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ABSTRACT

Let u be the Jacobi measure supported on the interval [—1,1]. Let introduce
the Sobolev-type inner product

(frg) = / F(@a(@) du(x) + M (1)g(1) + NF (1 (1),

where M, N > 0. In this paper we prove that, for certain indices §, there are
functions whose Cesaro means of order § in the Fourier expansion in terms of
the orthonormal polynomials associated with the above Sobolev inner product
are divergent almost everywhere on [—1,1].
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Introduction
Let du(z) = (1 — 2)*(1 + x)? dx, a > —1, 8 > —1, be the Jacobi measure supported

on the interval [—1,1]. Let f and g functions in L?(u) such that there exists the first
derivative in 1. We can introduce the discrete Sobolev-type inner product

(f:9) = /71 f(@)g(a) dp(z) + M f(1)g(1) + N f(1)g'(1) (1)
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where M > 0, N > 0. We denote by {q,([x’ﬁ)}nzo the sequence of orthonormal
polynomials with respect to the inner product (1) (see [1]). These polynomials are
known in the literature as Jacobi-Sobolev type polynomials. For M = N = 0, the
classical Jacobi orthonormal polynomials appear. We will denote them {p%a’ﬁ )}nZO-

For every function f such that (f, qﬁf"ﬁ )> exists for n = 0,1,..., the Fourier ex-
pansion in Jacobi-Sobolev type polynomials is

oo

S en(fale P (@), (2)
n=0
where
en(f) = (f.a\™").

The Cesaro means of order ¢ of the Fourier expansion (2) are defined by (see [9,
p. 76-77])

N A(]SV
onf@) = —rten(Ha? (@),
n=0 N

where Ai = (kzé).

In this contribution we will prove that there are functions such that their Cesaro
means of order 0 diverge almost everywhere on [—1,1]. A similar result, when
M = N =0, has been obtained in [6].

Notice that, for an appropriate function f, the study of the convergence of Fourier
series in terms of the polynomials associated to the Sobolev inner product

= /_1 f(@)g(@) du(z) + M f(c)g(c) + N f'(c)g'(c)

when ¢ € [—1,1] has been presented [7] and when ¢ € (1,00) in ([3,4]) some analog
results have been deduced.

Throughout this paper positive constants are denoted by ¢, cq,.... and they may
vary at every occurrence. The notation u,, ~ v, means c; < u, / vy, < ¢ for sufficiently
large n, and by u, = v, we mean that the sequence u,, /v, converges to 1.

1. Jacobi-Sobolev type polynomials

Some basic properties of the polynomials qn o) (see [1]) that we will need in the
sequel, are given in below:

4P @) = Awpl? () + Bule = VP (@) + Cula = 175 (@) (3)

where
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(i) if M >0 and N > 0 then
A, & —cen—2072, B, 2 cen222 C, =1,

(ii) if M =0 and N > 0 then

—1 1
a+2’

A, =

(iii) if M > 0 and N =0 then
A, = en~2072 B, =1, C,=0.
n==3/2 if M >0, N >0,

gl (1)] ~ (4)
" notl/2 i M =0, N > 0.

(gl @Y (1) ~n=" T2 if M >0, N >0. (5)
ma |gf9 (@) ~ 0?2 12 <0< b (6)
ze[—1,1

O(g—a—l/Z(ﬁ_e)_ﬁ_l/Q) ife/n<6<m—c/n,
¢4 (cos B)| = { O(n+1/2) if0<6<c/n, (7)
O(nft1/2) ifr—c/m<6<m,

fora>-1/2, B> —-1/2, and n > 1.

The asymptotic behavior of q,(La”B), when z € [-1+¢,1 —¢€] and € > 0, is given by

q,(f"ﬂ)(a:) = s%’ﬁ(l — m)_a/2_1/4(1 + x)_ﬁ/2_1/4 cos(kf +v) + O(n_l)7 (8)

where # = cos0, k =n+ 0ty = (0 +1)T, and nlLH;OS%”H = (2)2.

The Mehler-Heine formula for Jacobi orthonormal polynomials is (see [8, Theo-
rem 8.1.1 and (4.3.4)]

lim (—1)"n~f=1/2p(e:0) (cos (7r - i)) =957 (2/2) 0 J5(2), (9)
n—oo n
where «, [ are real numbers and Jg(z) is the Bessel function. This formula holds
uniformly for |z| < R, for R a given positive real number.

From (9)

; _1\np—B—-1/2 (a,B) __Z _ g—ofs -8B
lim (—1)™n P (cos n+j)) 25 (2/2) P Js(2)  (10)

holds uniformly for |z|] < R, R a fixed positive real number, and uniformly on
jeNU{0}.

Revista Matemdtica Complutense
429 2008: vol. 21, num. 2, pags. 427-433



Bujar Xh. Fejzullahu Divergent Cesaro means of Jacobi-Sobolev expansions

Lemma 1.1. Let o, > —1 and M,N > 0. There exists a positive constant ¢ such
that

Tim (1) =726 (cos (7 = 2 )) = e(2/2) 75 (2),

uniformly for |z| < R, R >0 fized.

Proof. Here we will only analyze the case when M = 0 and N > 0. The proof of the
other cases can be done in a similar way. From (3) we have

(=1)" B2 g (COS(W_ z )) — Ay (—1)"n B/ 2p(®) (COS(W_ z ))

n+j n+J
z nel —p— a+2, ?

