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ABSTRACT

In this paper, we study the problem
—diva(z,u, Vu) — divé(u) + g(z,u) = f

in the framework of Orlicz spaces. The main contribution of our work is to
prove the existence of a renormalized solution without any restriction on the
N-function of the Orlicz space.
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Introduction

Let 2 be a bounded open subset of RV and let Au = —diva(z,u, Vu) be a Leray-
Lions operator defined in Wol’p(Q), 1<p<oo.
We consider the following nonlinear elliptic problem:

—diva(z,u, Vu) —divp(u) + g(z,u) = f in Q
u=0 on 0N
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where f € W=7 (Q), ¢ € CO°(R,RN), and g is a Carathéodory function satisfying
sup|g(-, 5)| = hn(-) € L'(Q) Vn.

[t|<n

Note that no growth hypothesis is assumed on the function ¢ which implies that
the term div ¢(u) may be meaningless, even as a distribution. The notion of renor-
malized solution (see definition 2.1) gives a meaning to a possible solution of (1).

In the case where ¢ = 0, existence of a weak solution in the usual sense to (1) is
proved by Rakotoson and Temam [16].

The notion of renormalized solutions in the usual case was introduced by R. J.
DiPerna and P.-L. Lions [10] for the study of the Boltzmann equations. This notion
was then adapted to the study of the problem (1) by L. Boccardo et al. [8] when the
right hand side is in W=7 (Q), by J. M. Rakotoson [15] when the right hand side is
in LY(Q), and finally by G. Dal Maso et al. [9] for the case in which the right hand
side is general measure data.

The functional setting in these works is the usual Sobolev space W1P(Q). Ac-
cordingly the function a(-) is supposed to satisfy polynomial growth conditions with
respect to u and its derivatives Vu.

When trying to perform an analysis for the function a(-) with more general growth
conditions, one is led to replace WP by a Sobolev-space WL, built from an Orlicz
space Ly instead of LP. Here the N-function M which defines L), is related to the
actual growth of the function a

Recently Benkirane and Bennouna [5] have generalized the last result of Boccardo
et al. [8] to the Orlicz-Sobolev space with some restrictions on the N-function (i.e.,
the As-condition).

It is our purpose, in this paper, to prove the existence of renormalized solution
for the problem (1) in the setting of the Orlicz Sobolev space W Ly (£2) without any
restriction on the N-function M. (i.e., without the As-condition). See theorem 2.3.
This paper is organized as follows: Section 1 contains some preliminaries and some
technical lemmas concerning convergence in Orlicz Sobolev space. In section 2, we
state our main result which will be proved in section 3. The proof uses techniques
different from that given in [5,8].

For some existence results for strongly non-linear elliptic equation in Orlicz space
see [2-4, 6]

1. Preliminaries

1.1. N-function

Let M : Rt — R* be an N-function, i.e., M is continuous, convex, with M(t) > 0
for t > 0, @HOast—W)and@
the representation M (t) = fg a(s)ds, where a: RT — RT is a nondecreasing, right

continuous function, with a(0) = 0, a(t) > 0 for ¢ > 0, and a(t) tends to oo as t — oo.

— o0 as t — oo. Equivalently, M admits
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The N-function M, conjugate to M, is defined by M(t fo s)ds, where
a: RT — R is given by a(t) = sup{ s : a( )<t}
The N-function M is said to satisfy the As-condition if for some &

M (2t) < kM(t) Vt>0. (2)

It is readily seen that this will be the case if and only if for every r > 0 there exists
a positive constant k = k(r) such that for all ¢ > 0

M(rt) < kM(t) Vt>0. (3)

When (2) and (3) hold only for ¢ > g, for some to > 0, then M is said to satisfy the
As-condition near infinity.

We will extend these N-functions into even functions on all R. Moreover, we have
the following Young’s inequality:

Vs, t >0, st<M(t)+ M(s).

Let P and @ be two N-functions. We say that P grows essentially less rapidly

than @ near infinity, and denote it P < Q, if for every € > 0, % — 0ast— oo

This is the case if and only if lim;_, o ?,%Eg =0 (see [1, chapter 8)]).

