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ABSTRACT

The paper deals with the correlated concepts of cofibration and bicofibration in
C™-algebra theory. We study cofibrations of C*-algebras introduced by Claude
Schochet in [9] (see also [7]). Cofibrations are characterized by means of the
mapping cylinder C*-algebras. We also define and analyse the notion of bicofi-
bration for C*-algebras based on the topological model from [8] (see also [5]).
As an application, an exact sequence of Cerin’s homotopy groups [1] is obtained.
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Introduction

We recall that a continuous map f : X’ — X is called a cofibration if, whenever we
are given a space Y, amap g : X — Y and a homotopy H : X' x I — Y, starting
with ¢ o f, there is a homotopy G : X x I — Y that starts with g, and satisfies
H=Go(fx1y). A well- known example is that one of the inclusion map i : L — K
for a CW-pair (K, L) (see [6, p. 285]). Secondly every continuous map f : X — Y can
be written as a composition f = r o i between a cofibration ¢ : X — Z; and a strong
deformation retract r : Zy — Y (see [10, ch. I, §4]). The notion of cofibration and
respectivly the homotopy extension property play an important role in the general
homotopy theory (see for example [2, ch. I; 4, ch. 6; 6, ch. 6, §5; 10, ch. 2, §8; 11, ch. I}).
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

The notion of bicofibration was introduced by the first author in [8] and then it was
also studied by R. W. Kieboom in [5]. This is a generalization of the topological sum
of two spaces and of the joining of complexes. A bicofibration is a pair of cofibration

X1 Iox L2 Xo, either having two retract functions mutually stationary [8], or
being strictly separated, which means that there exists a map u : X — I such that
f1(X1) Cu™(0) and fo(Xa) C u=1(1), see [5].

The idea to consider these notions in noncommutative context came to us in
connection with the study of the existence of some homotopy commutative diagrams
of x-homomorphisms [7]. In [9] the cofibrations were used to define the so-called
cofibre homology and cohomology theories.

The aim of the paper is the translation of the usual properties of these structures
from the usual case in the language of noncommutative homotopy theory of C*-
algebras. Most of the properties of the usual cofibrations and bicofibrations have
interesting statements and require nontrivial proofs in the noncommutative approach.
But a series of new results also appears, for example the ones in section 5, connected
to the Cerin’s homotopy groups [1]. In section 1 we give the definition of cofibrations
of C*-algebras and we establish some general results (Theorem 1.4, Theorem 1.7,
Corollary 1.11) which produce a lot of examples. These examples start either from a
C*-algebra and its cylinder, cone and suspension, or from a *-homomorphism and its
mapping cylinder and mapping cone. In section 2 we prove that a *-homomorphism
¢ : A — B is a cofibration if and only if its mapping cylinder M, is a canonical
retract of the cylinder AI (Corollary 2.3). In section 3 a series of properties of
cofibrations of C* -algebras is proved inspired from some results on the topological
cofibrations given in the book of I. M. James [4, ch. 6]. Section 4 is devoted to
the introduction and study of the notion of bicofibration of C*-algebras. A series of
examples of bicofibrations is given. It is illustrated that not each pair of cofibrations is
a bicofibration. It is emphasized that every cofibration ¢ : A — B can be considered as

a trivial bicofibration 0 « A % B. A characterization of bicofibrations is established
on the model of cofibrations by means of a canonical pair retracts (Corollary 4.11).
Using this characterization other examples are obtained and, among these, that one
for a fixed nuclear C*-algebra F', the functor A — A ®;, F' preserves bicofibrations.
In section 5 we establish some properties (Theorem 5.1, Theorem 5.2, Theorem 5.7)
in connection with the Cerin’s homotopy groups of C*-algebras [1]. The main result
in this section is the construction, for a cofibration ¢ : A — B , an arbitrary C*-
algebra K, and an integer n > 0, of an exact sequence

) m(h)«

Tnt1 (K B) i>7rn(K;C¢ T (K A) &Mrn(K;B)

of Cerin’s homotopy groups. Then this applied to obtain an exact sequence
Tnt1(K; B) 9, (K3 Cy) LN T (K My) = m,(K; B)

for an arbitrary *-homomorphism ¢ : A — B.
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

Notation (cf. [3, ch. I]). By a morphism or a morphism of C*-algebras we mean a
*x-homomorphism.

Given a C*-algebra A and a (locally) compact space Y, denote by AY the C*-
algebra of (vanishing at infinity) continuous functions of Y into A. If ¢ : A — B is a
«-homomorphism and Y is a (locally) compact space, then ¢ induces a *-homorphism
oY : AY — BY by (¢Y)(u) = pou, Vu € AY. If Y = I = [0, 1], then for every ¢t € I,
denote by p; : AI — A the *-homomorphism defined by p;(u) = u(t), Vu € Al

Two morphisms of C*-algebras n: A — B and ¢ : A — B are said to homotopic,
written n & ¢, if there is a morphism ¥ : A — BI such that pgo¥ = n and p; oV = ¢.
The morphism ¥ is called a homotopy (morphism).

A morphism 7 : A — B is called a homotopy equivalence when there is a morphism
& : B — A such that £ on and n o & are homotopic to the respective identity maps of
A and B.

Ifn: A— Band £ : B — A are two morphisms such that £ o = idy and
noé S idp, by a homotopy morphism ® : B — BI, such that pyo®on =7, Vt € I, and
p1P(ker &) = 0, the C*-algebra A is called a deformation retract of the C*-algebra B
([7]; see also [9]).

Given a commutative diagram of *-homomorphisms

x is called a morphism over B. If x,0 : Ay — A, are morphisms over B, then a
homotopy over B of x into # is a homotopy in the ordinary sense which is a morphism
over B at each stage of “deformation.”

1. Cofibrations: definition and examples

Definition 1.1 ([9], see also [7]). A s-homomorphism ¢ : A — B is said to be
a cofibration if it satisfies the following (“homotopy lifting”) property: for a C*-
algebra D, a *-homomorphism ¢ : D — A, and a homotopy *-homomorphism & :
D — BI of ¢ o1, there exists a homotopy *-homomorphism ¥ : D — AI of v, such
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

that ¢ o ¥ = &.

Example 1.2. For A, B arbitrary C*-algebras, the projections p4 : A@® B — A and
pB : A® B — B are cofibrations.

