the kernel of A we describe all spaces $(X_0, X_1)_{\theta,q}$ such that the operator $A : (x_0, X_1)_{\theta,q} \to (Y_0, Y_1)$ has a bounded inverse.

Key words: real interpolation, invertible operators.
2000 Mathematics Subject Classification: Primary 46B70, Secondary 46M35.

Introduction

In the area of partial differential equations, the importance of invertibility of operators in scales of spaces was first observed by Alberto Calderón in 1985 [5], who considered the case of L^p scale and an operator bounded in L^2 . New applications of invertibility of operators to PDE were recently obtained by Kalton and Mitrea [10]. These applications are closely connected to interpolation theory and, in particular, to the remarkable theorem proved by I. Ya. Shneiberg (see [16,17]). This theorem in its simplest form claims that if a linear bounded operator A from a couple $\vec{X} = (X_0, X_1)$ to itself is invertible on a complex interpolation space $[X_0, X_1]_{\theta_0}$, then it is also invertible on the spaces $[X_0, X_1]_{\theta}$ when θ is close to $\theta_0: |\theta - \theta_0| < \varepsilon$. Later on different

Rev. Mat. Complut. **21** (2008), no. 1, 207–217

207

ISSN: 1139-1138

generalizations and applications of Shneiberg's results were obtained by various authors (see, for example, [2, 6, 7, 11, 19, 20]). In particular, in the work [11] a general theory of Shneiberg-type theorems was proposed.

The above mentioned applications are closely connected to the following problem. Let A be a linear bounded operator from a Banach couple $\vec{X} = (X_0, X_1)$ to a Banach couple $\vec{Y} = (Y_0, Y_1)$. Let also Ω_q be the set of all θ for which the restriction of the operator A on the space $(X_0, X_1)_{\theta,q}$ has a bounded inverse defined on the space $(Y_0, Y_1)_{\theta,q}$. Then it follows from an analog of Shneiberg theorem (proved for the case $q < \infty$ in [20] and proved for the general case, including $q = \infty$, in [11]) that the set Ω_q is open. To describe the set Ω_q , the following problem has to be solved:

Problem. Suppose that the restrictions of the operator A on the spaces X_0 and X_1 have bounded inverses defined on the spaces Y_0 and Y_1 , respectively. How can we describe all real interpolation spaces $(X_0, X_1)_{\theta,q}$ such that the restriction of the operator A on a space $(X_0, X_1)_{\theta,q}$ has a bounded inverse on the space $(Y_0, Y_1)_{\theta,q}$?

Two different but complimentary approaches to this problem are possible. The first approach consists of a complete and, if possible, explicit description of the set Ω_q . In the general case, this task is rather complicated, even in the case when the kernel of the operator A is of dimension one. Let us also note that the proofs known for this case are based on Hahn-Banach theorem and are not constructive (see [1,9]).

The second approach consists of finding sufficiently simple and easily tested conditions that would allow for a complete solution of the problem. A constructive solution is preferable since the problem can, in fact, be reduced to the problem of solving the equation

$$Ax = y,$$

where $y \in (Y_0, Y_1)_{\theta,q}$ and θ does not belong to the set Ω_q .

The present work takes the first step in developing the second approach. Our main result is the following

Theorem A. Let A be a bounded linear operator from a Banach couple $\vec{X} = (X_0, X_1)$ to a Banach couple $\vec{Y} = (Y_0, Y_1)$ such that A is invertible on the spaces X_0 and X_1 . Suppose also that its kernel Ker $A \subset X_0 + X_1$ is finite-dimensional and has a basis e_1, \ldots, e_n such that

 $K(t, e_i; X_0, X_1) \approx t^{\theta_i} \qquad (\theta_i \in (0, 1), \theta_i \neq \theta_j \quad for \ i \neq j).$

Then the operator A is invertible on the space $(X_0, X_1)_{\theta,q}$ if and only if $\theta \neq \theta_i$ (i = 1, ..., n).

A direct constructive proof of this result will be presented below. It is easy to see, especially in the case when the kernel is one-dimensional, how the algorithm for constructing the solution to the equation $Ax = y, y \in (Y_0, Y_1)_{\theta,q}$, changes as the parameter θ passes a critical value θ_i .