1.2. Orlicz space L ()

Let M be an N-function and © C R be an open and bounded set. The Orlicz class
Kar(€2) (resp. the Orlicz space Lps(€2)) is defined as the set of (equivalence classes of)
real valued measurable functions u on €2 such that

/M ))dx < 400 (resp. /M 2)

——=) dz < +oo for some A > 0).

Ly (€) is a Banach space under the norm,

lullag = inf{)\ >0: /QM(U(;)) dz < 1}

and Ky () is a convex subset of Ly (€2) but not necessarily a linear space.

The closure in Ly (£2) of the set of bounded measurable functions with compact
support in  is denoted by Ej;(Q).

The dual space of Ej(§2) can be identified with L7;(€2) by means of the pairing
Jq uvdz, and the dual norm of L37(Q) is equivalent to [|-[|57 -

Let X and Y be arbitrary Banach spaces with bilinear bicontinuous pairing (,)x y -

We say that a sequence {u,, } C X converges to u € X with respect to the topology
o(X,Y), denoted by u, — u (¢(X,Y)), in X, if {u,,v) — (u,v) for all v € Y. For
example, if X = Ly (Q) and Y = L37(), then the pairing is defined by

(u,v) = /Qu(ac)v(x) dz Vue X,veY.
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1.3. Orlicz-Sobolev space

We now turn to the Orlicz-Sobolev space, WLy () (resp. WLE(€2)) is the space
of all functions u such that uw and its distributional derivatives up to order 1 lies in
Ly (Q) (resp. Epr(2)). Tt is a Banach space under the norm

lullar =D 1D ullar.

la|<1

Thus, WLy () and WEE () can be identified with subspaces of product of N +1
copies of Lys(€?). Denoting this product by [[ Las, we will use the weak topologies
o([1 Lo, [T Egp) and o (I Las, [T Lyz)-

The space W Ep(Q) is defined as the (norm) closure of the Schwartz space D()
in WLEp(Q) and the space WLy () as the o([] L, [] E47) closure of D(Q) in
WLy (9).

We say that a sequence {u,} C Ly (§2) converges to u € Ly (€2) in the modular sense,
denoted u,, — u (mod) in Ly, () if for some A > 0

/M(W)dm‘eo when n — +o0.
Q

We say that a sequence {u, } C WLy () converges tou € WLy () in the modular
sense, denoted u, — u (mod) in WLy, () if there exists A > 0 such that

D*uy,(z) — D
/M<| 4 (:c))\ u(x)>dz—>0 when n — 400 forall |of <1.
Q

If M satisfies the As-condition (near infinity only when  has finite measure), then
modular convergence coincides with norm convergence.

1.4. Some lemmas

Let W Ly7(2) (resp. W1 E37(Q2)) denotes the space of distributions on €2 which can
be written as sums of derivatives of order < 1 of functions in Ly;(Q) (resp. Eg7(€2)).
It is a Banach space under the usual quotient norm.

We recall some lemmas introduced in [7] which will be used later.

Lemma 1.1. Let F: R — R be uniformly Lipschitzian, with F(0) = 0. Let M be an
N-function and let uw € WYLy () (resp. WIEyN(Q)). Then F(u) € WLy () (resp.
W1LEN(Q)). Moreover, we have

0 B F’(u)%u ae. in {xeQ:u(x)¢ D},
axiF(u){O ’ ae in {xeQ:ulzx)eD},

where D is the set of discontinuity points of F'.
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Lemma 1.2. Let F: R — R be uniformly Lipschitzian, with F(0) = 0. Let M be an
N -function, then the mapping Tr: WYLy () — WLy (Q) defined by Tr(u) = F(u)
is sequentially continuous with respect to the weak™ topology o([] L, [ E3f)-

We give now the following lemma which concerns operators of the Nemytskii type
in Orlicz spaces (see [7]).

Lemma 1.3. Let Q be an open subset of RN with finite measure. Let M, P, and Q
be N-functions such that QQ < P, and let f: Q x R — R be a Carathéodory function
such that, for a.e. x € Q and all s € R,

|f(x,8)] < c(x) + k1 P~ M (ko s)),

where k1, ko are real constants and c(x) € Eqg(R). Then the Nemytskii operator
Ny defined by Ny(u)(z) = f(z,u(zx)) is strongly continuous from P(En(Q), é) =
{u € Ly () : d(u, Epr(R2)) < ,3—2} into Eg(Q).