Consider the projection pg. First we observe that (A @ B)I = AI ® BI and that
the *-homomorphism pgI can be identified with pg;. Then if ¢y : D — A& B is a mor-
phism and ® : D — BI, a homotopy of ¥, i.e., pgo® = pp o1, we can define a homo-
topy #-homomorphism ¥ : D — (A®B)I 2 AI®BI by ¥(d)(t) = (pa(y(d)), ®(d)(t)).
For this homotopy we have ¥(d)(0) = (pa(¥(d)), ®(d)(0)) = (pa(¥(d)),pp(¥(d)) =
B(d), iewy poo ¥ = 1, and (pp 0 W)(d)(t) = pa((pa((d)), 2(d)(1))) = D(d)(2), ic.
ppoV¥ =&,

Remark 1.3. The example of the above proposition corresponds to the topological
cofibrations ix : X - XVY andiy : Y — XVY |, where X VY is the disjoint union
of the spaces X and Y.

Afterwards we give two theorems which offer a series of interesting examples of
cofibrations.

Theorem 1.4 ([7,9]). Let ¢ : A — B be an arbitrary *-homomorphism with the
mapping cylinder C*-algebra My = {(a,) € A® BI : ¢(a) = (1)} ([3, p. 23]). The
map : My — B, defined by t((a,3)) = B(0), is a cofibration.

Proof. Suppose that the following diagram is given

ng%B

oI

and we need to define a homotopy morphism ¥ : D — Myl. for 1.
If for d € D, 9(d) = (a,u),u € BI with
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

then (v 01)(d) = u(0). On the other hand, (pg o ®)(d) = ®(d)(0), hence we have

u(0) = (d)(0). (2)

ui(1) = ¢(a), 3)

in order to fulfill (a,u) € Mg. Moreover the condition py o ¥ = 2 implies
U(d)(0) = (a,up), so the equality
Ug =u (4)
is necessary. And, finally, since ¢t/ o ¥ = ® we have
I (¥(d))(t) = (d)(t) = +(¥(d))(t) = 2(d)(¢)

so that it is also necessary that the condition

is fulfilled.
These conditions (1)—(5) are satisfied by the path

t
B(d)((t—27)), 0TS,
w(r) = 27 —t t
—<7r<1.
”( 2t ) 2 =" >
Thus ¢ : My — B is a cofibration and this finishes the proof. O

Remark 1.5. The above example is inspired from the topological cofibration i : X —
My, i(x) = [z,0], for a continuous map f: X — Y (see [10, ch. I, §4, Th. 12]).

In section 2 the mapping cylinder will be used for a characterization of an arbitrary
cofibration.
Remark 1.6. In [7] (see also [9]) there was proved that there exists a commutative
diagram
@

A

My

A

B

with ¢ a deformation retract *-homomorphism and ¢ the cofibration from Theorem 1.4.

The following theorem is a slight generalization of [9, Prop. 1.5].
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

Theorem 1.7. Consider a commutative diagram of C*-algebras

P——C
ql lq
A—¢>B

with the property that the pullback product x-morphism ¢xpg¢: P — Axp C admits
a left inverse 7 : Axg C — P. In these conditions if ¢ is a cofibration then ¢ is also
a cofibration.

Particularly the pullback of a cofibration ¢ by an arbitrary *-morphism q is a
cofibration ¢.

Proof. Suppose that we have a commutative diagram

PI

Then the following commutative diagram exists:

A 2 B
w
po D Po
m
Al o, BI.

By hypothesis there is a homotopy ¥ : D — AI, with pgoWU = gotp and ¢ploW = qlod.
We need to define an extension homotopy ¥ : D — PI of ®. For this we observe
that for each d € D and t € I the pair (¥(d)(t), ®(d)(t)) € A xg C. Then for the
- morphism 7 : A xg C — P we have 7((q(z),#(z))) = z, for any z € P, and
(¢o7)((a,b)) =b. Define ¥(d)(t) = 7((¥(d)(t), (d)(t))). This satisfies

(po © ®)(d) = ¥(d)(0) = 7((¥(d)(0), 2(d)(0))) = 7(q(x(d)), 6(¥(d))) = ¥(d),
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

i.e., pgo W =1, and
(@I 0 W)(d)(t) = o(7((T(d)(t), ®(d)(t))) = T(d)(t)),
ie., ploW =, O
We shall also use the following lemma of which proof is immediate.

Lemma 1.8. Let ¢: A — B and ¢’ : A’ — B be two *-homomorphisms such that A
and A’ are isomorphic over B. Then, if ¢ is a cofibration, ¢' is also a cofibration.

Ezample 1.9. The x-homomorphism py : BI — B is a cofibration.

We obtain this by using Theorem 1.4 by taking ¢ = idp, for which My = BI, and
then the morphism ¢ can be identified with pg.

Ezample 1.10. The *-homomorphism p; : BI — B is a cofibration for each ¢ € [0, 1]
(see also [9, Lemma 1. 3]).

To verify this, consider the map ¢ : BI — BI given by ((8) = ' with

yo Bt —1), if T<H,
ﬁ(T)_{ﬁ(T—t)7 it 7>t

This is a #-isomorphism over B along the pair (pg, pt). Then we can apply Lemma 1.8
and Example 1.9.

To give other examples of cofibrations, consider two *-homomorphisms B; 2,
C <2 B, and the double mapping cylinder

Mg, o0y = { (b1,b2,7) € B1® Bo ® CI = 7(0) = 1(b1), v(1) = pa2(be) },
see [7].

Corollary 1.11. The projections p; : My, 4,) — Bi,pi((b1,b2,7)) = bi, i = 1,2, are
cofibrations.

Proof. At first we observe that M., .,y is in fact the pullback along the pair of
morphisms ¢ : My, — C, ¢1 : Bi — C and that p; is the pullback projection
opposite to . Then by applying Theorem 1.4 and Theorem 1.7 we deduce that p; is
a cofibration. By analogy, the morphism pj : M(,, ) — B2, p}((b2,b1,7)) = b2 is a
cofibration. Then we apply Lemma 1.8 for the morphisms py : M, ,,) — B2 and
pll :M(SDQ,Sﬁl) —>BQ. O

Ezample 1.12 ([9, p. 409]). For any s-homomorphism ¢ : A — B, the projection
pa: My — Ais a cofibration.

We apply Corollary 1.11 for the morphisms B 5, B® A. Then Map,¢) = My
and the projection M4, 4) — A can be identified with the projection ps : My — A.
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

Ezample 1.13. If for a morphism ¢ : A — B, denote by Cy the mapping cone C*-
algebra of ¢, i.e.,

Cy={(a,8) € A® BI : B(1) = ¢(a), 5(0) = 0} = {(a, 8) € My : B(0) = 0},

then the projection m(¢) : Cp — A, w(¢)((a,5)) = a, is a cofibration. This results

from Corollary 1.11 by taking the pair of morphisms 0 — B < A. For this we have
Mo,¢) = 1(0,a,8) : 6(0) = 0,8(1) = ¢(a)} = Cy and 7(¢) is the projection ps.
Particularly, if C'B is the cone algebra over B, i.e.,

CB = Cia, = {B € BI : 5(0) =0},

and then p} := p1/CB : CB — B is a cofibration.