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

The following example, taken from [12], illustrates this theorem. Let $L_1(t^{-\alpha}, \frac{dt}{t})$ be a space of functions on $(0, \infty)$ defined by the norm

$$\|f\|_{L_1(t^{-\alpha},\frac{dt}{t})} = \int_0^\infty |f(t)| t^{-\alpha} \frac{dt}{t} < \infty$$

and let us consider an operator A = I - H (Identity minus Hardy) which is defined by the formula $(Af)(t) = f(t) - \frac{1}{t} \int_0^t f(s) ds$. Let also $(X_0, X_1) = (L_1(\sqrt{t}, \frac{dt}{t}), L_1(\frac{1}{\sqrt{t}}, \frac{dt}{t}))$. It is easy to verify that the operator A = I - H has a one-dimensional kernel in $X_0 + X_1$ which consists of constant functions $f(x) \equiv C$. Note that for $f(x) \equiv C$ holds

$$K(t, f; X_0, X_1) = \int_0^\infty C \min\left(\sqrt{s}, \frac{t}{\sqrt{s}}\right) \frac{ds}{s} \approx C\sqrt{t}.$$

As the operator A is bounded and invertible on the spaces X_0 and X_1 (see [12]), therefore the conditions of Theorem A are fulfilled. Hence Theorem A describes all spaces $(X_0, X_1)_{\theta,q}$ on which A = I - H is invertible.

We will prove the theorem in two steps. In the first step we reduce the theorem to the case when the kernel of the operator A is one-dimensional and in the second step we consider the case of a one-dimensional kernel.

1. Reduction to the case of a one-dimensional kernel

First of all let us note that it is sufficient to consider the case when A is a quotient operator. Indeed, if we denote by $\overline{A}: \overrightarrow{X} \to \overrightarrow{X}/\operatorname{Ker} A$ the quotient operator then we have $A = B\overline{A}$, where $B: \overrightarrow{X}/\operatorname{Ker} A \to \overrightarrow{Y}$ is invertible on the end spaces and has no kernel. Therefore, B is an invertible operator for all interpolation spaces $(X_0, X_1)_{\theta,q}$, and it is sufficient to prove the theorem for the operator \overline{A} . Note that \overline{A} can be represented as a product $\overline{A} = A_n A_{n-1} \cdots A_1$, where A_1 is an operator with the kernel $\operatorname{Ker} A_1 = \operatorname{Span}\{e_1\}$ and A_i $(i = 2, \ldots, n)$ is an operator with a one-dimensional kernel generated by the element $A_{i-1} \cdots A_1 e_i$. Therefore, Theorem A can be easily proved by induction using the following result.

Theorem 1.1. If an operator A from a couple \vec{X} to a couple \vec{Y} is invertible on the spaces X_0 and X_1 and has a one-dimensional kernel Ker $A = \{\lambda e\}$ such that $K(t, e; \vec{X}) \approx t^{\theta_0}$, then from $K(t, x; \vec{X}) \approx t^{\theta}$ with $\theta \neq \theta_0$ it follows that

$$K(t, Ax; \vec{Y}) \approx t^{\theta}.$$

The proof of the theorem is based on the following lemma.

Lemma 1.2. Suppose that the operator $A : \vec{X} \to \vec{Y}$ is such that $A(X_i) = Y_i$ (i = 0, 1). Then for any $x \in X_0 + X_1$ holds

$$K(t, Ax; \vec{Y}) \approx \inf_{u \in \operatorname{Ker} A} K(t, x - u; \vec{X})$$

with the constant of equivalence independent of x and t.

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

Proof. Let $u \in \text{Ker } A$ and let $x_0 \in X_0$ and $x_1 \in X_1$ be some decomposition of x - u, i.e., $x - u = x_0 + x_1$. Then

$$Ax = Ax_0 + Ax_1$$

and

$$K(t, Ax; \vec{Y}) \le \|Ax_0\|_{Y_0} + t\|Ax_1\|_{Y_1} \le \|A\|(\|x_0\|_{X_0} + t\|x_1\|_{X_1})$$

Hence

$$K(t, Ax; \vec{Y}) \le \|A\| \inf_{u \in \operatorname{Ker} A} K(t, x - u; \vec{X}).$$

To prove the opposite inequality let us consider a decomposition $Ax = y_0 + y_1$ with $y_0 \in Y_0$ and $y_1 \in Y_1$. Since $A(X_i) = Y_i$ (i = 0, 1) we can find such elements $x_0 \in X_0$ and $x_1 \in X_1$ that $Ax_i = y_i$ (i = 0, 1) and $||x_i||_{X_i} \leq c||y_i||_{Y_i}$ (i = 0, 1) with the constant c > 0 independent of y_0, y_1 , and x. Then from the equality

$$Ax = y_0 + y_1 = Ax_0 + Ax_1$$

it follows that $x - x_0 - x_1 = u \in \operatorname{Ker} A$ and

$$K(t, x - u; \vec{X}) \le \|x_0\|_{X_0} + t\|x_1\|_{X_1} \le c(\|y_0\|_{Y_0} + t\|y_1\|_{Y_1}).$$

Hence

$$\inf_{u \in \operatorname{Ker} A} K(t, x - u; \vec{X}) \le cK(t, Ax; \vec{Y}).$$

Let us now return to the proof of Theorem 1.1.