Below, we will use the following technical Lemmas.
Lemma 1.4 ([7]). Let (f.), f,v € L*(Q) such that
(i) fn>7 a.e in 9,
(ii) fn — [ a.e. in Q,
(i) Jyy fulo) dz — fo, F(z) da.
Then f, — f strongly in L' ().

We now turn to the approximation by functions which are smooth up to the
boundary, assuming some regularity on 2. Recall that 2 is said to have the (interior)
segment property if there exist an open covering {U;} of Q and corresponding vectors
{y; € RN} such that, for € QNU; and 0 < ¢ < 1, it is = + ty; € Q.

Lemma 1.5 ([12]). Let Q have the segment property. Then for each v € W Ly (Q),
there exists a sequence v, € D(Q) such that v, converges to v for the modular con-
vergence in WLy (Q). Furthermore, if v € WLy (Q) N L°(2) then

[vnll < (N + DIvl[Loe @)

2. Main result

Let © be a bounded open subset of RV satisfying the segment property. Let A: D(A) C
W4 Lar(2) — W1 L37(2) be a mapping given by A(u) = — div a(z, u, Vu), where a
is a function satisfying the following conditions:

(A1) a(x,5,€): Q x R x RN — R¥ is a Carathéodory function.
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(A2) There exist two N-functions M and P with P < M, a function c¢(x) in E57(Q),
and positive constants ki, ko, k3, k4 such that

ja(e, 5, Q)| < e(@) + kP Mkals|) + ksM M (kslC]),
for a.e. z in Q and for all s € R, ¢ € RV,
(A3) For ae. zin Q, s € R and ¢, ¢ in RV, with ¢/ # ¢
la(z,5,¢) — al(z, 5,¢)](¢ = (') > 0.
(A4) For ae. zin Q, s € R and all ¢ € RV,

a(z,s,0)¢ > aM(%)

where o € R

Consider the nonlinear elliptic problem

{ —diva(z,u, Vu) —dive(u) + g(z,u) = f in €,

u=0 on 09,
where
f € W_IEM(Q)v (5)
and ¢ = (¢1,...,¢nN) satisfy
¢ € (CO®R)™N. (6)
Let g(z,t) be a Carathéodory function such that for a.e. z € Q and all s € R
gle,5)s > 0, )
sup [g(-, 8)| = hn(-) € L' (Q) Vn. (8)

lt]<n

Note that no growth hypothesis is assumed on the function ¢, which implies that for a
solution u € W3 Lys(£2) the term div ¢(u) may be meaningless, even as a distribution.
As in [8] we define the following notion of renormalized solution, which gives a meaning
to a possible solution of (4).

Definition 2.1. Assume that (A;)—(A44), (5)—(8) hold true. A function u is a renor-
malized solution of the problem (4) if

u € WLy (Q),9(z,u) € LY(Q), wug(z,u) € L} (Q)

—diva(z,u, Vu) h(u) — div(p(u)h(uw)) + ¢(u)h' (u)Vu (9)
+g(x,u)h(u) = fh(u) in D'(2), Vh e CHRN).
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The weaker problem (9) is obtained by using the test function h(u) where
h € CL(R) in (4).

Remark 2.2. Let us note that in (9) every term is meaningful in the distributional
sense.

It’s easy to see that for ¢ € D(2) and u € W3 L (£2) we have ph(u) € Wi L ()
(one can apply Lemma 1.2) and

<fh(u)7<P>D’(Q),D(Q) =(f, Sph(u»W—lEﬁ(Q),WOILM(Q)'
We have also [— div a(z, u, Vu)] € W1 L1(Q2) and

(—diva(x,u, Vu)h(u), p)p(9),D)

= (—diva(z,u, Vu), @h(u»w—lLﬁ(Q),W&LM(Q)-

Finally since ¢h and ¢h’ € (CO2(R))YN we have ¢(u)h(u) and ¢(u)h/(u) € (L>(Q))N,
for any measurable function u and then

div(p(u)h(u)) € WH(Q), d(u)h/ (u)Vu € Ly ().

Theorem 2.3. Under assumptions (A1)—(A4), (5)—(8), there exists a renormalized
solution wu (in the sense of definition 2.1) of problem (4).