Ezample 1.14. If ¢ : A — B is a cofibration then the projection pcp : Cyp — CB,
peB((a, B)) = [ is also a cofibration. This results from Theorem 1.7 since Cy is the
pullback along the morphisms ¢ and p} and pcp is opposite to ¢.

Proposition 1.15. Let ¢; : A — By, i = 1,2, be x-homomorphisms with ¢1 a cofi-
bration. Suppose that there exist f : By — By and g : Bo — By such that fo¢; = ¢o,
gods =1, and fog=1p,.

Then ¢o is also a cofibration.

Proof. Let a diagram
$2

A——— B

N

Po D Po
x
_—
Al ™ BoI

with pg 0 ® = ¢5 0 ¢ be given. Then there exists the commutative diagram

A é1 B

X
Po D Po
(gI)o®
4
Al o B1

pUO\If:’lb (6)

with
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

and (¢11) oW = (gI) o ®. By this we deduce that

(fD) o ((911) 0 W) = (fI) o ((gI) 0 @) <= ((f o p1)I) 0 ¥ = ((f 0 g)]) 0 @,
ie.,
(¢a) 00 = . (7)
Thus, the relations (6) and (7) show that ¢ is a cofibration. O

2. The role of the mapping cylinder in the general case

Theorem 2.1. A x-homomorphism ¢ : A — B is a cofibration if and only if there
exists a x-homomorphism r: My, — Al satisfying the following conditions:

(i) r((a,))(0) = a,
(ii) (61 o7)((a,B)) =5, ¥(a,B) € M.
(B denotes the inverse path of [, i.e., B(t) =p(1—-1t),vVtel).

Proof. Suppose that there exists a *-homomorphism r : My — AI with the proper-
ties (i), (ii).
Let v : D — A, ®: D — BI be x-homomorphisms such that pgo® = ¢o w./T\‘hus
we have ®(d)(0) = ¢(¢(d)) and we can define ¥ : D — AI, by ¥(d) = r((¢(d), D(d))).
For this morphism we have

(po 0 W)(d) = ¥(d)(0) = r((¢(d), 2(d)))(0) = ¢(d)

and

—

(@I 0 W)(d) = (&I o7)((4(d), D(d))) = D(d),

ie., (¢) oW = ®. Thus ¢ is a cofibration.
Conversely, suppose that ¢ is a cofibration . Consider D = My and ¢ : D — A,

® : D — BI defined by ¢((a,3)) = a, and ®((a,3)) = 3, ¥(a, ) € M . Then

(po © ®)((a, B)) = ®((a, 3))(0) = B(0) = B(1) = ¢(a) = (¢ 0 ¥)((a, B)),

i.e., po o ® = ¢ and this implies that there exists ¥ : My — AI, with ¥((a, 5))(0) =
¥((a,3)) = a and (pIoW)((a,3)) = ®((a, 8)) = 3. Thus r = ¥ verifies the conditions
(i), (). O

We can formulate this characterization of cofibrations also in terms of retracts, as
follows.

Definition 2.2. For a x-homomorphism ¢ : A — B we can define a morphism
2 Al — My by x(a) = (a(0), po &). We say that My is a “canonical retract” of AT
if there exists a *-homomorphism v : My — Al such that >0y = 1y,.

Revista Matemdtica Complutense
537 2008: vol. 21, num. 2, pags. 529-552



I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras
Corollary 2.3. A x-homomorphism ¢ : A — B is a cofibration if and only if My is
a “canonical retract” of Al.

Proof. Suppose that ¢ is a cofibration and r : My — AI is the *-homomorphism from
Theorem 2.1. Then if we put v = r, we have

(> 07)((a, 8)) = (r((a, §))(0), ¢ o r((a, 5))) = (a, ¢ o 7((a, B))) = (a, B)

= xo0y =1y,

Conversely, suppose that there is a retraction v, as above. Then if (a, §) € My,

—

(a,8) = (>0 7)((a, B)) = (v((a, 8))(0), & © v((a, B))) = ~((a, 8))(0) = a,

and ¢ o y((a,))) = . Therefore, if we put r = v, the conditions of Theorem 2.1 are
verified and thus ¢ is a cofibration. O

Remark 2.4. In [9, Prop. 1.10] a variant of Corollary 2.3 also exists.
Corollary 2.5. A composition of two cofibrations is also a cofibration.

Proof. Let ¢1 : A — B, ¢ : B — C be cofibrations with canonical retracts rq :
Mg, — AI and, respectively, o : My, — BI . Then we can define 7 : My,0p, — Al

by r((a,7)) = r1((a,r2((¢1(a),7)), which is a canonical retract. O

Corollary 2.6. If ¢ : A — B is a cofibration, then ¢I : AI — BI is also a
cofibration.

Proof. Myr = {(o, F) € AI ® (BI)I : F(1) = ¢ o a} and sy : (AI)I — My,
s41(G) = (G(0), 6T 0 G).

If r: My — Al is a canonical retract for ¢, we can obtain a morphism R :
Myr — (AII. If (a, F) € Mgy, and t € I, considering 3; € BI with 3;(t') = F(t')(t).
Then 5;(1) = F(1)(t) = ¢(a(t)), which implies that (a(t), 8;) € M.

We define R((«, F))(t')(t) = r((a(t), 8¢))(t'). This morphism satisfies R((«, F'))(0)(t) =
r((a(t), 3))(0) = a(t) and

—

(¢I o R((c, F)))(#')(t) = (por((a(t), B)))(t') = Be(t) = F(t')(¢)
— ¢loR((a, F)) = F.

These relations show that R is a canonical retract. O
The proof of Corollary 2.6 can be adapted to obtain the following corollary.

Corollary 2.7. If ¢ : A — B is a cofibration, then C(¢) : CA — CB is also a
cofibration.
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3. Other properties of the cofibrations [4]

The following theorem is inspired from some results on the topological cofibrations
given in the book of I. M. James [4, ch. 6].

Theorem 3.1.
(i) A cofibration of C*-algebras is a surjective x-homomorphism.

(ii) Let ¢1 : Ay — B be a cofibration and ¢2 : A2 — B an arbitrary morphism.
Let x : Ao — Ay be a morphism such that ¢, o x L ¢o. Then x 9 X' for
X' : Ay — A1 a morphism over B.

(iii) If a cofibration ¢ : A — B admits a right inverse up to homotopy then ¢ admits
a right inverse.

(iv) Let ¢ : A — B be a cofibration. Let 0 : A — A a morphism over B, and
suppose that 0 9 14. Then there exists a morphism 6 : A — A over B such
that 000 2 14 over B.

