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ABSTRACT

We are interested in a class of nonlinear degenerate diffusion problems with a
diffusion function a(x, u,∇u) which is not controlled with respect to u and which
is not uniformly coercive on the weighted Sobolev spaces W 1,p

0 (Ω, w). Existence
of a renormalized solution is proved in the L1-setting.
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Introduction

In this paper we investigate the problem of existence of renormalized solutions for a
class of nonlinear degenerate elliptic equations of the type

−div(a(x, u,∇u)) = f in Ω, (1)
u = 0 on ∂Ω, (2)

where Ω is an open bounded subset of RN , N ≥ 1, and the data f is in L1(Ω).
The operator −div(a(x, u,∇u)) is a Leray-Lions operator defined on the weighted

Rev. Mat. Complut.
22 (2009), no. 1, 37–52 37 ISSN: 1139-1138



K. Ammar/H. Redwane Nonlinear degenerate elliptic problems

Sobolev spaces W 1,p
0 (Ω, w), but which is not controlled with respect to u (see as-

sumptions (5), (7), and (8) of section 2). For almost any x in Ω and for any ξ ∈ RN ,
the function a(x, s, ξ) is strongly degenerate when |s| grows to +∞ (see (6) and (7)).
So, proving existence of a weak solution (i.e., in the distribution meaning) seems to
be an arduous task. To overcome this difficulty we use in this paper the framework of
renormalized solutions. This notion was introduced by P.-L. Lions and Di Perna [12]
for the study of the Boltzmann equation (see also P.-L. Lions [15] for a few applica-
tions to fluid mechanics models). This notion was then adapted to the elliptic version
of (1) and (2) in Boccardo, J.-L. Diaz, D. Giachetti, F. Murat [11], in P.-L. Lions and
F. Murat [16], and F. Murat [16,17] (see also [8,9] for nonlinear parabolic problems).
At the same time the equivalent notion of entropy solutions have been developed
independently by Bénilan and al. [5] for the study of nonlinear elliptic problems.

In the case where a(x, u,∇u) is replaced by A(x, u)∇u (problems with diffusion
matrix which are not uniformly coercive with respect to u) and f ∈ L1(Ω), existence
and a partial uniqueness result have been established on the Sobolev spaces H1

0 (Ω) in
D. Blanchard and O. Guibé [6] (see also D. Blanchard, O. Guibé, and H. Redwane [7],
K. Ammar [4]).

Note that in the non weighted case, the existence and regularity results for the
nonlinear elliptic problem (1), (2) has been proved in A. Alvino, L. Boccardo, V. Fer-
one, L. Orsina, and G. Trombetti [2] under the condition a(x, s, ξ)ξ ≥ α

(1+|s|)θ(p−1) |ξ|p

and under various assumptions on the function f and on θ, (see also the results
of A. Alvino, V. Ferone, and G. Trombetti [3], L. Boccardo, A. Dall’Aglio, and
L. Orsina [10]).

In our paper we propose a formulation which takes into account the possible val-
ues +∞ or −∞ for the solutions and the operator −div(a(x, u,Du)) is a weighted
Leray-Lions operator from the weighted Sobolev space on W 1,p

0 (Ω, ω) into
W−1,p′(Ω, ω∗).

The paper is organized as follows: In section 1, we precise some basic properties of
weighted Sobolev spaces. In section 2, we specify the assumptions on a(x, s, ξ), b(s)
and f needed in the present study and we give the definition of a renormalized solution
of (1), (2). In section 3, we prove the main result of this paper (Theorem 3.1) which
is the existence of a renormalized solution for any data f in L1(Ω).

1. Preliminaries

Throughout the paper, we assume that the following assumptions hold true: Ω is a
bounded open subset on RN , N ≥ 1, 1 < p < ∞, and ω(x) = {ωi(x)}{0≤i≤N} is
a vector of weight functions. Further, we suppose that every component ωi(x) is a
measurable function which is strictly positive and satisfies

ωi ∈ L1
loc(Ω) and ωi

− 1
p−1 ∈ L1

loc(Ω).
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We define the weighted Lebesgue space Lp(Ω, ω0) with weight ω0, as the space of all
real-valued measurable functions u for which

‖u‖p,ω0 =
(∫

Ω

|u(x)|pω0(x) dx
) 1
p

< +∞.