3. Proof of the main result

We state and prove the following lemmas that will be used later

3.1. Some lemmas

Lemma 3.1. Assume that (A1)—(Ay) are satisfied, and let (z,) be a sequence in
WaLa(Q) such that

(i) zn — 2z in WL () for o(ILL (), IIE5(Q));
(ii) (a(x, 2n, Vzn))n is bounded in (L37(Q))N;

(iil) [ola(z, zn, Vzn) — a(, 2n, Vaxs)][Ven — Vaxs]de — 0 as n,s — +oo (where
Xs s the characteristic function of Qs ={x € Q,|Vz| <s}).

Then

() ()

Remark 3.2. The condition (ii) is not necessary if the N-function M satisfies the
As-condition.
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Proof of Remark 3.2. The condition (i) implies that the sequence (z,), is bounded
in WL (£2), hence there exists two positive constants A, C' such that

/ M\|Vzy))de < C. (10)
Q

On the other hand, let @ be an N-function such that M < @ and the continuous
embedding Wi Ly (Q) C Eg(f2) hold (see [11]). Let € > 0. Then there exists C. > 0,
as in [7], such that
—1 —1
la(z,s,Q)] < c(x) + Cc + k1M Q(els]) + ksM ~M(e[C]) (11)

for a.e. z € Q and for all (s,{) € R x RY. From (10) and (11) we deduce that
(a(z, 2, Vzp))p is bounded in (Lg7(02))V. O

Proof of Lemma 3.1. Let s > 0. Let Qs = {z € Q,|Vu(z)| < s} and denote by x;

the characteristic function of €. Fix » > 0 and let s > r. We have

0< / [a(z, 2, Vzn) — a(z, 2p, V2)][Vz, — Vz] dz
Q

r

< /Q [a(z, zp, Vzn) — a(z, 2, V2)][Vz, — Vz] dz

s

= / [a(z, 2, Vzn) — alz, zn, V2xs)|[Van — Vaxs) dz
Qs
< /[a(m, Zn, Vn) — a(x, zn, V2xs)|[Van — Vaxs) dz,
Q
which with (iii) implies

lim [a(z, 2, Vzn) — a(z, 2, V2)]|[Vz, — Vz]dz = 0.

n—oo Q
"

So, as in [11]
Vz, — Vz a.e. in Q. (12)

On the other hand, we have

/ a(z, zn, Vzn,)Vz, dx = / [a(x, 2, V2r) — a(x, 2n, VZxs)]
Q Q
X [Vzn, — Vzxs| dz

+/ a(x, zn, Vzxs)(Vz, — Vaxs) do
Q

—|—/ a(x, zn, Vz,)Vzxs de. (13)
Q
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Since (a(z, zn, Vz,,))n is bounded in (L37(€2))", and using (12), we obtain
a(z, 2y, Vz,) — a(x,2,Vz) weakly in  (L77(Q)N for o(IlLyp, HEy),

which implies that

/a(x,zn,Vzn)szsdx%/a(z,z,Vz)Vszdx (14)
Q Q

as n — oo. Letting also s — oo, we obtain
/ a(z,z,Vz)Vex,dx — / a(z,z,Vz)Vzdz. (15)
Q Q

On the other hand, it is easy to see that the second term of the right hand side of (13)
tends to 0 as n — oo. Consequently, from (iii), (14), and (15) we have

lim | a(z,zn, Vz,)Vay, dz:/a(:z:,z,Vz)Vzdm.

Using (A4), we obtain, by lemma 1.4 and Vitali’s Theorem,

M('v;”|)—>M(W)\Z|) in LY(Q). O

The following lemma will be used in the proof of the propositions 3.4 and 3.5.

Lemma 3.3. Let Q be an open bounded subset of RN satisfying the segment property.
If we WLy (), then
/ divudz = 0.
Q

For the proof we refer to [4].

3.2. The approximate problem
Let us define, for each k£ > 0, the truncation
s if |s| <
T, = -
k() {kll it |s| >
and, for each n € N*, the approximations
Pn(s) = ¢(Tn(s)), gn(z,t) = Th(g(z,1t)).

Consider the nonlinear elliptic problem

{un € WLy () 16)

—diva(z, upn, Vuy,) — div ¢n (un) + gn(z,un) = f in D'(Q),
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which is equivalent to

{un € WLy (Q) a7

—diva(z, up, Vup) + gn(z,un) = f in D'(Q),

where a(x,t,&) = a(x,t,£) + dn(t).