(v) Let ¢; : A; — B, i = 1,2, be cofibrations. Let v : Ay — Ay a morphism over
B. Suppose that 7y, as an ordinary morphism, is a homotopy equivalence. Then
v s a homotopy equivalence over B.

(vi) If a cofibration ¢ : A — B admits a right inverse ¢’ : B — A and it is a
homotopy equivalence then ¢ is a homotopy equivalence over B.

Proof. (i) Consider the following commutative diagram

A
\
Po My PO
[}
\
Al pY: BI

with pa((a,8)) = a,®((a,3)) = B, satisfying ¢ o pa = po o ®, and pgo ¥ = py,
¢IoW = ®. The last relation implies ¢(¥((a, 3))(1)) = B(0) for each pair (a, 3) € M.
If b € B is an arbitrary element, consider the path 8, € BI, defined by 3,(t) = (1—t)b,
for any ¢ € I. Then (04,05) € My since ¢(04) = 0 = Bp(1). Thus we can write
b= B(0) = H(T((04, 3))(1)), ice., b € Tm 6.

(ii) Let ® : A, — BI be a homotopy of ¢; o x into ¢3. Since pgo ® = ¢1 0 x
and ¢, is a cofibration there exists a homotopy ¥ : Ay — Al with pgo ¥ = y and

¢
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I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

(¢11) o ¥ = ®. Taking x’ to be p; o U, we have x’ i x and

proxX =d1oproV¥ =p;od =g

(iii) This assertion is a special case of (ii) for ¢1 = ¢: A — B,¢2 = 1p and x a
homotopic right inverse of ¢. Then x L X' for a morphism Y’ : B — A over B. This
means that pox’' = 1p .

(iv) Let ®: A — AI be a homotopy of  with 14, i.e., ppo® =0 and pjo® = 14.
The property of the sx-morphism 6 to be over B is expressed by the relation ¢pof = ¢.
Then the *-homotopy ¢ o ® : A — BI satisfies the relation

poo (¢ 0®) = o (p®) = dob=o.

Since ¢ is a cofibration, there exists a x-homotopy ¥ : A — AI such that ppoW =14
and ¢I o U = ¢I o . Define ' = p; o ¥. For this we have

08 = gop oW =¢opol=cod=g¢
and 0/ 21 4. We shall prove that 6 o ¢’ LN 4 over B. A simple homotopy of these

morphisms is I' : A — AI, being defined by

pool =006, prol =1,4.

Payo) = | (@1 —20), 0<t<1/2,

But this is not a *-homotopy over B since

<¢or><a><t>={¢(@(")“Qt”’ O=t=12 Gon, 20

o(B(a)(2t— 1)), 1/2<t<1,

We shall replace this *- homotopy I' by a x-homotopy of 8 o ' with 14 over B. For
this we consider first a homotopy A : A — (BI)I defined by

P((®(a)(1 = 2t'(1 = 1)), 0
P(@(a)(1-2(1 —t)(1 1)), 3

Then pg o A = (¢I) oT" and since @I is a cofibration (Corollary 2.6) there exists a
homotopy A’ : A — (AI)I with pgo A’ =T and ((¢1)I) o A’ = A. Then

Aa)(t)(t) = {

909’:pooF:poopooA’r’iplopooA’prlopooA’:ploF:lA,

all homotopies being over B.
(v) Let ' : A; — Ay be a homotopy inverse of v, as an ordinary morphism.

Then ¢p 09 = ¢provyoy 9 ¢1. By (i), v 9 ~" for some morphism +” : A; — A,
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over B. Since yo~"” i 14, and, since yo~" is over B, by (iii) there exists a morphism
§: Ay — Ay over B such that yo~" 04 & 14, over B. Thus v admits a homotopy
right inverse 4 = 7"/ o § over B.

Now 4 is a homotopy equivalence, since « is a homotopy equivalence, and so the
same argument, applied to 7 instead of v, shows that ¥ admits a homotopy right
inverse 7 over B. Thus 4 admits both a homotopy left inverse v over B and a
homotopy right inverse 4 over B. Hence 7 is a homotopy equivalence over B, and so
v itself is a homotopy equivalence over B, as asserted.

(vi) If po¢’ = 1 we have that ¢’ is a morphism over B. And if ¢ is a homotopy
equivalence we can suppose that ¢’.is a homotopy equivalence. Then we apply (v) for
¢1 = ¢, ¢po = 1p, and v = ¢'. Therefore ¢’ is a homotopy equivalence over B, and so
¢ itself is a homotopy equivalence over B. O

4. Bicofibrations

In this part of the paper our notion of bicofibration and also some properties of this
structure are a noncommutative version of the notion of (topological ) bicofibration [8]
and of some properties of this given in [5].

Definition 4.1. A pair of %-homomorphisms ¢; : A — B;, i = 1,2, is a bi-
cofibration of C*-algebras if given a x-homomorphism ¢ : D — A and homotopy
sx-homomorphisms ®; : D — B;I,i = 1,2 , satisfying pp o ®; = ¢; o9, i = 1,2, there
exist homotopy *-homomorphisms ¥, : D — AI, i = 1,2, such that:

(1) poO\I/i :1/17 1= 1721
(i) il oW; = ®;, i =1,2, and

(iil) (D X% AT 2% A 2By = (D% A% By, Ve,

(iv) (D25 AT 25 A2 B =D % A% B), Vel

B, 1 A P2 B,
Tlp
Po D po
@, u @
V5% Vo
Bl o1 Al $o1 Byl
\Lpt
B, 1 A @2 By
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Ezample 4.2. Let ¢; : A; — By, i = 1,2, be cofibrations. Define ¢} : A1 ® Ay — B;
by ¢, = ¢; op;,i = 1,2, where p; : Ay & A2 — A; are the sum projections. Then the
pair of x-homomorphisms By & A @ A, & Bs constitutes a bicofibration.

Particularly, for two arbitrary C*-algebras A;, i = 1,2, the pair of the projections
A &4 A @ Ay B A, is a bicofibration.