Similarly, we define the weighted Sobolev space of W 1,p(Ω, ω), as the space of all real-
valued functions u ∈ Lp(Ω, ω0) such that the derivatives in the sense of distributions
satisfy ∂u

∂xi
∈ Lp(Ω, ωi) for all i = 1, . . . , N . Equipped with the norm

‖u‖1,p,ω =
(∫

Ω

|u(x)|pω0(x) dx+
N∑
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣pωi(x) dx
) 1
p

, (3)

X = W 1,p(Ω, ω) is a Banach space. As we are concerned with a Dirichlet problem, we
work in the space X = W 1,p

0 (Ω, ω) defined as the closure of C∞0 (Ω) with respect to
the norm ‖·‖1,p,ω. Note that C∞0 (Ω) is dense in W 1,p

0 (Ω, ω) and (W 1,p
0 (Ω, ω), ‖·‖1,p,ω)

is a reflexive Banach space. Note that the expression

‖u‖X =
( N∑
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣pωi(x) dx
) 1
p

is a norm defined on X and is equivalent to the norm (3). Moreover (X, ‖·‖X) is a
reflexive Banach space, and there exist a weight function σ on Ω and a parameter
1 < q <∞ such that the Hardy inequality(∫

Ω

|u|qσ(x) dx
) 1
q

≤ C
( N∑
i=1

∫
Ω

∣∣∣ ∂u
∂xi

∣∣∣pωi(x) dx
) 1
p

(4)

holds for every u ∈ X with a constant C > 0 independent of u. Moreover, the
imbedding X ↪→ Lq(Ω, σ) is compact.

We recall that the dual of the weighted Sobolev spaces W 1,p
0 (Ω, ω) is equivalent to

W−1,p′(Ω, ω∗), where ω∗ = {ω∗i = ω1−p′
i ; i = 1 . . . , N } and p′ = p

p−1 is the conjugate
of p. For more details we refer the reader to [13].

2. Assumptions on the data and definition of a renormalized
solution

Throughout the paper, we assume that the following assumptions hold true: The
functional −div(a(x, u,∇u)) is a Leray-Lions operator defined on W 1,p

0 (Ω, ω) into
W−1,p′(Ω, ω∗) and where

a : Ω× R× RN −→ RN is a Carathéodory function,
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which is monotone with respect to ξ:

[a(x, s, ξ)− a(x, s, ξ′)][ξ − ξ′] ≥ 0; (6)

for any ξ, ξ′ ∈ RN , for any s ∈ R and for almost every x ∈ Ω, and which satisfies the
following weak coercivity condition: there exists a positive function b ∈ C0(R) such
that for almost every x ∈ Ω, for every s ∈ R and ξ ∈ RN ,

a(x, s, ξ) · ξ ≥ b(s)p−1
N∑
i=1

ωi(x)|ξi|p and
∫ +∞

−∞
b(s) ds < +∞. (7)

Moreover, a satisfies a growth condition of this type: for any i = 1, . . . , N

|ai(x, s, ξ)|

≤ ωi(x)
1
p

[
L(x) + σ(x)

1
p′

(∫ s

0

b(r) dr
) q
p′

+ b(s)p−1
N∑
j=1

ω
1
p′

j (x)|ξj |p−1

]
(8)

and the normalization condition a(x, s, 0) = 0 for almost every x ∈ Ω, for every s
and ξ, and where L(x) is a positive function in Lp

′
(Ω) and σ(x) is defined in (4).

We will study the problem in the general framework, i.e.,

f is an element of L1(Ω). (9)

Remark 2.1. As already mentioned in the introduction Problem (1), (2) does not
admit a weak solution under assumptions (5)–(9). Indeed, as the growth of a(x, u,∇u)
is not controlled with respect to u, the field a(x, u,∇u) is not, in general, defined as
a distribution.

The following notations will be used throughout the paper: for any K ≥ 0, the
truncation at height K is defined by TK(r) = max(−K,min(r,K)). Moreover, for
n ≥ 1 fixed,

θn(r) = T1(r − Tn(r)) =


0 if |r| ≤ n,
r − n sg(r) if n ≤ |r| ≤ n+ 1,
sg(r) if |r| ≥ n+ 1

and Sn(r) = 1− |θn(r)|, ∀r ∈ R.
We define a renormalized solution for Problem (1), (2) as follows.