Proof. From Lemma 1.2 it follows that it is sufficient to prove that the conditions

$$c_0 t^{\theta_0} \le K(t, e; \vec{X}) \le c_1 t^{\theta_0},$$

$$d_0 t^{\theta} \le K(t, x; \vec{X}) \le d_1 t^{\theta}$$

imply

$$\inf_{\lambda} K(t, x - \lambda e; \vec{X}) \approx t^{\theta}.$$

Here c_0 , c_1 , d_0 , and d_1 are some positive constants.

As

$$K(t, Ax, Y) \approx \inf_{\lambda} K(t, x - \lambda e; \vec{X}) \le K(t, x; \vec{X}) \le d_1 t^{\theta}$$

it is sufficient to prove the estimate from below

$$\inf_{\lambda} K(t, x - \lambda e; \vec{X}) \ge \delta t^{\theta}.$$

Let us fix a number t > 0. From the inequality

$$K(t, x - \lambda e; \vec{X}) \ge K(t, \lambda e; \vec{X}) - K(t, x; \vec{X}) \ge |\lambda| c_0 t^{\theta_0} - d_1 t^{\theta_0}$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

Invertibility of operators

it follows that if

$$|\lambda| \geq \frac{2d_1}{c_0 t^{\theta_0 - \theta}}$$

then $K(t, x - \lambda e; \vec{X}) \ge d_1 t^{\theta}$ and it is sufficient to consider the case when

$$|\lambda| < \frac{2d_1}{c_0 t^{\theta_0 - \theta}}.$$

Now we will consider the two cases $\theta > \theta_0$ and $\theta < \theta_0$ separately. In the case of $\theta > \theta_0$ from the concavity of the K-functional it follows that for any $T \ge t$ we have

$$\begin{split} K(t, x - \lambda e; \vec{X}) &\geq \frac{t}{T} K(T, x - \lambda e; \vec{X}) \geq \frac{t}{T} (K(T, x; \vec{X}) - |\lambda| K(T, e; \vec{X})) \\ &\geq \frac{t}{T} \Big(d_0 T^{\theta} - \frac{2d_1}{c_0 t^{\theta_0 - \theta}} c_1 T^{\theta_0} \Big). \end{split}$$

If $T = \gamma t \ (\gamma > 1)$ then

$$K(t, x - \lambda e; \vec{X}) \ge \frac{1}{\gamma} \left(d_0 \gamma^{\theta} t^{\theta} - \frac{2d_1}{c_0 t^{\theta_0 - \theta}} c_1 \gamma^{\theta_0} t^{\theta_0} \right).$$

Let now γ be such that

$$d_0\gamma^\theta = \frac{3d_1}{c_0}c_1\gamma^{\theta_0}$$

Since $\theta > \theta_0$, $d_1 \ge d_0$, and $c_1 \ge c_0$, therefore $\gamma > 1$ and we have

$$K(t, x - \lambda e; \vec{X}) \ge \left(\frac{1}{\gamma} \frac{d_1}{c_0} c_1 \gamma^{\theta_0}\right) t^{\theta} = \delta t^{\theta},$$

with the constant $\delta > 0$ dependent only on the constants θ , θ_0 , d_1 , d_0 , c_1 , and c_0 . In the case of $\theta < \theta_0$ we take $T = \gamma t$ with $\gamma < 1$. From the properties of the K-functional we obtain the inequalities

$$K(t, x - \lambda e; \vec{X}) \ge K(T, x - \lambda e; \vec{X}) \ge K(T, x; \vec{X}) - |\lambda| K(T, e; \vec{X})$$
$$\ge d_0 T^{\theta} - \frac{2d_1}{c_0 t^{\theta_0 - \theta}} c_1 T^{\theta_0} = t^{\theta} \Big(d_0 \gamma^{\theta} - \frac{2d_1}{c_0} c_1 \gamma^{\theta_0} \Big).$$

Since $\theta < \theta_0$ we can choose such $\gamma < 1$ that

$$d_0\gamma^{\theta} = \frac{3d_1}{c_0}c_1\gamma^{\theta_0}.$$

For such γ we have

$$K(t, x - \lambda e; \vec{X}) \ge \frac{d_1}{c_0} c_1 \gamma^{\theta_0} t^{\theta} = \delta t^{\theta},$$

with the constant $\delta > 0$ dependent only on the constants θ , θ_0 , d_1 , d_0 , c_1 , and c_0 . \Box

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

2. The case of a one-dimensional kernel

Let $A : \vec{X} \to \vec{Y}$ be a bounded linear operator which is invertible on spaces X_0 and X_1 . Suppose also that A has in $X_0 + X_1$ a one-dimensional kernel Ker $A = \{\lambda e\}$ with $K(t, e; \vec{X}) \approx t^{\theta_0}$. We need to prove that A is invertible on the space $(X_0, X_1)_{\theta,q}$ if and only if $\theta \neq \theta_0$.