To see this, let ¢ : D — A1 @& As be a x*-homomorphism and homotopy morphisms
®, : D — B;I,with pgo ®; = ¢}, otp,i = 1,2. Consider ¢, : D — A;,;¢p; = p; oy,
i =1,2. Because

poo®; = ¢; 01 =¢;o (P, p2)) =dioth;, 1=1,2,

there exist U; : D — A;I, with pg o ¥, = ¢; and (¢;I) o ¥; = ®&,. Consider
\I/; D — (A1 D AQ)I = All@ AQI, i = 1,2, defined by \Illl(d) = (‘I’l(d)7¢2(d))
and U4(d) = (¥1(d), ¥2(d)). Then we have

Po © \Ijll = (PO o \Plva) = (7!11,’1,[}2) = 1/}7
po o Wy = (11, p0 0 Wa) = (Y1, 12) =¥,
and

(1) o W) = (1l oprl) o (Wy,4hp) = @11 0¥y = Py,

and analogously (¢51) o W, = ®5. Moreover, we have
2 2

dp0pi oWy = o opyop;o(Wi,1h) =2 opao(proWi,ho)
=¢ooy=goopyoth =¢ho
and analogously ¢} o p; o Ul = ¢} o 1.
Ezample 4.3. Let ¢ : A — B be a *-homomorphism, M, the mapping cylinder of ¢
and the ¢ : My — B,pa : My — A the maps ¢((a,3)) = B(0) (Theorem 1.4), resp.
pa((a,8)) = a (Example 1.12). Then the pair A &2 M, % B is a bicofibration.
To see this, suppose that ¢ : D — Mg and ®4 : D — AI,® : D — BI are given

such that pgo ®4 =pa oy and pgo ® = o). At first we denote by W : D — Myl
the homotopy from the proof of Theorem 1.4. Then

(a0 proW)(d) = pa(¥(d)(t)) = pal(a,u)) = a = pa((a,u)) = pa(P(d)).

HencepAopto\I!:pon
Then if (d) = (aq,Ba), define the homotopy W4 : D — Myl by Ua(d)(t) =
(@a(d)(t), Ba,t), with B¢ € BI given by

B4(0), if 0<7< %,
Bai(T) = Ba(35L), if L<r<1-1£,
P(@a(d)(t+37—3)), if 1-L<7<1
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Then ¥ 4 is a homotopy well defined which verifies the conditions

(po o Wa)(d) = VA(d)(0) = (Pa(d)(0), Ba0) = (aq, Ba) = Y(d),
(pal oV 4)(d)(t) = pa(Va(d)(t)) =pa(Pa(d)(t), Bar) = Pald)(t),
and

(10 pr 0 Wa)(d) = (T AW)(1)) = L((@a(D)(1), Bas)) = Baa 0)

= Ba(0) = (to¥)(d)
Thus the homotopies ¥ and W 4 verify the conditions (i)—(iv) from Definition 4.1.
Proposition 4.4. The pair of *-homomorphisms A <~ AI 2% A is a bicofibration.

Proof. Let v : D — AI be a *-homorphism and homotopy morphisms ®; : D — Al,
1=0,1, with pgo®g = ppo1) and pgo P, = p1op. At first, we define ¥y : D — (AI)I
by

<7<3,
<7<l

Wold) (1)) = {jﬁgziiﬁfﬂ’ !

This homotopy *-homomorphism verifies pg o Wy = 9, pgl o ¥y = Pg, and

(P10 proWo)(d) = pr(Wo(d)(t)) = Wo(d)(t)(r) = P(d)(1) = (p1 o ¥)(d), VdeD.
Then we define ¥y : D — (AI)I as follows. At first consider ¥’ : D — (AI)I the
analogous to the morphism ¥, defined for Yoy : D — Al instead of ¢, and &
instead of ®g, where Y : Al — AI is the morphism T(«) = &. For this we have
poo VW =To, pol oW =&y, and p;ops oV = pj o (Y o)) = pgorp. Then we
define ¥ = Y1 o ¥’. For this we can verify the relations

POO\IJI :poOTIO\IJ/:Top00W/:TOTO¢:w7
pl.[O\Ifl :pl_[OTIO\I//: (ploT)Io\If/:pOIo\If/:(I)l,
and
poopioWi=pioTop oW =poTopoYIoW =p op oW =pyor.

Thus we have verified all conditions from Definition 4.1. O

Remark 4.5. If we replace above p; by p, with » € (0,1) then the condition

prop oWy = p, o1 is not verified. Thus the pair A <= AT 2 A may not be
a cofibration.

Proposition 4.6. Let By <~ A % B, be x-homomorphisms. Consider the follow-
ing C*-algebra

Zipr02) =1(a,01,02) € A® B1I @ Bol @ Bi(1) = pi(a), i =1,2}.

and the x-homomorphisms ¢; : Ziy, 4,y — Bi, i = 1,2, with ¢;((a, B1,P2)) = B:i(0).
Then B 2L Z(p1,62) 22, By is a bicofibration.
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Proof. Let ¢ : D — Z(4, ¢,) be an arbitrary *-homomorphism and ®; : D — B;l,
i = 1,2, homotopy morphisms with pgo ®; = ¢; o 1p . We need to define some
homotopies W; : D — Z(g, ¢,)1I, i = 1,2, for ¥. If ¥(d) = (a, B1, B2), we shall define
Wy (d)(t) = (a, Bir, Ba), C2(d)(t) = (a, b1, Bat), Where

o fEa -2, o
ﬂlt( ) {ﬂz(%—t) %
This path is well defined since ®;(d)(0) = ¢;(v(d)) = 5:(0).

Moreover (a, B1¢, B2), (a, B1, Bat) € Z(p,,4,) since Bi(1) = Bi(1) = @i(a) and
Bi(1) = pi(a). For these homotopy *-homomorphisms ¥; we have

‘Ijl(d)(o) = (%510752) = (a751752) = 1/)(d>7
(¢11) o W1 (d)(t) = ¢1((a, Bit, B2)) = B1:(0) = ®1(d)(t) = (¢1I) 0 ¥y = Py.
Analogously pg o Wy = and (¢ol) 0 Uy = .

Moreover (¢20p:0W1)(d) = ¢2((a, Bit, B2)) = B2(0) = ¢2(¥(d)), ie., p2oproWy =
@2 0 1). Similarly ¢1 o ps o Uy = ¢y 0 1. O

i
2 i=1,2.
1,

<7<
<7<

Proposition 4.7. If B, RN By is a bicofibration then every x-homomorphism
¢i, 1 =1,2, is a cofibration.

Proof. Suppose that 1 : D — A is a x-homomorphism and ® : D — B[ a homotopy
for ¢1 o 9. Consider &; = ® and &5 : D — Byl, the constant homotopy, i.e.,
pr 0 Py = g 0 7). Then there exists ¥y : D — AI, such that pgo ¥; = @ and
p1loV; =0y =, O
Corollary 4.8. A x-homomorphism ¢ : A — B is a cofibration if and only if the
pair 0 «— A % Bisa bicofibration. Thus every cofibration can be considered as a
particular bicofibration.

Proof. Apply Example 4.2 and Proposition 4.7. [

Remark 4.9. An example of pair of cofibrations which is not a bicofibration is a pair
A4 A 2% B with ¢ an arbitrary cofibration.