Definition 2.2. A measurable function u defined on Ω with values in R ∪ {+∞} ∪
{−∞} is a renormalized solution of Problem (1), (2) if

TK(u) ∈W 1,p
0 (Ω, ω) ∀K ≥ 0, (10)∫

{n≤|u(x)|≤n+1}
a(x, u,∇u)∇u dx −→

∫
{u=+∞}

f(x) dx−
∫
{u=−∞}

f(x) dx, (11)
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as n→ +∞, and if, for every function S in W 1,∞(R) such that supp(S) is compact,
u satisfies∫

Ω

a(x, u,∇u)∇
(
S(u)ϕ

)
dx =

∫
Ω

fS(u)ϕdx, ∀ϕ ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω). (12)

The following remarks are concerned with a few comments on Definition 2.2.

Remark 2.3. Notice that, thanks to our regularity assumptions (10) and the choice
of S, all terms in (12) are well defined.

The following identifications are made in (12).

• a(x, u,∇u)∇(S(u)ϕ) identifies with a
(
x, TK(u),∇TK(u)

)
∇
(
S(TK(u))ϕ

)
a.e.

in Ω, where K > 0 and supp(S) ⊂ [−K,K]. As a consequence of (8), (10)
and of S ∈W 1,∞(R), ϕ ∈W 1,p

0 (Ω, ω) ∩ L∞(Ω), it follows that

a
(
x, TK(u),∇TK(u)

)
∇
(
S(TK(u))ϕ

)
∈ L1(Ω).

Indeed,

∇(S(u)ϕ) = ∇
(
S(TK(u))ϕ

)
∈

N∏
i=1

Lp(Ω, ωi)

and, by Holder inequality, we have, for i = 1, . . . , N ,

|ai(x, TK(u),∇TK(u))|

≤ ωi(x)
1
p

[
L(x) + σ(x)

1
p′ C1

q
p′ + Cp−1

2

N∑
j=1

ω
1
p′

j (x)
∣∣∣∂TK(u)

∂xj

∣∣∣p−1]
where C1 =

∫ +∞
−∞ b(s) ds and C2 = max|s|≤K |b(s)|.

• fS(u)ϕ ∈ L1(Ω), because f ∈ L1(Ω) and S(u)ϕ ∈ L∞(Ω).

3. Existence result

This section is devoted to establish the existence theorem.

Theorem 3.1. Under the assumptions (5)–(9) there exists at least a renormalized
solution u of Problem (1), (2).

Proof. The proof is divided into 6 steps. In step 1, we introduce an approximate
problem. Step 2 is devoted to establish a few a priori estimates on the approximate
solutions uε and on the limit solution u. In particular, we prove that u satisfies (10).
In step 3, we prove the monotonicity estimate. In step 4, we identify the weak
limit XK of aε(x, TK(uε),∇TK(uε)) and we prove the weak L1 convergence of the
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energy aε(x, TK(uε),∇TK(uε))∇TK(uε) as ε tends to zero. Step 5 is devoted to prove
that u satisfies (11). Finally, in step 6, we prove that u satisfies (12) of Definition 2.2.

• Step 1. We proceed by approximation: for ε > 0, define the regularized functions

bε : R −→ R, r 7−→ bε(r) = b(T 1
ε
(r)), (13)

aε(x, s, ξ) = a(x, T 1
ε
(s), ξ) a.e. in Ω, ∀s ∈ R, ∀ξ ∈ RN , (14)

fε ∈ Lp
′
(Ω), ‖fε‖L1(Ω) ≤ ‖f‖L1(Ω),

fε −→ f strongly in L1(Ω) as ε tends to 0, (15)

Let us now consider the following regularized problem:

−div(aε(x, uε,∇uε)) = fε in Ω, (16)
uε = 0 on ∂Ω. (17)

In view of (7), (8), (13), and (14), bε and aε satisfy

0 < αε ≡ min
{|r|≤ 1

ε}
(b(r)) ≤ bε(s) ≤ max

{|r|≤ 1
ε}

(b(r)) ≡ Cε ∀s ∈ R.

aε(x, s, ξ) · ξ ≥ bε(s)p−1
N∑
i=1

ωi(x)|ξi|p ≥ αp−1
ε

N∑
i=1

ωi(x)|ξi|p, (18)

and, for i = 1, . . . , N ,

|aεi (x, s, ξ)| ≤ ωi(x)
1
p

[
L(x) + C

q
p′
ε σ(x)

