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ABSTRACT

A tempered Radon measure is a o-finite Radon measure in R™ which generates
a tempered distribution. We prove the following assertions. A Radon measure

8
 is tempered if, and only if, there is a real number 8 such that (1 + |z|?)2 u is
finite. A Radon measure is finite if, and only if, it belongs to the positive cone

+
BYo(R™) of B{,o(R™). Then u(R™) ~ ||t | BYs (R™)|| (equivalent norms).
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Introduction

A substantial part of fractal geometry and fractal analysis deals with Radon measures
in R™ (also called fractal measures) with compact support. One may consult [5]
and the references given there. In the present paper we clarify the relation between
arbitrary o-finite Radon measure in R"™, tempered distributions and weighted Besov
spaces. It comes out that a o-finite Radon measure p in R™ can be identified with a
tempered distribution p € S’(R™) if and only if there is a real number 3 such that

ns(R™) < co, where p5=(1+z*)%p.

Radon measures p with p(R™) < oo are called finite. These finite Radon mea-

4
sures can be identified with the positive cone BY._(R™) of the distinguished Besov
space BY__(R") and

e | BYo (R ~ u(R")
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(equivalent norms).

This paper is organised as follows. In section 1 we collect the definitions and
preliminaries. We introduce the well-known weighted Besov spaces B, (R", (z)®)
and prove that for fixed p, ¢ with 0 < p,q < c©

S(R™) = ﬂ B (R", (z)®)
a,s€ER
and

SR = [ B, ®", @)?).

a,s€ER

Although known to specialists we could not find an explicit reference. In section 2 we
prove in the Theorems 2.1 and 2.2 the above indicated main results.

1. Definitions and preliminaries

Let N be the collection of all natural numbers and Ny = NU{0}. Let R” be Euclidean
n-space, where n € N. Put R = R!, whereas C is the complex plane. Let S(R") be
the Schwartz space of all complex-valued, rapidly decreasing, infinitely differentiable
functions on R™. By S’(R™) we denote its topological dual, the space of all tempered
distributions on R™. L,(R™) with 0 < p < oo, is the standard quasi-Banach space
with respect to Lebesgue measure, quasi-normed by

1

171 2@ = ( [irr )’ 0<p<oo

with the standard modification if p = co.
If ¢ € S(R™) then

PO = Fe(©) = n) [ plae o, ¢e R,
]Rn

denotes the Fourier transform of ¢. The inverse Fourier transform is given by

pla) = Flp(w) = 2m) [ p©c = de, e R

Rn
One extends F and F~! in the usual way from S to S’. For f € S'(R"),
Ef(e) = f(Fe), ¢ SER").

Let ¢ € S(R™) with

wolz) =1, |z| <1 and wo(z) =0, |z| >
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and let
or(®) = po(27Fx) — (277 12), 2€R™, keN. (2)
Then, since
1= ngj(x) for all z e R, (3)
Jj=0

the ¢, form a dyadic resolution of unity in R™. (¢ f)v is an entire analytic function
on R” for any f € S'(R™). In particular, (¢ f) (z) makes sense pointwise.

Definition 1.1. Let ¢ = {yp; 520 be the dyadic resolution of unity according to
(1)-(3),seR,0<p<o0,0<qg< o0, and

IS 1 Bpg (Rl = (Zstq”(Sﬁkf)v | Lp(R”)|q>q

Jj=0

(with the usual modification if ¢ = 00). Then the Besov space B, (R™) consists of all
f € S'(R™) such that || f | By, (R")]], < oo.

We denote by L,(R", (x)®), where
(@) = (1+[2*)%,
the weighted L,-space quasi-normed by
1 [ Lp(R™, ()| = 1S | Lp(R™)]]-
Definition 1.2. Let ¢ = {cpj}]o’;o be the dyadic resolution of unity according to

(1)-(3),s € R, 0 < p < 00,0 < g < oo. Then the weighted Besov space B, (R™, (x)“)
is a collection of all f € S/(R™) such that

Q=

If | Bpg(R™, (@)%l = (Z 27 (prf)" | Lp(R”,<x>a)llq>

3=0
(with the usual modification if ¢ = co) is finite.