We start with the case when $\theta \neq \theta_0$. Since $K(t, e; \vec{X}) \approx t^{\theta_0}$, therefore Ker $A \cap (X_0, X_1)_{\theta,q} = \{0\}$ and it is sufficient to show that for a given $y \in (Y_0, Y_1)_{\theta,q}$ it is possible to construct an element $x \in (X_0, X_1)_{\theta,q}$ such that Ax = y and $\|x\|_{(X_0, X_1)_{\theta,q}} \leq \gamma \|y\|_{(Y_0, Y_1)_{\theta,q}}$ with γ independent of y. From the equivalence theorem of the K- and J-methods (see [4]) it follows that there exists a sequence of elements $y_n \in Y_0 \cap Y_1$, $n \in \mathbb{Z}$, such that

$$\left(\sum_{n\in\mathbb{Z}} \left(2^{-\theta n} J(2^n, y_n; \vec{Y})\right)^q\right)^{\frac{1}{q}} \le \gamma \|y\|_{(Y_0, Y_1)_{\theta, q}},\tag{1}$$

where $J(2^n, y_n; \vec{Y}) = \max\{\|y_n\|_{Y_0}, 2^n\|y_n\|_{Y_1}\}$. As the operator A has inverses on the spaces X_0 and X_1 defined on the spaces Y_0 and Y_1 , respectively, therefore we can find two sequences $x_0^n \in X_0$, $x_1^n \in X_1$, $n \in \mathbb{Z}$, such that

 $Ax_0^n = Ax_1^n = y_n \text{ and } \|x_0^n\|_{X_0} \le \gamma \|y_n\|_{Y_0}, \quad \|x_1^n\|_{X_1} \le \gamma \|y_n\|_{Y_1}.$ (2)

Now we can define the required element $x \in (X_0, X_1)_{\theta,q}$ as

$$x = \sum_{n} x_1^n \qquad \text{for } \theta > \theta_0,$$

and

$$x = \sum_{n} x_0^n$$
 for $\theta < \theta_0$.

Let us first consider the case of $\theta > \theta_0$. We note that if the series $x = \sum_n x_1^n$ converges in $X_0 + X_1$ then we have $Ax = \sum_n Ax_1^n = \sum_n y_n = y$. To prove the convergence we need the inequality

$$\left\|\sum_{n} x_{1}^{n}\right\|_{(X_{0}, X_{1})_{\theta, q}} \leq \gamma \|y\|_{(Y_{0}, Y_{1})_{\theta, q}}.$$
(3)

As $Ax_0^n = Ax_1^n = y_n$, then $x_0^n - x_1^n \in \text{Ker } A$ and hence $x_0^n - x_1^n = \lambda_n e$. Moreover, from $K(2^k, \lambda_k e; \vec{X}) \approx |\lambda_k| 2^{k\theta_0}$ and (2) it follows that

$$|\lambda_k| \le \gamma 2^{-k\theta_0} K(2^k, \lambda_k e; \vec{X}) \le \gamma 2^{-k\theta_0} \left(\|x_0^k\|_{X_0} + 2^k \|x_1^k\|_{X_1} \right) \le \gamma 2^{-k\theta_0} J(2^k, y_k; \vec{Y}).$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

(By γ and γ_1 we will denote different positive constants in different contexts.) Hence

$$\begin{split} K\Big(2^{n},\sum_{k}x_{1}^{k};\vec{X}\Big) &\leq K\Big(2^{n},\sum_{k< n}x_{0}^{k}+\sum_{k\geq n}x_{1}^{k};\vec{X}\Big)+K\Big(2^{n},\sum_{k< n}-\lambda_{k}e;\vec{X}\Big)\\ &\leq \left\|\sum_{k< n}x_{0}^{k}\right\|_{X_{0}}+2^{n}\left\|\sum_{k\geq n}x_{1}^{k}\right\|_{X_{1}}+\sum_{k< n}|\lambda_{k}|K(2^{n},e;\vec{X})\\ &\leq \sum_{k< n}\|x_{0}^{k}\|_{X_{0}}+2^{n}\sum_{k\geq n}\|x_{1}^{k}\|_{X_{1}}+\gamma2^{\theta_{0}n}\sum_{k< n}|\lambda_{k}|\\ &\leq \gamma\Big(\sum_{k}\min\Big(1,\frac{2^{n}}{2^{k}}\Big)J(2^{k},y_{k};\vec{Y})\Big)+\gamma2^{\theta_{0}n}\sum_{k< n}2^{-k\theta_{0}}J(2^{k},y_{k};\vec{Y})$$