1
p′ |s|

q
p′ + Cp−1

ε

N∑
j=1

ω
1
p′

j (x)|ξj |p−1
]

a.e. x ∈ Ω, ∀s ∈ R, ξ ∈ RN .
As a consequence, proving the existence of a weak solution uε ∈W 1,p

0 (Ω, ω) of (16)
and (17) is an easy task (see, e.g., Theorem 2.1 and Remark 2.1 in chapter 2 of [14]
and see also [1]).

• Step 2. A priori estimates and pointwise convergence of uε.
Using TK(uε) as a test function in (16) leads to∫

Ω

aε(x, uε,∇uε)∇TK(uε) dx =
∫

Ω

fεTK(uε) dx ≤ K‖f‖L1(Ω). (19)

Since aε satisfies (18), we deduce from (19) that∫
Ω

bε(uε)p−1
N∑
i=1

∣∣∣∂TK(uε)
∂xi

∣∣∣pωi(x) dx ≤ K ‖f‖L1(Ω).
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and

αp−1
1
K

∫
Ω

N∑
i=1

∣∣∣∂TK(uε)
∂xi

∣∣∣pωi(x) dx ≤ K ‖f‖L1(Ω), (20)

where α 1
K
≡ min{|s|≤K}(b(s)). From (20) and (4), we deduce with a classical argu-

ment (see, e.g., [1]) that, for a subsequence still indexed by ε,

uε −→ u a.e. in Ω, (21)

TK(uε) −→ TK(u) weakly in W 1,p
0 (Ω, ω) and strongly in Lq(Ω, σ), (22)

as ε tends to 0, where u is a measurable function defined on Ω with values in R ∪
{−∞} ∪ {+∞}.

Taking now Zε =
∫ TK(uε)

0
bε(s) ds as a test function in (16) gives∫

Ω

aε(x, uε,∇uε)∇Zε dx =
∫

Ω

fεZε dx. (23)

Since aε satisfies (18), (23) leads to∫
Ω

N∑
i=1

∣∣∣∂Zε
∂xi

∣∣∣pωi(x) dx ≤ CK ‖f‖L1(Ω). (24)

where |Zε| ≤ CK = 2K max|s|≤K b(s) is a constant independent of ε.
Now, for fixed K > 0, assumption (8) gives, for i = 1, . . . , N ,

|aεi (x, TK(uε),∇TK(uε))|

≤ ωi(x)
1
p

[
L(x) + σ(x)

1
p′ CK

q
p′ +

N∑
j=1

ω
1
p′

j (x)
∣∣∣∂Zε
∂xj

∣∣∣p−1]
(25)

In view of (24) and (25), we deduce that

aε(x, TK(uε),∇TK(uε)) is bounded in
N∏
i=1

Lp
′
(Ω, w1−p′

i ), (26)

then there exists a function XK ∈
∏N
i=1 L

p′(Ω, w1−p′
i ) such that

aε(x, TK(uε),∇TK(uε)) −⇀ XK weakly in
N∏
i=1

Lp
′
(Ω, w1−p′

i ) as ε→ 0. (27)

Let us now take TK(vε) as a test function in (16), where vε =
∫ uε

0
bε(s) ds. We obtain∫

Ω

aε(x, uε,∇uε)∇TK(vε) dx =
∫

Ω

fεTK(vε) dx ≤ K ‖f‖L1(Ω).
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Then (18) yields ∫
Ω

N∑
i=1

∣∣∣∂TK(vε)
∂xi

∣∣∣pωi(x) dx ≤ K ‖f‖L1(Ω). (28)

We deduce with a classical argument that, for a subsequence still indexed by ε,

vε −→ v a.e. in Ω, (29)

TK(vε) −→ TK(v) weakly in W 1,p
0 (Ω, ω),

as ε tends to 0, where v is a measurable function defined on Ω which is finite a.e. in Ω.
Using the admissible test function θn(vε) in (16) leads to∫

Ω

aε(x, uε,∇uε)∇θn(vε) dx =
∫

Ω

fεθn(vε) dx (30)