Remark 1.3. If a = 0 then we have the space B, (R") as introduced in Definition 1.1.
It is also known from [1, ch. 4.2.2] that the operator f — (x)®f is an isomorphic
mapping from By (R", (z)®) onto B, (R™). In particular,

IO Bpg R~ (1 | Byg(R™, (2))]]-

Next we review some special properties of weighted Besov spaces.
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Proposition 1.4. For fized 0 < p,q < oo

() Bpg(®" (2)*) (4)

a,seR

U Bi®" (2)%).

a,s€ER

and

Proof. Step 1. The inclusion

() Bpq(R", (2)%)

. a,s€ER
is clear.

To prove that any f € (), ;e Bpg(R", (2)®) belongs to S(R"), it is sufficient to
show that for any fixed N € N there are a(N) € R and s(N) € R such that

sup sup (z)*N|DP f(z)| < || f | By, (R", ()*)].
|B|<N zeR™

For any multiindex (8 there are polynomials P$ , deg Pf < 2N such that

(@)D f(x) =Y DV[(PYf)(x)).

1<B
Hence

sup sup (2)*N|D7f(z)] = sup sup |y DV[(P)f)(x)]

IB|<N z€Rn |5\5NmeR" =5
< sup Z SUP|D7[(PBf)( )]|
IBISN |y Ty =€R™
< sup > [P CN®RY). (5)
BISN 5 1<n

Due to the embedding theorems [3, ch. 2.7.1],

N+ +e

IPZFI Y@M < c|[PES | Bpy 7T (RY)
PY N+ =te
S ] ®") ()
‘ ()2
s
for any € > 0. <1; ~ is a pointwise multiplier for qu (R”) [3, ch. 2.8.2]. Therefore
PB N+ L e
2l 2N Rn
[ s |
PS n N+2te
v N+2temn 2N n
§c<$>2N’C pE(R)'H< f‘B RY|. (7
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According to Remark 1.3

@22 f | Boa T ®|| ~ |7 | Boa TR, (@2 ®)
Combining (5)—(8), one gets
supsup (o) |D7f(a)| < CﬂZSNH@sz | Bo PR
<d|f | B TR @) ©)

and it follows (4).
Step 2. Let 1 <p<oo,1<qg<ooandletp’ and ¢’ be defined in the standard
way by
1 1 1 1
p P q q
The inclusion
U B R (@)*) c §'(R™)
a,s€ER
is evident.
As far as the opposite inclusion is concerned, we recall that f € S’(R") if and only
if there are [ € N and m € N such that

[f()| < ¢ sup sup (x)'|Dp()],
|a|<m xeR™

for all ¢ € S(R™). By (9),

o m+Ete on
sup sup ()| D%p(z)| < cl||p ‘ B, (R ,(x)l)H

|a|<m x€R™

According to our choice of p and g, it follows that 1 < p’ < co and 1 < ¢’ < oo. Thus,
by [3, ch. 2.11.2],

m+3+e

n ! —(m+%+e)
fe (Bp’q' (R a<$>l)) =Bpy "

(R", (z)7").

This means
S'(R™) C | Bpy(R™, (x)®).
a,s€ER
Step 3. Let 0 < p < 1,1 < ¢ < oo. By the arguments above, for f € S'(R")
there are « € R and s € R such that

f e Biy(R™, (2)%).
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We want to show that n
f € B;q(Rna <z>o¢7’y)7 Y > ;
Indeed,

=

q

1F | By (™, ()| = (Z 2990]|(2)° (i ) | L;;(Rw)
=0

q

1
P)‘I

< (X2 s il @1 ( [t as)

j=0 T i
< cllf | BLog(R™, ().
Step 4. When 0 < ¢ < 1, first we may find @ € R and s € R such that
f € By (R", (x)%),
q¢* > 1, and then use the fact that
Bpg (R" (2)%) C By *(R™,(z)*), €>0. O

Next we recall some notation. A measure p is called o-finite in R™ if for any
R >0,

u{z:|z] < R}) < o0.
A measure p is a Radon measure if all Borel sets are p measurable and

(i) p(K) < oo for compact sets K C R,
(ii) w(V) =sup{ u(K): K C V is compact} for open sets V C R™,
(iii) p(A) =inf{pu(V): A CV, Vis open} for A C R™.
Let ;1 be a positive Radon measure in R™. Let T},
T,: 00— [@ o), oeSE),
Rn
be the linear functional generated by u.
Definition 1.5. A positive Radon measure (4 is said to be tempered if T,, € S"(R™).
Proposition 1.6. Let pu' and p? be two tempered Radon measures. Then
Ty =T,z in S’ (RY) if, and only if, p' = p*.