Since |T;,(t)] < n and ¢ is continuous, we have |¢,(t)| = |¢p(T,(t))| < ¢,. From
Gossez and Mustonen [13, Proposition 1 and Remark 2|, the problem (16), and its
equivalent (17), have at least one solution wu,.

3.3. Some intermediate results

Proposition 3.4. Assume that (A1)—(A4), (5)—(8) hold true, and let u, be a solution
of the approzimate problem (16). Then we have the following properties:

(i) (un)n is bounded in Wi Ly (), and there exists a function u in Wi Ly (Q) such
that
u, — u  weakly in Wy Lar(Q)  for o(ILas, E7),

U, —> u  strongly in Ep () and a.e. in Q.
(ii) (a(x,un, Vuy)), is bounded in L37(Q).
(iii) gn(z,un) — g(x,u) strongly in L*(£2).
Proof. We divide the proof in several steps.

Step 1: Boundedness of (un)n in Wa Ly (2). Taking u, as test function in (16),
we obtain

/ a(x, Up, V) Vup de + | &(Th(un))Vuy, dz + / In (X, Up Uy dx < (f,un).
Q Q Q

Define ¢, (t) = fot Gn(T)dr. We have ¢, (un) € (WL (Q)N. (We can apply
Lemma 1.1 since each component of ¢, is uniformly Lipschitzian and ¢,,(0) = 0.)
We obtain

/ On(un) Vu, de = / div(¢n (un)) dz = 0.
Q Q
(See Lemma 3.3.) By (7), we get
/ a(x, U, Vg )V, de < (f, uy). (18)
Q

/ gn(fvun)“n dx < <fa Un> (19)
Q
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On the other hand, f can be written as f = fo — divF where fy € Eg7(Q),
F € (Bz(92))N. Using [11, Lemma 5.7] and Young’s inequality we deduce

foun dr < C1 + & M(|Vuy|) dz,
Q 4 /o

! (20)
/ FVu,de < Cy+ 7/ M(|Vuy|) dz.
Q 4 Jo
Combining (18) and (20), we get
/ a(x, Up, Vi)V, dr < %/ M(|Vuy|) dz + Cs. (21)
Q Q
This implies, by using (A4), that
/ M(|Vun]) de < Ca, (22)
Q

which gives
u, — u  weakly in Wy Ly (Q) for o(I1Ly, I1Ey;).
Using the compact embedding W Las(Q) — En (), we get
u, — u strongly in Fy/(Q) and a.e.in Q.

Step 2: Boundedness of (a(x,un, Vuy))n in (Lyp(0))N. Let w € (Eap ()Y be
arbitrary. By (Ajs), we have

(a(z, tup, Vuy) — a(z, un, w))(Vu, —w) >0,
which implies that
/ a(x, Uy, Vu,)w de
Q
< / a(x, Un, Vi)V, dx—i—/ a(x, Up, w)(w — Vuy,) de.  (23)
Q Q
Combining (21) and (22), we get
/ a(a:, U, Vun)vun dx < 057
Q

with C5 a positive constant.
On the other hand, for A large and using (As), we have

/QM(W) dxg/QM(C()\x)) +/Q%M(k4|w\)+07§08-
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Thus, |a(x, up, w)| is bounded in L77(£2). This condition, additionally to (22), implies
that the second term of the right hand side of (23) is bounded. Consequently, we
obtain

/ a(x, Up, Vg )wdz < Cy,
Q

with Cg a positive constant. Hence, thanks to the Banach-Steinhaus theorem, the
sequence (a(z, up, V), is bounded in (Ly7(92))V.

Step 3: Strongly convergence of the nonlinearity. Since g, (z,u,) — g(z,u) a.e.
in Q, by the sign condition (7) and Fatou’s Lemma we obtain from (19) and (22) that
g(z,u)u € L),

and by Vitali’s theorem we have
gu(,un) — g(w,u)  strongly in L1(Q),
which completes the proof. O

Proposition 3.5. Assume that (A1)—(A4), (5)—(8) hold true, and let u, be a solution
of the approzimate problem (16). Then, we have (for a subsequence noted again u.,)

Vu,, — Vu a.e. in Q.

Proof. Again we divide the proof in several steps.