As a consequence of the above convergence results, we are in a position to pass to the
limit as ε tends to 0 in (30). Indeed, the pointwise convergence of θn(vε) to θn(v) as
ε tends to zero and |θn(vε)| ≤ 1 a.e. in Ω (independently of ε and n) leads to

lim
ε→0

∫
Ω

aε(x, uε,∇uε)∇θn(vε) dx =
∫

Ω

fθn(v) dx. (31)

The pointwise convergence of θn(v) to zero as n tends to +∞, the bounded character
of θn (|θn(vε)| ≤ 1 a.e. in Ω, independently of ε and n) and f ∈ L1(Ω), Lebesgue’s
convergence theorem shows that

∫
Ω
fθn(v) dx→ 0, as n tends to +∞. Passing to the

limit in (31) we obtain

lim
n→+∞

lim
ε→0

∫
{n≤|vε|≤n+1}

aε(x, uε,∇uε)∇vε dx = 0. (32)

• Step 3. In this step we prove the following monotonicity estimate:

Lemma 3.2. The subsequence of uε defined in step 1 satisfies for any K ≥ 0:

lim
ε→0

∫
Ω

[
aε(x, TK(uε),∇TK(uε))− aε(x, TK(uε),∇TK(u))

]
×
[
∇TK(uε)−∇TK(u)

]
dx = 0 (33)

Proof of Lemma 3.2. Let K ≥ 0 be fixed. The left hand side of equality (33) is split
into∫

Ω

[
aε(x, TK(uε),∇TK(uε))− aε(x, TK(uε),∇TK(u))

]
×
[
∇TK(uε)−∇TK(u)

]
dx = Aε1 +Aε2 +Aε3, (34)
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where

Aε1 =
∫

Ω

aε(x, TK(uε),∇TK(uε))∇TK(uε) dx,

Aε2 = −
∫

Ω

aε(x, TK(uε),∇TK(uε))∇TK(u) dx,

and

Aε3 = −
∫

Ω

aε(x, TK(uε),∇TK(u))
[
∇TK(uε)−∇TK(u)

]
dx.

In the sequel we pass to the limit in (34) when ε tends to 0.

– Limit of Aε1. Using the admissible test function Sn(vε)TK(u) in (16) leads to∫
Ω

Sn(vε)aε(x, uε,∇uε)∇TK(u) dx+
∫

Ω

aε(x, uε,∇uε)∇Sn(vε) · TK(u) dx

=
∫

Ω

fεSn(vε)TK(u) dx, (35)

where vε =
∫ uε

0
bε(s) ds.

Passing to the limit as ε tends to 0 in (35), since supp(Sn) ⊂ [−(n+ 1), n+ 1], we
have for i = 1, . . . , N that

|aεi (x, uε,∇uε)Sn(vε)|

≤ ‖Sn‖L∞(R)ωi(x)
1
p

[
L(x) + σ(x)

1
p′ (n+ 1)

q
p′ +

N∑
j=1

ω
1
p′

j (x)
∣∣∣∂Tn+1(vε)

∂xj

∣∣∣p−1]
(36)

In view of (28) and (36), we deduce that, for fixed n ≥ 1,

aε(x, uε,∇uε)Sn(vε) is bounded in
N∏
i=1

Lp
′
(Ω, w1−p′

i ),

independently of ε. Then there exists a function Yn ∈
∏N
i=1 L

p′(Ω, w1−p′
i ) such that,

for fixed n ≥ 1,

Sn(vε)aε
(
x, uε,∇uε

)
−⇀ Yn weakly in

N∏
i=1

Lp
′
(Ω, w1−p′

i ) as ε→ 0. (37)

Now, for K ≤ n we have

Sn(vε)aε(x, uε,∇uε)χ{|uε|≤K} = Sn(vε)aε
(
x, TK(uε),∇TK(uε)

)
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a.e. in Ω, which implies that, through the use of (27), (29), and (37), and passing to
the limit as ε tends to 0,

Ynχ{|u|<K} = Sn(v)XK (38)

a.e. in Ω\{|u| = K}. As a consequence of (37) we have for K ≤ n that

Yn∇TK(u) = Sn(v)XK∇TK(u) a.e. in Ω. (39)

We are now in a position to exploit (35), which together with (37) and (39), gives

lim
ε→0

∫
Ω

Sn(vε)aε(x, uε,∇uε)∇TK(u) dx

=
∫

Ω

Yn∇TK(u) dx =
∫

Ω

Sn(v)XK∇TK(u) dx (40)