Proof. The Proposition is valid by the arguments in [5, p. 80]. O

Revista Matemdtica Complutense
2008: vol. 21, num. 2, pags. 553-564 558



Maryia Kabanava Tempered Radon measures
This justifies the identification of 1+ and correspondent tempered distribution T,
and we may write u € S’'(R™).
Definition 1.7. f € S'(R") is called a positive distribution if
fle) >0 for any ¢ € S(R™) with ¢ > 0.

If f € L°°(R™) then f > 0 means f(x) > 0 almost everywhere.

Remark 1.8. If f is a positive distribution, then f € Cy(R™)" and it follows from the
Radon-Riesz theorem that there is a tempered Radon measure y such that

f(o) = / (@) ()

Rn

[2, pp. 61, 62, 71, 75].

2. Main assertions

Our next result refers to tempered measures.
Theorem 2.1.

(i) A Radon measure p in R™ is tempered if, and only if, there is a real number [3
such that (x)%p is finite.

(ii) Let p be a tempered Radon measure in R™. Let j € N,
Aj = {x:Zj_1 < || §2j+1}, Ag={z:|z| <2}.
Then for some ¢ >0, a > 0,

w(Ay) < c2%  for all k € Ny.

Proof. Step 1. First we prove part (ii). Suppose that the assertion does not hold.
Then for ¢ =1 and [ € N there is k; € Ny such that

u(Ay) > 24, (10)

As soon as it is found one k; with (10), it follows that there are infinitely many k",
m € N, that satisfy (10).
With j € N,

A ={2:272 < |z| <22}, Ab={x:|z| <4}

For [ = 1 take any of k7", let it be k;. For [ = 2 choose k2 > k; in such a way
that A} and A} have an empty intersection. For arbitrary [ € N take

ki > ki1 and Azl—l N AZ, = 0.
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Let g be a C* function on R™ with
po(x) =1, |z|<2 and  o(x) =0, |[z]=>4.

Let k € N and
or(x) = @0(2_’%) — <p0(2_k+3m), z € R".

Then we have
supp pr C Aj,

and
orp(x) =1, z€ A

Let

o0

p(z) =Y 27 Mg (2).

=1

For any fixed N € Ny
sup sup (1 + |z[*)[D%p()]
la|<N z€R™ -
= sup sup (1+ |x|2)N‘DO‘ (Z 27k, (JL‘)) ‘
la| <N zeRn =

<sup sup sup 2-tRigTlelkiglel(q g 2)N (DY) (27 R ).
IEN |a|<N z€R

The last inequality holds, since the functions ¢y, have disjoint supports. With the
change of variables
2 =92 Fitly

one gets

sup sup (1 + |z|*)N [ D ()|
|o| <N z€R™

é Sup Sup 27”(?127‘04]6[2‘0422(/6[71)]\[ Sup (1 + |CU|2)N|DQS01($)|

lEN |a|<N zERn
< esup sup 2R UHI=2N) < o gyp 2R (I=2N)
lEN |a|<N leN

Since N is fixed and [ is tending to infinity, 2~%:(!=2¥) is bounded. Thus ¢ € S(R").
According to the definition of tempered Radon measures

[ o) utde) <+

R
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for any ¢ € S(R™), but
/@(x)ﬂ(dﬂﬁ) > Z / () p(dz) > ZQ‘Z’WQ”” — Jo0.
R =14, =1

This means that our assertion (10) is false.
Step 2. We prove part (i). Since ()% is finite, it is tempered. Then p is also
tempered. To prove the other direction we take 8 = —(« + 1). Then we get

(VP u(R") = / ()@ py(dz) < 3 / ()= y(dr)
s k=04,
< cZQik(aH) /u(da:) < cZZik(O‘H)Tm < 0. O
k=0 k=0

Ay

+
In order to characterize finite Radon measures we define the positive cone B, (R")
as the collection of all positive f € B (R").