Theorem 4.10. A pair of x-homomorphisms B RN By is a bicofibration
if and only if there exist x-homorphisms r; : Zg, 4,y — Al, i = 1,2, verifying the
following conditions:

(i) r((a,B1,062))(0) =a, i=1,2.
(ll) (¢ilori)((a761752)) = @7 v(aa /81762) S Z(¢1,¢2), 7= 172

(111) (d)Q o pt © Tl)((avﬂlaﬂ2)) = ¢2(a)) v(‘%ﬁlvﬂ?) € Z(¢>17¢2) and (d)l O Pt
or)((a, B1,82)) = d1(a), V(a, Br, B2) € Z(4,,4,)-
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Proof. Suppose there exist *-homomorphisms r; : Z(4, ¢,) — Al, i = 1,2, with the

properties (i)—(iii). We proceed as in the proof of Theorem 2.1. Let ¢» : D — A

and homotopy morphisms ®; : D — B;I, wiMo O/@\: ¢; o, i = 1,2. Define

\Ifi D — AI, 1= 1,27 by \I/Z(d) = Tl((w(d)7®1(d)7®2(d))) Then pPo © \IJ7 = 1/) and
Moreover,

—

(@20 pr 0 W1)(d) = (d2 0 pr 0 71)((1(d), P1(d), P2(d))) = (d2 0 ¢)(d),

i.e., ¢g0ps oWy = ¢y 01 and analogously ¢y 0 pro Wg =y 01 .

Conversely, suppose that Bj RSN Bs is a bicofibration. Consider

D =Zg ¢,y andtp: D — A, & : D — Bil, i = 1,2, defined by 1 ((a,51,52)) = a
and ®;((a, 81, B2)) = Bi, Y(a, b1, B2) € Z(4,,4,)- Then

(po © @) ((a, B1, B2)) = ®;((a, B1, £2))(0) = Bi(0)
= ﬂi(l) = ¢i(a) = (¢¢ o ¢)((avﬂ1752))»

ie., ppo®; =1, i = 1,2, and this implies that there exist ¥; : Z(y, 4,) — Al, i =1,2,
with

Vi((a, B1, 52))(0) = ¢((a, b1, B2)) = a,

—~

(¢il 0 V;)((a,B1,B2)) = ®i((a, 51, B2)) = Bi.

Moreover
(¢2 0 pr o W1)((a, B1, B2)) = (2 0)((a, B1, B2)) = ¢2(a)
and
(610 pr o Va)((a, B1, B2)) = (61 0 ¥)((a, b1, B2)) = b1(a).
Thus if we put r; = ¥;,¢ = 1,2, the conditions (i)—(iii) are fulfilled. O

Corollary 4.11. A pair of *-homomorphisms By RN Bs is a bicofibration
if and only if there exist canonical retracts v; : Mgy, — Al, i = 1,2, such that

(2 0 pr o m)((a, B1)) = ¢2(a),¥(a,p1) € Mg, and (¢1 0 ps © v2)((a,B2)) = ¢1(a),
V(a,ﬁg) S M¢2.

Proof. Suppose that B; RaNg B3 is a bicofibration and consider r; : Z4, 4,) —
Al i=1,2, as in Theorem 4.10.
Define v; : My, — AlI, i = 1,2, in the following way:

'71((%51)) = Tl((avﬂh(b?(a))v V(awgl) € Md)l
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and

72((‘17&2)) = T2((&,¢1(a),ﬂ2)), V(CL,,@Q) € M¢23

where ¢2(a) and ¢ (a) mean the constant paths here.
Then if 5 : AT — My,, i = 1,2, denote the *-homomorphisms s;(a) = (a(0), ¢; o
&), we have

(221 071)((a, B1)) = sa1(r1((a, B, ¢2(a)))

—_—~
= (r1((a, B1, $2(a))(0), ¢1 o r1((a, B1, $2(a)))

= (a’vd)l © rl((a7617¢2(a))) = (a761)7

ie., xpoy = 1M¢1.
Analogously we deduce the equality s o y2 = 1p7,,. Thus My, i = 1,2, are
canonical retracts of AI. Moreover,

(20 proy1)((a, B1)) = (2 0 pr o1)((a, b1, P2(a))) = ¢2(a)

and

(610 pr 0o 2)((a, B2)) = (¢1 0 ps 0 72)((a, p1(a), B2)) = ¢1(a).

Conversely , suppose that the retr@gtions i, ¢ = 1,2, are given. Then we have
Pyl((avﬂl))(o) =aand QSZO’Yl((CL,ﬁl)) = 61'7 1=1,2. Define r; : Z(qbl,qbg) - AI? 1=1,2,
ri((a, 81, B2)) = vi((a, Bi)), Y(a, B1, B2) € Z(¢17¢2). Then

ri((a, B1, 82))(0) = 7i((a, £:))(0) = a,
(¢i o73)((a, B, B2)) = di 0 vi((a, B1)) = Bi

and

(¢2 0 pror1)((a, Br, B2)) = (#2 0 pr 0 1)((a, B1)) = p2(a),

(¢1 0 pt o V2)((a, b1, B2)) = (¢1 0 pt 072)((a, B2)) = ¢1(a),
for all (a,ﬁl,ﬂg) S Z(¢17¢2).
Thus the conditions from Theorem 4.10 are satisfied. O

Using Corollary 4.11 and the proof of Corollary 2.6 and of Corollary 2.7, we deduce:

Corollary 4.12. If B, gl By is a bicofibration then Byl DL qp 22 BsI
and CB; C(41) CA C(¢2)

CBsy are also bicofibrations.

Corollary 4.13. For a fized nuclear C*-algebra F, the functor A — A Quin F
preserves bicofibrations.
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Proof. Suppose that B; Ry RN By is a bicofibration. We have that My, g, .1, =
My, @min F and if 5¢; : AT — My, is the morphism »(a) = (a(0), ¢;0&), then the mor-
phism 3 ®min 1r @ Al ®min F — My, ©min F can be identified with
%; (A ®min F)I — Myg,...1r » the corresponding morphism for ¢; @min 1p. Then
if v; : My, — AI, i = 1,2, are canonical retracts such that ¢o 0 pr 0oy = ¢pa0pya
and ¢1 0 pr 0 y2 = ¢1 0 pa, we can define 7] : Myg, 1, — Mpgmnir 85 Vi Omin 1F
My, @min F' — AI®min F'. Then since we can also identify p¢ : (A®minF)I = A®min F
with pr @min 1F : A @min F — A Qmin F, the relations (¢2 @min 1r) 0 pr o yf =
(2 @min 1F) 0 PAGmi F a0 (@1 @min 1F) 0 pr 075 = (#1 @min 1F) 0 PA, F follow. By
Corollary 4.11 we conclude that By ®min F $1®minlr A Qmin F $28minlp, By Qmin F'
is a bicofibration. O

Remark 4.14. The corresponding property for cofibrations is given in [9, Prop. 1.11].