Passing to the limit as n tends to +∞ in (40) leads to

lim
n→+∞

lim
ε→0

∫
Ω

Sn(vε)aε(x, uε,∇uε)∇TK(u) dx =
∫

Ω

XK∇TK(u) dx (41)

Now, we estimate the second term of (35):∣∣∣∣∫
Ω

aε(x, uε,∇uε)∇Sn(vε) · TK(u) dx
∣∣∣∣
≤ K

∫
{n≤|vε|≤n+1}

aε(x, uε,∇uε)∇vε dx.

Then (32) implies that

lim
n→+∞

lim
ε→0

∫
Ω

aε(x, uε,∇uε)∇Sn(vε) · TK(u) dx = 0. (42)

In view of (41) and (42), passing to the limit as ε tends to 0 and n tends to +∞
in (35) is an easy task and leads to∫

Ω

XK∇TK(u) dx =
∫

Ω

fTK(u) dx (43)

We are now in a position to exploit (43). Using the test function TK(uε) in (16), we
obtain ∫

Ω

aε(x, uε,∇uε)∇TK(uε) dx =
∫

Ω

fεTK(uε) dx (44)

Passing to the limit as ε tends to 0 in (44). In view (43), we have

lim
ε→0

Aε1 = lim
ε→0

∫
Ω

aε(x, uε,∇uε)∇TK(uε) dx =
∫

Ω

XK∇TK(u) dx (45)
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– Limit of Aε2. In view of (21), (26), we have

lim
ε→0

Aε2 = −
∫

Ω

XK∇TK(u) dx (46)

– Limit of Aε3. Let us remark that (5), (14), and (21) imply that

aε(x, TK(uε),∇TK(u))→ a(x, TK(u),∇TK(u)) a.e. in Ω,

as ε tends to 0, and that, for i = 1, . . . , N ,∣∣aεi (x, TK(uε),∇TK(u)
)∣∣

≤ w
1
p

i (x)
[
L(x) + σ

1
p′ (x)

(∫ K

−K
b(s) ds

) q
p′

+ CK
p−1

N∑
j=1

w
1
p′

j

∣∣∣∂TK(u)
∂xj

∣∣∣p−1
]

a.e. in Ω, uniformly with respect to ε and where CK = max|s|≤K(b(s)).
It follows that

aε
(
x, TK(uε),∇TK(u)

)
−→ a

(
x, TK(u),∇TK(u)

)
strongly in

N∏
i=1

Lp
′
(Ω, w1−p′

i ), (47)

as ε tends to 0. In view of (21), we conclude that

(
∇TK(uε)−∇TK(u)

)
−⇀ 0 weakly in

N∏
i=1

Lp(Ω, wi), as ε goes to 0. (48)

As a consequence of (47) and (48) we have for all K ≥ 0 that

lim
ε→0

Aε3 = 0. (49)

In view of (45), (46), and (49), we can pass to the limit as ε tends to zero in (34) and
obtain (33) of Lemma 3.2.

• Step 4. In this step we identify the weak limit XK and we prove the weak L1

convergence of the “truncated” energy aε
(
x, TK(uε),∇TK(uε)

)
∇TK(uε) as ε tends

to 0.

Lemma 3.3. For fixed K ≥ 0, we have

XK = a
(
x, TK(u),∇TK(u)

)
a.e. in Ω. (50)

And, as ε tends to 0,

aε
(
x, TK(uε),∇TK(uε)

)
∇TK(uε) −⇀ a

(
x, TK(u),∇TK(u)

)
∇TK(u)

weakly in L1(Ω). (51)
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Proof of Lemma 3.3. Let K ≥ 0 be fixed. In view of (22) and (26) it is possible to
obtain from (33) of Lemma 3.2 that

lim
ε→0

∫
Ω

aε
(
x, TK(uε),∇TK(uε)

)
∇TK(uε) dx =

∫
Ω

XK∇TK(u) dx. (52)

We use the monotone character a (with respect to ξ) and for all ψ ∈
∏N
i=1 L

p(Ω, wi)
we have

0 ≤ lim
ε→0

∫
Ω

[
aε
(
x, TK(uε),∇TK(uε)