- B, (Cob(ﬂ' — TJ) - 1)(—1) I =A1/2p (20 (COS(W T +j))
_z 0\ -2, —B—1/2 (a+4,8) __~

+C, (cos(w nJrj) 1) (=) *n Dn—2 (COS(ﬂ' n+j))

where j € N U {0}.
Finally, if n — oo and using (3) and (10) we get

lim (—1)"n=A~1/2¢e ’B)(cos(w— : ))

( L i 4.9- w“)(z)fﬁJ (2)
=\l-——5 — = z
a+2 a+2 2) P
o -8B
=9 %" (3) Js(2). O
2
For every function f such that (f, ¢n (@B) ) exists forn = 0,1, ..., the Fourier-Sobolev

coefficients of the series (2) can be written as

en(f) = (F,47) = ¢, (f) + M (1)l (1) + N /(1) (g5 (1), (11)
where

&\(f) = / @l @)1 = 2) (14 )

Next, we will estimate the following integral involving Jacobi-Sobolev type poly-
nomials

/ lgl@® (2)|7(1 — )*(1 + z)P dx

where 1 < ¢ < co. For M = N = 0 the calculation of this integral appears in [8, p. 391,
Exercise 91] (see also [5, (2.2)]).
First we compute an upper bound for this integral:
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Theorem 1.2. Let M >0 and N > 0. For a > —1/2

1 o(1) if 2a>qa—2+q/2,
/ (1- x)a|q7(f"ﬁ) (x)]9dx = < O(logn) if 2a=qa—2+q/2,
0 O(naota/2=2a=2) i 20 < gar — 2+ q/2.
For g > —1/2
0 o(1) if 28 >qB—-2+4q/2,
/ (1+2)%|g?) ()" dz = { O(log n) if 28=qB8-2+4q/2,
-1

O(nd8+4/2=28=2) if 98 < qf — 2+ q/2.
Proof. From (7), for ga + q/2 — 2 — 2 # 0, we have
1 w/2
[ a-arlaen@lrae = o) [ e ool as
0 0

—1

:o(1)/n g2t naotal? 4
0

/2
+0(1)/ g2etig=aa=a/2 gy

_ O(nqa+q/2—2a—2) + O(l),

and for ga + ¢/2 — 2a — 2 = 0 we have
1
/ (1 —2)¥¢\*? ()| dz = O(log n).
0
For the proof of the second part we can proceed in a similar way. O

Now, a technique similar to the used in [8, Theorem 7.34] yields:

Theorem 1.3. Let M >0 and N > 0. For 8> —1/2
0
/ (1 + x)ﬁ|q7(la,ﬂ)(m)|q dx ~ ndbta/2—28-2
—1

4(B+1)
26+1

where < g < oo.

Proof. For the proof of this theorem it is enough to find a lower bound for the integral.

Revista Matemdtica Complutense
431 2008: vol. 21, num. 2, pags. 427-433



Bujar Xh. Fejzullahu Divergent Cesaro means of Jacobi-Sobolev expansions

Let > —1/2, M > 0 and N > 0. According to Lemma 1.1, we have

™

/ (m — )% ¢(@P) (cos 0)|9 dO > / (7 — )25 LB (cos 0) |7 d
/2 m—1/n

1
- / (2/n)2P gD (cos(m — z/n)|? 0" dz
0

1
&= c/ (2/n)PH1naP+a/2|(2/2) 7P J5(2)|7 n~t dz
0

~ pdBta/2-26-2 |

2. Divergent Cesaro means of Jacobi-Sobolev expansions

If the expansion (2) is Cesaro summable of order § on a set, say E, of positive measure
n [—1,1], then from [9, Theorem 3.1.22] (see also [6, Lemma 1.1]) we get

len(£)a\P (z)] = ), r€eE.
From the Egorov’s theorem there exists a subset Fy C FE of positive measure such
that
‘ (a 5) ’ _
uniformly for = € E;. Hence, from (8), we have

In =% (f)(cos(k0 +7) + O(n~"))| < ¢

uniformly for z = cos@ € E;. Using the Cantor-Lebesgue Theorem, (see [6, subsec-
tion 1.5] as well as [9, p. 316]), we get

C’;g)‘ <e¢ Va1 (12)

Now we will prove our main result:

Theorem 2.1. Let «, 3, p, and § be given numbers such that

1
ﬁ>_1/27 _§§a§57
A(B+1) 2W+2 26+3
) <5 _ T
SPs 5 0so< D 2

There exists f € LP(u), supported on [—1,0], whose Cesaro means o¥ f(x) are diver-
gent almost everywhere on [—1,1].
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Proof. Assume that

4B +1) 28+2 23+3
SP<gy3c 0%, 2

For g conjugate to p, from the last inequalities, we get

4(6+1)
e < ) + - == _Z
2511 < q < oo, <p . p

For the linear functional ¢/, (f) = f_ll f(x)q%a”g) (2) dp(z), from the uniform bound-
edness principle, (6) and Theorem 1.3, it follows that there is f € LP(u), supported
on [—1,0], such that

/
c”((;f) — 00, when n — oo.
n
Hence, from (4), (5), and (11), we obtain
Cn(éf) — o0, when n — oo.
n
Since this result is contrary with (12) a}sv f(z) is divergent almost everywhere. O

Remark 2.2. Using formulae in [2], which relate the Riesz and Cesaro means of order
6 > 0, we conclude that Theorem 2.1 also holds for Riesz means.
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