Corollary 4.15. If B, RN By is a bicofibration, the same property has the pair

of the suspension morphisms ¥B, 20y 202, ¥.Bsy. Particularly if ¢ : A — B isa

cofibration then YA 2. S Bisa cofibration (see Proposition 4.7 and Corollary 4.8).

Proof. For a C*-algebra A, YA = {f € AL; f(0) = f(1) = 0} ~ AR ~Cy(R)®A,
(see [1, p. 24]). Then we can apply Corollary 4.13. O

5. Application: some results in connection with the Cerin’s ho-
motopy groups

This section refers to the homotopy groups for C*-algebras in the sense of Z. Cerin.
We recall the definition of these groups [1].

Let A and B be C*-algebras. Let n > 0 be an integer. Let F™ = F"(A; B) denote
the set of all *-homomorphisms from A into the C*-algebra Cs(I™; B) of all continuous
functions from the n— dimensional cube I" into B which map the boundary 0I™ of I"
into the zero element Op of the algebra B. These *-homomorphisms are divided into
homotopy classes and the set of these classes define a group 7, (A4; B) (if n > 1), called
the n-th (absolute) homotopy group of B over A. The group structure is obtained
as usual by an addition in F"(A; B) defined by means of one coordinate of I"™. This
construction is functorial, covariant with respect to B and contravariant with respect
to A. Particularly, if A is a C*-algebra and ¢ : B — C' is a x-homomorphism, then
a homomorphism of groups ¢. : m,(A; B) — m,(A; C) is defined by ¢.[f] = [f’], for
f e F™(A; B), with f'(a)(t) = ¢(f(a)(t)), fora € A, t € I™.

The pointed set m(A4; B) is the pointed set of all homotopy classes of *-homomor-
phisms from A into B.

Theorem 5.1. Let ¢ : A — B be an arbitrary x-homomorphism of C*-algebras, K
a C*-algebra and n > 0 an integer. If i’ : Cy — My is the inclusion and v : My — B

Revista Matemdtica Complutense
547 2008: vol. 21, num. 2, pags. 529-552



I. Pop/A. Tofan Cofibrations and bicofibrations for C*-algebras

is the cofibration from Theorem 1.4, then there exists an exact sequence of Cerin’s
homotopy groups over K

Tn+1(K; B) 9., 7 (K Cy) N Tn(K; My) 2 7,(K; B).
This is an immediate consequence of the following theorem.

Theorem 5.2. For ¢: A — B a cofibration, K a C*-algebra and n > 0 an integer,
there exists an exact sequence of Cerin’s homotopy groups over K

1 (K B) 25 (K Cg) T2 (K A) 25 o (K B).
The following two lemmas will be applied to prove this theorem.

Lemma 5.3. Let A and B be C*-algebras and n > 0 an integer. Then there exists
an isomorphism of groups o : wp(A; X B) — mha1(A; B) (bijection for n=10).

Proof. It f € F™(A;¥B), ie., f : A — Cy(I™;¥B), we can define f' : A —
Cop(I™*; B) in the following way. If ¢t € I"™! we write this as t = (¢/,t,11), with
t' € I" and t,,1 € I and then we take f'(a)(t) = f(a)(t')(tni1), Ya € At € I"FL.
If t € I we can have t' € 9I" or t,+1 € OI. In the first case f(a)(t') = 0 and
in the second case f(a)(t')(tn+1) = 0 since f(a)(t') € ¥B. Thus f’ is well defined
and f’ € F""(A; B). Moreover if g € F"(A; ¥ B) is in the same homotopy class as
f then ¢’ defines the same homotopy class as f’.

Indeed supose that h : A — Cy(I™; XB)I is a homotopy satisfying pg o h = f,
pioh = g. Define i : A — Co(I""Y; B)I, by h'(a)(7)(t) = h(a)(T)(¥')(tnt1). As
above we can see that h' is well defined. Moreover

' (a)(0)(t) = h(a)(0)(t')(tn11) = f(a) () (tns1) = F'(2),

i.e., pooh’ = f’ and analogously p; o h/ = ¢'.

Thus we have a correspondence o : 7, (A; XB) — m41(4; B),o([f]) = [f']-

Conversely, if f' € F'""1(A;B), define f : A — Cp(I";$B) by f(a)(t')(s) =
fa)((t',s)), for t' e I", s € I.

First we have f(a)(t') € ¥B since if s € {0,1}, (¢,s) € OI""! such that
fla)#)(0) = f(a)(')(1) = 0. Then if ¢ € 9I", (¢,s) € I which implies
fla)(')(s) =0, Vs € I, ie., f(a)({t') = 0. We deduce that f € F"(A;XB). Then as
above we deduce that the homotopy class of f depends only on the homotopy class
of f'.

Thus we can conclude that o is a bijection. Finally it is easy to verify if n > 1 then
the above [f] — [f'] correspondence is compatible with the additions in F™(A4; X B)
and F"T1(A; B), so that o is an isomorphism. O

Lemma 5.4. For a x-homomorphism ¢ : B — C, define ¢% : Co(I™; B) — Co(I™; C),
by ¢5(e) = ¢ o, for any o € Co(I™;B). If ¢ is a cofibration then ¢} is also a
cofibration.
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Proof. We shall apply Theorem 2.1. For this we observe at first that the mapping
cylinder algebra My = {(8,0) € Co(I"; B) ® Co(I™;C)I : ¢3(3) = 0(1)} can be
identified with Cp(I"; My) by the following isomorphism yx : Mgn — Co(I"; M),
x((8,0))(t) = (B(t),6:), with 8, € CI defined by 0,(7) = 6(7)(t), for any 7 € I. It
is easy to see that this definition is correct and that x is an isomorphism. Similarly
there is an isomorphism 6 : Cy(I™; B)I — Cy(I™, BI), §(0)(t)(7) = 0(7)(¢t), for t € I"
and 7 € I. Now let r : My — BI be a canonical retract with » : BI — M,
satisfying » o7 = 1p7,. Then we define ' = §lorkoy: Myr — Cp(I™; B) and
# =x"toxgod: Cy(I"; B)I — Mys. And since s or = 1y, implies x5 orj =
Loy (1mim,), it is immediate that " o 7" = 1M¢g' By Theorem 2.1 we conclude that
¢35 is a cofibration. O

Proof of Theorem 5.2. Since for the cofibration ¢ there exists a homotopy equivalence
(over A) between Cy, and J = ker ¢, see [9, Prop. 2.4], we can formulate the exactness
in the term 7, (K; A) as the exactness of the sequence

(K J) ELN (K A) 2, 7 (K; B),

where j denotes the inclusion J — A.