Therefore, the proof of the inequality (3) (and also the convergence of $\sum_n x_1^n$ in $X_0 + X_1$) follows from (1) and the boundedness of the operators S and S_{θ_0} in the space $l_q(\{2^{-n\theta}\}_{n\in\mathbb{Z}})$. Here S and S_{θ_0} are defined by the formulas

$$(S\{a_k\})_n = \sum_k \min\left(1, \frac{2^n}{2^k}\right) a_k, \qquad (S_{\theta_0}\{a_k\})_n = 2^{\theta_0 n} \sum_{k < n} 2^{-k\theta_0} a_k.$$
(4)

The boundedness of the first operator in the space $l_q(\{2^{-n\theta}\}_{n\in\mathbb{Z}})$ follows from the fact that this operator is a discrete analog of the Calderón operator

$$(Sf)(t) = \int_0^t f(s)\frac{ds}{s} + t \int_t^\infty s^{-1} f(s)\frac{ds}{s},$$

which is bounded in $L_q(t^{-\theta}, \frac{dt}{t})$ for all $\theta \in (0, 1)$.

The second operator S_{θ_0} is a discrete analog of the operator

$$(S_{\theta_0}f)(t) = t^{\theta_0} \int_0^t s^{-\theta_0} f(s) \frac{ds}{s},$$

which is bounded in $L_q(t^{-\theta}, \frac{dt}{t})$ for $\theta > \theta_0$. Indeed, from the Minkovskii inequality

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

Invertibility of operators

we have

$$\begin{split} \left(\int_0^\infty \left(t^{-\theta}(S_{\theta_0}f)(t)\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} &= \left(\int_0^\infty \left(t^{-(\theta-\theta_0)} \int_0^t s^{-\theta_0} f(s) \frac{ds}{s}\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} \\ &= \left(\int_0^\infty \left(t^{-(\theta-\theta_0)} \int_0^1 (tu)^{-\theta_0} f(tu) \frac{du}{u}\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} \\ &= \left(\int_0^\infty \left(t^{-\theta} \int_0^1 u^{-\theta_0} f(tu) \frac{du}{u}\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} \\ &\leq \int_0^1 u^{-\theta_0} \left(\int_0^\infty \left(t^{-\theta} f(tu)\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} \frac{du}{u} \\ &\leq \int_0^1 u^{-\theta_0} \left(\int_0^\infty \left(\left(\frac{s}{u}\right)^{-\theta} f(s)\right)^q \frac{ds}{s}\right)^{\frac{1}{q}} \frac{du}{u} \\ &\leq \left(\int_0^\infty \left(s^{-\theta} f(s)\right)^q \frac{ds}{s}\right)^{\frac{1}{q}} \cdot \int_0^1 u^{\theta-\theta_0} \frac{du}{u} \\ &\leq \gamma \left(\int_0^\infty \left(s^{-\theta} f(s)\right)^q \frac{ds}{s}\right)^{\frac{1}{q}}. \end{split}$$

This concludes the proof for the case of $\theta > \theta_0$.

The case of $\theta < \theta_0$ can be considered in a similar way, we only need to define $x = \sum_n x_0^n$ and to prove that

$$\left\|\sum_{n} x_{0}^{n}\right\|_{(X_{0}, X_{1})_{\theta, q}} \leq \gamma \|y\|_{(Y_{0}, Y_{1})_{\theta, q}}.$$

This inequality is proved similarly to (3). We have

$$\begin{split} K\Big(2^{n}, \sum_{k} x_{0}^{k}; \vec{X}\Big) &\leq K\Big(2^{n}, \sum_{k < n} x_{0}^{k} + \sum_{k \geq n} x_{1}^{k}; \vec{X}\Big) + K\Big(2^{n}, \sum_{k \geq n} \lambda_{k} e; \vec{X}\Big) \\ &\leq \Big\|\sum_{k < n} x_{0}^{k}\Big\|_{X_{0}} + 2^{n} \Big\|\sum_{k \geq n} x_{1}^{k}\Big\|_{X_{1}} + \sum_{k \geq n} |\lambda_{k}| K(2^{n}, e; \vec{X}) \\ &\leq \sum_{k < n} \|x_{0}^{k}\|_{X_{0}} + 2^{n} \sum_{k \geq n} \|x_{1}^{k}\|_{X_{1}} + \gamma 2^{\theta_{0}n} \sum_{k \geq n} |\lambda_{k}| \\ &\leq \gamma \Big(\sum_{k} \min\Big(1, \frac{2^{n}}{2^{k}}\Big) J(2^{k}, y_{k}; \vec{Y})\Big) \\ &+ \gamma 2^{\theta_{0}n} \sum_{k \geq n} 2^{-k\theta_{0}} J(2^{k}, y_{k}; \vec{Y}). \end{split}$$