)
− aε

(
x, TK(uε), ψ

)]
[∇TK(uε)− ψ] dx

= lim
ε→0

∫
Ω

aε
(
x, TK(uε),∇TK(uε)

)
[∇TK(uε)− ψ] dx

− lim
ε→0

∫
Ω

aε(x, TK(uε), ψ)[∇TK(uε)− ψ] dx

=
∫

Ω

XK [∇TK(u)− ψ] dx−
∫

Ω

a(x, TK(u), ψ)[∇TK(u)− ψ] dx

=
∫

Ω

[XK − a(x, TK(u), ψ)][∇TK(u)− ψ] dx

The usual Minty’s argument applies in view of (52). It follows that (50) of
Lemma 3.3 holds true.

In order to prove (51), we use the monotone character of a (with respect to ξ)
and (33) to have for any K ≥ 0 that(

aε(x, TK(uε),∇TK(uε))− aε(x, TK(uε),∇TK(u))
)
[∇TK(uε)−∇TK(u)] (53)

converges to zero, strongly in L1(Ω) as ε tends to 0. Moreover (22), (25), (47),
and (50) imply that

aε
(
x, TK(uε),∇TK(uε)

)
∇TK(u) −⇀ a

(
x, TK(u),∇TK(u)

)
∇TK(u) (54)

weakly in L1(Ω) as tends to 0,

aε
(
x, TK(uε),∇TK(u)

)
∇TK(uε) −⇀ a

(
x, TK(u),∇TK(u)

)
∇TK(u) (55)

weakly in L1(Ω) as tends to 0, and

aε
(
x, TK(uε),∇TK(u)

)
∇TK(u) −⇀ a

(
x, TK(u),∇TK(u)

)
∇TK(u) (56)

strongly in L1(Ω) as tends to 0.
Using the above convergence results (54), (55), and (56) in (53) we get, for any

K ≥ 0,

aε
(
x, TK(uε),∇TK(uε)

)
∇TK(uε) −⇀ a

(
x, TK(u),∇TK(u)

)
∇TK(u)

weakly in L1(Ω) as tends to 0.

Revista Matemática Complutense
2009: vol. 22, num. 1, pags. 37–52 48



K. Ammar/H. Redwane Nonlinear degenerate elliptic problems

• Step 5. In this step we prove that u satisfies (11).
Using

(
Tn+1(uε)− Tn(uε)

)
Sp(vε) as a test function in (16) leads to∫

Ω

Sp(vε)aε(x, uε,∇uε)∇
(
Tn+1(uε)− Tn(uε)

)
dx

+
∫

Ω

(
Tn+1(uε)− Tn(uε)

)
aε(x, uε,∇uε)∇Sp(vε) dx

=
∫

Ω

fεSp(vε)
(
Tn+1(uε)− Tn(uε)

)
dx.

Remark that for any fixed n ≥ 0 and p ≥ 0 one has∫
{n≤|uε(x)|≤n+1}

Sp(vε)aε(x, uε,∇uε)∇uε dx

=
∫

Ω

Sp(vε)aε
(
x, Tn+1(uε),∇Tn+1(uε)

)
∇Tn+1(uε) dx

−
∫

Ω

Sp(vε)aε
(
x, Tn(uε),∇Tn(uε)

)
∇Tn(uε) dx.

According to (51), one can pass to the limit as ε tends to zero for fixed n and p
to obtain

lim
ε→0

∫
{n≤|uε(x)|≤n+1}

Sp(vε)aε(x, uε,∇uε)∇uε dx

=
∫

Ω

Sp(v)a
(
x, Tn+1(u),∇Tn+1(u)

)
∇Tn+1(u) dx

−
∫

Ω

Sp(v)a
(
x, Tn(u),∇Tn(u)

)
∇Tn(u) dx

=
∫
{n≤|u(x)|≤n+1}

Sp(v)a(x, u,∇u)∇u dx. (57)

Taking the limit as p tends to +∞ and as n tends to +∞ in (57) we obtain

lim
n→+∞

lim
p→+∞

lim
ε→0

∫
Ω

Sp(vε)aε(x, uε,∇uε)∇
(
Tn+1(uε)− Tn(uε)