First it is obvious that Im j. C ker ¢, since ¢, 0 j. = (¢ o j)x = 0. Now let
[f] € ker ¢.. This means that f is a *-homomorphism f : K — Cy(I"; A) such that
there exists a homotopy ® : K — Cp(I"; B)I satistying poo® = ¢} o f and pjo® = 0.
By Lemma 5.4 there exists ¥ : K — Cy(I™; A)I such that the following diagram is
commutative

b5

Co(I™; A)
\
Po K Po
@
N
(1" A)I - Co(I"; B
*3

Therefore we have pgo ¥ = f and ¢5I o ¥ = &. If we denote f' :== p1 0¥ € F"(K; A),
then ¢5(f') = p1o® =0, i.e, ¢(f'(k)(t)) = 0,Vk € K,Vt € I", which shows that
f' € F"(K;J). Thus we can conclude that [f] = [f'] = j«[f'], i-e, [f] € Imj..
Therefore ker ¢, C Im j,, which permits to conclude the exactness of the sequence

Co(I"; B)

Co

)

(K5 Cy) 205 (K A) 25 1, (K B). (8)

Now by Example 1.13, m(¢) : C4 — A is a also a cofibration and ker w(¢) = £B.
By applying the exact sequence already obtained for this cofibration we obtain the
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exact sequence m,(K;XB) R Tn (K5 Cyp) iGN T (K; A), where i : ¥B — Cy is the
inclusion i(3) = (0, 3). Now if we define 0, : m41(K; B) — 7, (K;Cy), 0 = ix 00,
for o the isomorphism from Lemma 5.3, we obtain the exact sequence

i1 (K B) 25 (K C) 220 (K A). (9)
By joining sequences (8) and (9) we finish the proof. O

Proof. We apply Theorem 5.2 for the cofibration ¢ : My — B and use the homotopy

equivalence C, 2 ker: = {(a,B) € My : B(0) = 0} = Cyp induced by the inclusion
ker:. — C,, see [9, Prop. 2.4]. O

Remark 5.5. Unfortunately we have not succeeded to prove that the exact sequences
from Theorems 5.1 and 5.2 are long exact sequences. But we can complete these se-

quences with the following semiexact sequences m,(K;A) LiN 7 (K; B) 2.,

Tn_1(K;Cy) and 7, (K; My) = 7,(K; B) LR Tn—1(K; Cy) respectively. It is suffi-
cient to verify the semiexactness only for the first sequence. First we observe that
Oy : mp(K; B) — mp—1(K; Cy) can be expressed by the following formula: 9.([f]) = [h],
where for f € F*(K;B), h € F'"Y(K;Cy) is defined by h(k)(t') = (04, Bk ) with
Brr(T) = fk)((Y',7)), k € K,t' € I""',7 € I. Now, if [g] € m,(K;A) then
(0 0¢.)([g]) = [I] with I € F"~'(K;Cy) given by I(k)(t') = (04,3 ) and B ,, (1) =
d(g(k)((t',7)), k € K,t' € I""!,7 € I. Now we define the following homotopy *-
homomorphlsm UK — C’d(I" LCy)I by Y(k)(T)(#) = (9(k)(#', 7)), B 1)
with By v (1) = ¢(g(k)(t',77")) for k € K, ' € I"™!, 7,7/ € I. This is well defined
since S r.1(0) = ¢(g(k)((t',0)) = $(04) = 0p and S ¢ (1) = G(g(k)((',7)) and
for t € 91", W(k)(r')(f') = Oc,. Then, for this *-homotopy we have

U (k)(0)(t) = (g(k)((t',0)), Br.041) = (04, Broer):

Brow (1) = d(g(k)((t',0)) = 0B, Y(K)(1)(t') = (9(k)((',1)), Bra) = (04, Br1e),
and Bi1v(7) = ¢(g(k )(( ',7)) = Biw(7), ie, W(k)(0)(t') = (k)(t'). So we have ob-
tained that [ is homotopy equivalent with the trivial s*-homomorphism
z: K — Cy(I"';Cy), which means that 9, o ¢. = 0, and this implies the inclu-
sion Im ¢, C ker 0.

Lemma 5.6. Let B RN By be a bicofibration and n > 0 an integer. Then
the pair of x-homomorphisms Co(I™; By) Lo Cy(I™; A) N Cy(I™; Bg) is a bicofi-

bration.

Theorem 5.7. Let B RZNNRLR — By be a bicofibration, K a C*—algebra, and
n >0 an integer. If [f] € mp(K; A) is an element which belongs to ker ¢, Nker o,
then there exist f; € F"(K;ker ¢;), i = 1,2, satisfying the following conditions:

() [f] = [fi] in mp(K; A), i =1,2.
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(i) ¢Yyo fo=¢Tyo0f and ¢hyo0 fr = @dhyo f.

Proof. By hypothesis f : K — Cy(I™; A) is a x-morphism for which two homotopies
®;: K — Co(I™; B;)I, i = 1,2, with pgo ®; = ¢y o f and p; o ®; =0, i = 1,2, exist.

Co(I™: Br) <22 0 (1™ A) Y0 Cy(I™: By)
Tw
PO K po
(3] ll [
T, | | W,

I BT I AV 1" Bo)I
Cc’)( ) 1) P, Cg)( 3 ) ol Ca( ) 2)
\Lpt
. 67 : o2 .
Co(I"; By) Co(I"; A) Co(I"; Ba)

By Lemma 5.6 there exist two homotopies ¥; : K — Cy(I™; A), i = 1,2, with
pooW; = f, ¢igloW; =@;,1=1,2, and ¢TyoproWa = ¢fy0 f, P50 pr oW1 = ¢ns0 f.
Define f; = p1o¥; : K — Cy(I";A), i = 1,2. Then U; : f ~ f; in F"(K,A) and
fi € F*"(K;ker ¢;), i = 1,2. Moreover, ¢y o p1 oWy = @lyo f = ¢yo fo=0dlyo0f
and @5y 0 p1 0 Wy = ¢ly0 f = ¢hy0 f1 = @by o f. Thus the conditions (i), (ii) have
been verified. O

Corollary 5.8. Let B; RN RN By be a bicofibration, K a C*-algebra, and
n > 0 an integer. If fi € F*"(K;ker¢1) and ¢o.[f1] = 0, then there exists fy €
F"(K;ker ¢2) satisfying the conditions:

(i) [fi] = [f2] in mn(K; A) and

(ii) ¢fyo f2=0.
Corollary 5.9. Let B RNy RN Bs be a bicofibration, K a C*-algebra and n > 0

an integer. Then ker ¢1. C ker o, if and only if for each f; € F™(K;ker¢y), the
following properties are satisfied:

(i) @590 fr=0.
(ii) There exists fo € F™(K;ker ¢o), with [f1] = [fa] in m,(K; A) and ¢y 0 fo = 0.
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