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

Therefore, the inequality (3) follows from (1) and the boundedness of the operators S (see (4)) and S^{θ_0} in $l_p(\{2^{-n\theta}\}_{n\in\mathbb{Z}})$. Here S^{θ_0} is defined by the formula

$$(S^{\theta_0}\{a_k\})_n = 2^{\theta_0 n} \sum_{k \ge n} 2^{-k\theta_0} a_k$$

We already know that the operator S is bounded in $l_q(\{2^{-n\theta}\}_{n\in\mathbb{Z}})$ for all $\theta \in (0,1)$. The operator S^{θ_0} is a discrete analog of the operator

$$(S^{\theta_0}f)(t) = t^{\theta_0} \int_t^\infty s^{-\theta_0} f(s) \frac{ds}{s}.$$

Its boundedness in $L_q(t^{-\theta}, \frac{dt}{t})$ for $\theta < \theta_0$ follows from the Minkovskii inequality:

$$\begin{split} \left(\int_0^\infty (t^{-\theta}(S^{\theta_0}f)(t))^q \frac{dt}{t}\right)^{\frac{1}{q}} &= \left(\int_0^\infty \left(t^{-(\theta-\theta_0)} \int_t^\infty s^{-\theta_0}f(s)\frac{ds}{s}\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} \\ &= \left(\int_0^\infty \left(t^{-(\theta-\theta_0)} \int_0^1 \left(\frac{t}{u}\right)^{-\theta_0}f\left(\frac{t}{u}\right)\frac{du}{u}\right)^q \frac{dt}{t}\right)^{\frac{1}{q}} \\ &= \left(\int_0^\infty \left(t^{-\theta} \int_0^1 u^{\theta_0}f\left(\frac{t}{u}\right)\right)^q \frac{dt}{u}\right)^{\frac{1}{q}} \\ &\leq \int_0^1 u^{\theta_0} \left(\int_0^\infty \left(t^{-\theta}f\left(\frac{t}{u}\right)\right)^q \frac{dt}{s}\right)^{\frac{1}{q}} \frac{du}{u} \\ &\leq \int_0^1 u^{\theta_0} \left(\int_0^\infty ((su)^{-\theta}f(s))^q \frac{ds}{s}\right)^{\frac{1}{q}} \cdot \int_0^1 u^{-(\theta-\theta_0)} \frac{du}{u} \\ &\leq \gamma \left(\int_0^\infty (s^{-\theta}f(s))^q \frac{ds}{s}\right)^{\frac{1}{q}}. \end{split}$$

This completes the case of $\theta < \theta_0$, and it only remains to consider the case of $\theta = \theta_0$.

We need to show that the operator A does not have an inverse on the space $(X_0, X_1)_{\theta_0,q}$. As the element $e \in \text{Ker } A$ belongs to $(X_0, X_1)_{\theta_0,\infty}$, therefore A does not have an inverse on $(X_0, X_1)_{\theta_0,\infty}$.

Let us consider the case of $(X_0, X_1)_{\theta_0,q}$ with $q < \infty$. In this case the kernel of A does not intersect with $(X_0, X_1)_{\theta_0,q}$, but we will show that it is possible to construct a family of elements $x_{\varepsilon} \in (X_0, X_1)_{\theta_0,q}$ such that $\sup_{\varepsilon} ||Ax_{\varepsilon}||_{(Y_0,Y_1)_{\theta_0,q}} < \infty$ and $\lim_{\varepsilon \to 0} ||x_{\varepsilon}||_{(X_0,X_1)_{\theta_0,q}} = \infty$. Hence the restriction of the operator A on $(X_0, X_1)_{\theta_0,q}$ does not have an inverse.