)
dx

= lim
n→+∞

∫
{n≤|u(x)|≤n+1}

a(x, u,∇u)∇u dx

Since supp(S′p) ⊂ [−(p+ 1),−p] ∪ [p, p+ 1], we have∣∣∣∣∫
Ω

(
Tn+1(uε)− Tn(uε)

)
aε(x, uε,∇uε)∇Sp(vε) dx

∣∣∣∣
≤
∫
{p≤|vε(x)|≤p+1}

|aε(x, uε,∇uε)∇vε| dx
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In view of (21), (29), and (32), we obtain

lim
n→+∞

lim
p→+∞

lim
ε→0

∣∣∣∣∫
Ω

(
Tn+1(uε)− Tn(uε)

)
aε(x, uε,∇uε)∇Sp(vε) dx

∣∣∣∣ = 0

lim
n→+∞

lim
p→+∞

lim
ε→0

∫
Ω

fεSp(vε)
(
Tn+1(uε)− Tn(uε)

)
dx

=
∫
{u=+∞}

f(x) dx−
∫
{u=−∞}

f(x) dx.

• Step 6. In this step, u is shown to satisfy (12). Let ϕ ∈ W 1,p
0 (Ω, ω) ∩ L∞(Ω)

and let S be a function in W 1,∞(R) such that S has a compact support. Let K be
a positive real number such that suppS ⊂ [−K,K] and vε =

∫ uε
0
bε(s) ds. Using

S(u)Sn(vε)ϕ as a test function in (16) leads to∫
Ω

Sn(vε)aε(x, uε,∇uε)∇(S(u)ϕ) dx+
∫

Ω

S(u)ϕaε(x, uε,∇uε)∇Sn(vε) dx

=
∫

Ω

fεSn(vε)S(u)ϕdx. (58)

In the following, we pass to the limit as ε tends to 0 and n tends to +∞ in each
term of (58).

– Limit of the first term in (58).
In view of (37), (38), and (50), passing to the limit as ε tends to 0, we get

lim
ε→0

∫
Ω

Sn(vε)aε(x, uε,∇uε)∇(S(u)ϕ) dx

=
∫

Ω

Yn∇(S(u)ϕ) dx =
∫

Ω

Ynχ{|u|≤K}∇(S(u)ϕ) dx

=
∫

Ω

Sn(v)XK∇(S(u)ϕ) dx

=
∫

Ω

Sn(v)a
(
x, TK(u),∇TK(u)

)
∇(S(u)ϕ) dx

and

lim
n→+∞

lim
ε→0

∫
Ω

Sn(vε)aε(x, uε,∇uε)∇(S(u)ϕ) dx

= lim
n→+∞

∫
Ω

Sn(v)a
(
x, TK(u),∇TK(u)

)
∇(S(u)ϕ) dx

=
∫

Ω

a
(
x, TK(u),∇TK(u)

)
∇(S(u)ϕ) dx

=
∫

Ω

a(x, u,∇u)∇(S(u)ϕ) dx.
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– Limit of the second term in (58). Since supp(S′n) ⊂ [−(n+ 1),−n]∪ [n+ 1, n] for
any n ≥ 1, we have, as a consequence, that∣∣∣∣∫

Ω

S(u)ϕaε(x, uε,∇uε)∇Sn(vε) dx
∣∣∣∣

≤ ‖S‖L∞(R)‖ϕ‖L∞(Ω)

∫
{n≤|vε|≤n+1}

|aε(x, uε,∇uε)∇vε| dx. (59)

Taking the limit as ε tends to 0 and n tends to +∞ in (59) and using the estimate
(32) yields

lim
n→+∞

lim
ε→0

∣∣∣∣∫
Ω

S(u)ϕaε(x, uε,∇uε)∇Sn(vε) dx
∣∣∣∣ = 0.

– Limit of the right-hand side of (58). Due to (15) and (29), we have

lim
n→+∞

lim
ε→0

∫
Ω

fεSn(vε)S(u)ϕdx =
∫

Ω

fS(u)ϕdx.

Thanks to the above convergence results, we are in a position to pass to the limit as
ε tends to 0 in (58) and to conclude that u satisfies (12). The proof of Theorem 3.1
is achieved.
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[7] D. Blanchard, O. Guibé, and H. Redwane, Nonlinear equations with unbounded heat conduction
and integrable data, Ann. Mat. Pura Appl. (4) 187 (2008), no. 3, 405–433.

51
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