Theorem 2.2. Let M(R™) be the collection of all finite Radon measures. Then
n JrO n
M(R") = By (R")

and

PR™) ~ [l | Blo(R™)[|, o€ M(R™). (11)
Proof. By the proof in [5, pp. 82, 83, Proposition 1.127],
e | BYoo R™)] < p(R™) if p€ M(R™).

In order to prove the converse inequality, one use the characterisation of Besov
spaces via local means. Let ky be a C* non-negative function with

———

suppko C{z:|z| <1} and ko(0) # 0.

+
If f € BY, (R"), then f = p is a tempered measure. By [5, p. 10, Theorem 1.10],
I | B ()] 2 ellko(L |y (&) = [ [ kole = ) du(y)
RTL R7l
Applying Fubini’s theorem, one gets

1] B (R™)]| = cp(R™). O
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Corollary 2.3. Let f € Li(R™) and f(x) > 0 almost everywhere. Then
LF T LaR™)[| ~ If | Biso(R™)]].
Proof. Let u= fur, where py, is the Lebesgue measure. Then
p(®) = [ £(e) ualde) = £ | L @)
R"L

and
11 BY oo R™)[| = [1f | Bioo (R™)]]-
From (11) follows the statement in the Corollary. O

The question arises whether Corollary 2.3 can be extended to all f € Li(R™). We
have

Ly(R") = By (R"), hence |f | Bly(®R™)|| < cllf | Ly(R")]|

for all f € Li(R™). But the converse is not true even for functions f € L;(R"™) with
compact support in the unit ball.

Proposition 2.4. There are functions f; € L1(R™) with
supp f; C{y: |yl <1}, jeN,
such that {f;} is a bounded set in BY__(R™), but
1f5 | La(R™)[| = 00 if 5 — o0

Proof. We may assume n = 1.
Let a € C'(R) be an odd function with

suppa C {z:|z| <2}, a(x)>0, >0

and

_max [a(a)| = la(~1)] = a(1) = L

If ¢ = max_s<,<2|a’(z)], then ¢ > 1. Define ay € C1(R) by

Then one has for any = € R,

lag(z)| < ¢t <1, |ap(z)| <1, and /ao(as) dr = 0.
R

Revista Matemdtica Complutense
2008: vol. 21, num. 2, pags. 553-564 562



Maryia Kabanava Tempered Radon measures

Define a function a,, v € N, by
a,(x) = 2%ag(2"x).

Then

suppa, C [-277 1 27

and
lay(z)| < c712v,  d (x)] < 2%, /al,(x) dr = 0.
R

According to [5, p. 12, Definition 1.15], a¢ is an 1;-atom and a,, are (0,1); j-atoms. It
follows from [4, Theorem 13.8] that > >~ a,(x) converges in S’(R™) and represents

an element of BY__(R"). Let f £ S .
Let

Then supp f; C [-1,1],

+oo +<>oj
15 | LR > / f3(a) da = / S a(x) do
0 o v=1

—+oo

:j/ao(ga‘)dac—u)o7 Jj— o0.
0

On the other hand one has by the above atomic argument
I£; | Bisw®) <1 for jeN. m

Corollary 2.5. Not any characteristic function of a measurable subset of R™ is a
pointwise multiplier in B{__(R™).

Proof. Let f € L1(R™) real. Let M, be a set of points = such that f(z) > 0 and
M_={xz: f(x) <0}. Then

I T LR = lIxary £ | LR+ [Ixar_ f | Lo(R™)],

where x ., xa_ are characteristic functions of sets M, and M_ respectively. One
may apply Corollary 2.3 to the functions x s, f and xas_ f and get

£ 1 Ly < ellxar, f | Bioo R[]+ cllxar f | Bl (R™)]
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If any characteristic function of a set in R™ would be a pointwise multiplier in BY__ (R"),
then

X2 f | Bioo ®™)| < ellf [ BRI lIxar_f | Bl R < el f | Bl (R™)],

hence
IF 1 LRI < ellf | Bio R
Since for any function f € Li(R™) holds

IF | BYoo RM)| < el f | L1 (R™)]),

one gets
£ 1 Ly(R™)| ~ [If | BYo(R™)]l,  for real f € Ly (R").

This can be also extended to complex functions f € L;(R™). But acoording to the
Proposition 2.4 this is not true. [
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