To construct the family of elements $x_{\varepsilon} \in (X_0, X_1)_{\theta_0, q}$ we fix an arbitrary $\varepsilon \in (0, 1)$ and consider the K-functional of the element e on the three intervals $(0, \varepsilon]$, $(\varepsilon, \varepsilon^{-1})$,

> Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

 $[\varepsilon^{-1},\infty)$. Let us denote by $\varphi_0^{\varepsilon}, \varphi_1^{\varepsilon}$, and φ_2^{ε} the concave majorants of $K(\cdot,e;\vec{X})\chi_{(0,\varepsilon]}, K(\cdot,e;\vec{X})\chi_{(\varepsilon,\varepsilon^{-1})}$, and $K(\cdot,e;\vec{X})\chi_{[\varepsilon^{-1},\infty)}$ on $(0,\infty)$, i.e.,

$$\varphi_0^{\varepsilon} = K(\cdot, e; \vec{X})\chi_{(0,\varepsilon)} + K(\varepsilon, e; \vec{X})\chi_{[\varepsilon,\infty)},$$

$$\varphi_1^{\varepsilon} = \frac{t}{\varepsilon}K(\varepsilon, e; \vec{X})\chi_{(0,\varepsilon]} + K(\cdot, e; \vec{X})\chi_{(\varepsilon,\varepsilon^{-1})} + K(\varepsilon^{-1}, e; \vec{X})\chi_{[\varepsilon^{-1},\infty)},$$

$$\varphi_2^{\varepsilon} = \frac{t}{\varepsilon^{-1}}K(\varepsilon^{-1}, e; \vec{X})\chi_{(0,\varepsilon^{-1}]} + K(\cdot, e; \vec{X})\chi_{(\varepsilon^{-1},\infty)}.$$
(5)

Then $K(\cdot, e; \vec{X}) \leq \varphi_0^{\varepsilon} + \varphi_1^{\varepsilon} + \varphi_2^{\varepsilon}$ and from the K-divisibility theorem (see [3]) it follows that there exists a decomposition $e = x_0^{\varepsilon} + x_1^{\varepsilon} + x_2^{\varepsilon}$ such that

$$K(\cdot, x_i^{\varepsilon}; \vec{X}) \le \gamma \varphi_i^{\varepsilon}, \quad i = 0, 1, 2,$$

with the constant $\gamma > 0$ independent of ε . Let us take $x_{\varepsilon} = x_1^{\varepsilon}$. Then we only need to prove that

$$\lim_{\varepsilon \to 0} \|x_1^\varepsilon\|_{(X_0, X_1)_{\theta_0, q}} = \infty \tag{6}$$

and

$$\sup_{\varepsilon} \|Ax_1^{\varepsilon}\|_{(Y_0,Y_1)_{\theta_0,q}} < \infty.$$
(7)

To prove (6) we note that from $K(t,e;\vec{X}) \approx t^{\theta_0}$ and from the formulas (5) for $t \in [\varepsilon, \varepsilon^{-1}]$ it follows that

$$K(t, x_1^{\varepsilon}; \vec{X}) \ge K(t, e; \vec{X}) - K(t, x_0^{\varepsilon}; \vec{X}) - K(t, x_2^{\varepsilon}; \vec{X}) \ge \gamma t^{\theta_0} - \gamma_1 \varepsilon^{\theta_0} - \gamma_1 \frac{t}{\varepsilon^{-1}} \varepsilon^{-\theta_0}.$$

Let us now fix a number $\delta \in (0, 1)$. Then from the above inequality we have

$$\lim_{\varepsilon \to 0} \|x_1^\varepsilon\|_{(X_0, X_1)_{\theta_0, q}} \ge \left(\int_{\delta}^{\delta^{-1}} (t^{-\theta_0} \gamma t^{\theta_0})^q \frac{dt}{t}\right)^{\frac{1}{q}} = \gamma \left(2 \ln \frac{1}{\delta}\right)^{\frac{1}{q}}.$$

Since $\delta \in (0,1)$ is arbitrary, we have $\lim_{\varepsilon \to 0} ||x_1^{\varepsilon}||_{(X_0,X_1)_{\theta_0,q}} = \infty$. To prove (7) it is sufficient to prove the following estimate

$$K(t, Ax_1^{\varepsilon}; \vec{Y}) \le \gamma \varepsilon^{\theta_0} \min\left(1, \frac{t}{\varepsilon}\right) + \gamma (\varepsilon^{-1})^{\theta_0} \min\left(1, \frac{t}{\varepsilon^{-1}}\right).$$
(8)