Step 1. limsup a(x, Up, Vr)Vuy, de < (f,u — Tp(u)) where h > 0.
n=+00 J{un|>h}
The idea is to use in (16) the test function w,, — T} (u,) (which is in WLy (Q)).

Consider
0(t) = dn(t) X(ser,|s|>h} (1)
t

o(t) = / o(r)dr,

0
hence 0(u,) € (WaLpr ()N (by Lemma 1.1). We obtain, by Lemma 3.3,
/§l¢n(un)v(un = Th(uy)) dz = /Q¢n(“n)X{seR,|s\2h}(un)vun dx
= / O(un)Vuy, dx = / div((uy)) dz = 0.
Q Q

Using the sign condition (7) we have g, (z, uy,)(u, — Th(uy)) > 0 a.e. in Q. Then, for
any fixed h > 0, we have

/ a(x, Un, Vg )V, de < (f, u, — Th(un)).
{lun|>h}
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Since u,, — Th(un) — u — Tj(u) weakly in WLy (Q) and f € WLE7£(Q), we have

lim sup/ a(x, Up, V)V, de < (f,u — Ty (u)). (24)
n—+oo Jjun|>h}

Step 2. We shall prove that Vu,, — Vu a.e. in €.

By Lemma 1.5 there exists a sequence v; € D(£2) which converges to u for the
modular convergence in W Ly (2). Let 5,5 > 0. Let Q) = {z € Q,|Vv;(z)| < s} and
denote by xJ the characteristic function of QJ. We will note by €(n, j, h) any quantity
such that

lim lim lim e(n,j,h)=0.
h—+00 j—+00 n—+00

If the quantity we consider does not depend on one parameter among n, j, and h, we
will omit the dependence on the corresponding parameter: as an example, €(n, h) is
any quantity such that

lim lim e(n,h)=0.

h—-+o0 n—+00

Finally, we will note (for example) by € (n, j) a quantity that depends on n, j, h, and
is such that

]EEIOO nl{rj{loo €h (TL, '7) - 0

for any fixed value of h.
We have

10200, V) = a0, T ][t~ V] d
= /Q[a(a:,un, Vag) = a(@, un, Vojxd)][Vu, — Vojxd] de
+/Qa(gs,u,L,ijx§)(Vun — V;x]) d
- /Qa(x,un7 Vuxs)(Vun, — Vuxs) de

+/ a(z, w, Vu, ) (Vojxd — Vuys) de.
Q

We pass to the limit in n and j in the last three terms of the right hand side of the
last equality, we get

/ a(z, U, ijg)[v% — ijxg] dr — / a(x, un, Vuxs)[Vu, — Vux,] de
Q Q

:E(nv.j)v

and
/ a(z, Uy, Vun)[ijXg — Vuys] de = e(n, j).
Q
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This implies
/ [a(x, un, Vuy) — a(z, tn, Vuxs)][Vu, — Vuys] de
Q
= / [a(x, Un, Vuy,) — a(x, un, ijxg)][Vun — ijxg] dx +¢e(n,j). (25)
Q
The term in the right hand side of the last equality can be estimated as follows:
/ [a(x, un, Vu,) — a(z, up, ijxg)}[Vun — ijxé] dx
Q
< / [a(x, un, Vu,) — a(z, Uy, ijxg)}[Vun — ijxg] dx
{lwn—Tn(v;)|<2h}
+ / [a(z, Un, V) — a(z, tn, VU x2)][Vu, — Vojxi]dz.  (26)
{lun|>h}
The first term of the right hand side of (26) can be written as

/ [a(x, Un, Vu,) — alz, up, ijxg)] [Vu, — ijxg] dx
{lun—Th(v;)|<2h}

= / a(x, Up, V)V (uy — T (v))) dz
{lun—Tn(v;)| <2k}
+ / a(z, U, Vu,)(VTh(vj) — Vojx?) do
{lun—Th(v;)|<2h}
— / a(z, un, Vix2) [Vu, — Vujxd] de (27)
{lun—Th(v;)|<2h}
If we take Top (un — Th(v;)) as test function in (16), we have for n large enough
/ a(z, Uy, V) VIop (un — Th(vy)) do + / O(tn)VTop(un — Th(vy)) do
Q Q
+/ gn (2, un) Ton (un — Th(v;)) dx = (f, Ton(un — Th(vy))).  (28)
Q
Using (i) of proposition 3.4 and the modular convergence of v;, we have
/ G (un)VTon(un — Th(v;)) do = / (u)VTon(u — Th(u)) dz + en(n, j) = €(n, j, h),
Q Q