The proof of (8) outside of the interval $[\varepsilon, \varepsilon^{-1}]$ follows from $K(t, e; \vec{X}) \approx t^{\theta_0}$ and

$$K(t, Ax_1^{\varepsilon}; \vec{Y}) \le \gamma K(t, x_1^{\varepsilon}; \vec{X}) \le \gamma \varphi_1^{\varepsilon} \le \gamma \frac{t}{\varepsilon} K(\varepsilon, e; \vec{X}) \chi_{(0,\varepsilon]} + \gamma K(\varepsilon^{-1}, e; \vec{X}) \chi_{[\varepsilon^{-1}, \infty)},$$

and its proof inside the interval $[\varepsilon, \varepsilon^{-1}]$ follows from Lemma 1.2:

$$\begin{split} K(t, Ax_1^{\varepsilon}; \vec{Y}) &\approx \inf_{\lambda} K(t, x_1^{\varepsilon} - \lambda e; \vec{X}) \leq K(t, x_1^{\varepsilon} - e; \vec{X}) \leq K(t, x_0^{\varepsilon}; \vec{X}) + K(t, x_2^{\varepsilon}; \vec{X}) \\ &\leq \gamma K(\varepsilon, e; \vec{X}) + \gamma \frac{t}{\varepsilon^{-1}} K(\varepsilon^{-1}, e; \vec{X}). \end{split}$$

Thus the case of $\theta = \theta_0$ and the proof of Theorem A are complete.

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217

References

- S. V. Astashkin, On the interpolation of intersections by the real method, Algebra i Analiz 17 (2005), no. 2, 33–69 (Russian); English transl., St. Petersburg Math. J. 17 (2006), no. 2, 239–26.
- I. Asekritova and N. Kruglyak, On equivalence of K- and J-methods for (n + 1)-tuples of Banach spaces, Studia Math. 122 (1997), no. 2, 99–116.
- [3] Yu. A. Brudnyĭ and N. Kruglyak, Interpolation functions and interpolation spaces, I, North-Holland Mathematical Library, vol. 47, North-Holland Publishing Co., Amsterdam, 1991.
- [4] J. Bergh and J. Löfström, Interpolation theory: An introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, 1976.
- [5] A. P. Calderón, Boundary value problems for the Laplace equation in Lipschitzian domains, Recent progress in Fourier analysis (El Escorial, 1983) (I. Peral and J. L. Rubio de Francia, eds.), North-Holland Math. Stud., vol. 111, North-Holland, Amsterdam, 1985, pp. 33–48.
- W. Cao and Y. Sagher, Stability of Fredholm properties on interpolation scales, Ark. Mat. 28 (1990), no. 2, 249–258.
- [7] _____, Stability in interpolation of Banach spaces, Proc. Amer. Math. Soc. **112** (1991), no. 1, 91–100.
- [8] G. David and S. Semmes, unpublished. For a formulation of the result see p. 127 of the paper by B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, *The Dirichlet Problem for the biharmonic* equation in a Lipschitz domain, Ann. Inst. Fourier (Grenoble) **36** (1986), no. 3, 109–135.
- S. A. Ivanov and N. Kalton, Interpolation of subspaces and applications to exponential bases, Algebra i Analiz 13 (2001), no. 2, 93–115 (Russian); English transl., St. Petersburg Math. J. 13 (2002), no. 2, 221–239.
- [10] N. Kalton and M. Mitrea, Stability results on interpolation scales of quasi-Banach spaces and applications, Trans. Amer. Math. Soc. 350 (1998), no. 10, 3903–3922.
- [11] N. Kruglyak and M. Milman, A Distance between orbits that controls commutator estimates and invertibility of operators, Adv. Math. 182 (2004), no. 1, 78–123.
- [12] N. Kruglyak, L. Maligranda, and L. E. Persson, On an elementary approach to the fractional Hardy inequality, Proc. Amer. Math. Soc. 128 (2000), no. 3, 727–734.
- [13] _____, The failure of the Hardy inequality and interpolation of intersections, Ark. Mat. 37 (1999), no. 2, 323–344.
- [14] J.-L. Lions and E. Magenes, Non-homogenous boundary value problems and applications, I, Grundlehren der mathematischen Wissenschaften, vol. 181, Springer-Verlag, New York, 1972.
- [15] J. Löfström, Real interpolation with constraints, J. Approx. Theory 82 (1995), no. 1, 30–53.
- [16] I. Ya. Shneiberg, On the solvability of linear operators in interpolation families of Banach spaces, Soviet Math. Dokl. 14 (1973), 1328–1331.
- [17] _____, Spectral properties of linear operators in interpolation families of Banach spaces, Mat. Issled. 9 (1974), no. 2 (32), 214–229, 254–255 (Russian).
- P. Sunehag, Subcouples of Codimension one and interpolation of operators that almost agree, J. Approx. Theory 130 (2004), no. 1, 78–98.
- [19] A. Tabacco Vignati and M. Vignati, Spectral theory and complex interpolation, J. Funct. Anal. 80 (1998), no. 2, 383–397.
- [20] M. Zafran, Spectral theory and interpolation of operators, J. Funct. Anal. 36 (1980), no. 2, 185–204.

Revista Matemática Complutense 2008: vol. 21, num. 1, pags. 207–217