/an(x,un)Tgh(un — Ty(vj)) dz = €(n, j, h),
<f7 TQh(un - Th(vj)» = e(nujv h)a
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which, with (28), implies that
/ 0ty Vi)V Ton (1t — Th(v;)) da = €(n, j, ). (29)
Q

Now, since (a(x, u,, Vuy))n is bounded in (L77(£2))Y, we have, for a subsequence
a(x, Up, Vig) — p (30)
weakly in (L77(0))N for (o(L37(2), Eam(R2)))™ as n tends to infinity, that
/ a(z,tp, Vun ) (VT (v;) — Vo;xl) de
{lun—=Th(v5)|<2R}

— p(VTh(vj) — Vujx?) do
{lu=Tn(v;)|<2h}

as n tends to infinity.
Using now the modular convergence of v;, we get

/ p(VTh (1) = Vuyl) do
{lu—Th(v;)I<2h}
— p(VTh(u) — Vux,) dx
{lu=Th(u)|<2h}

as j tends to infinity. Letting also h to infinity, we can easy deduce

/ p(VT(u) — Vuyx,)de — pVudz.
{lu=Tn(u)[<2h} Q\Q,

Finally

/ a(, Un, Vuun ) (VT (v;) — Vojxd) de
{ttn—Tn (v;)| <2}

= / pVudz +€(n,j,h). (31)
O\Q,

For the third term of the right hand side of (27), we have for a subsequence (use
Lemma 1.3)

a(, tny VU XD)X{un T (o)1 <20} — 0T, Uy VU XD)X{umTy (0,)| <20}
strongly in (L37(Q)Y  for o(L37(Q), Ear(2))
as n tends to infinity, and

u, — u weakly in WLy (Q) for o(TIL37(Q2), I1EN(Q))
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as n tends to infinity. Hence
/ a(x, uy, ijxg)[Vun — ijxg] dx
{lun—Th(v;)|<2h}
— / a(z,u, ijxi)[Vu — ijxg] dx.
{lu=Th(v;)|<2h}
Using now the modular convergence of (v;), we get
/ a(x, u, ijxg)[Vu — ijxg] dx
{lu=Tn (v;)|<2h}
— / a(z,u, Vuys)[Vu — Vuys] de =0
{lu=Tn(u)|<2h}

as j tends to infinity.
Finally,

/ (e, Vo) [V — Vopdlde = e(n,g.h). (32)
{lun =T (v;)|<2h}
Combining (27), (29), (31), and (32), we deduce
/ [a(z, un, V) — a(z, un, Vo x2)][Vu, — Vujx?l] de
{lun—Tn(v;)|<2h}
— [ oVudstengi). (3
Q\Q.
The second term of the right hand side of the (26) can be written as
/ [a(z, un, Vug) — a(z, un, Vo x2)][Vu, — Vvjxi] de
{lun|>h}
:/ a(x, upn, Vg, )Vu, dr
{lun|>h}
—/ a(, wp, Vu,) Vo xt do
{lun|>n}
— / a(z, Uy, ijxg)][Vun — ijxg] dz.
{‘un‘>h}
Letting h to infinity in (24), we get
/ a(x, Up, Vg )Vu, de < e(n,h),
{lun|>h}
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and, reasoning as above, it is easy to see that
/ a(w, up, Vu,) VX dz = e(n, j, h),
{lun|>h}
|l VoIV - Vol do = el b).
{lun|>n}
Finally
/{| | }[a,(x, U, Vg) — a(2, un, Vo x2)] [V, — Vujxd]de = e(n, j, h). (34)
Un|>h
Combining (33) and (34), we deduce from (26) that
/ [a(z, wn, Vug) — a(z, un, Vo x2)][Vu, — Vojxl] dz
Q
< / pVudz +e(n,j,h). (35)
Q\Q.
Letting s to infinity, we get by using (25) and (35)
/ [a(x, up, Vuy,) — a(z, up, Vuxs)][Vu, — Vuxs|de — 0 (36)
Q

as n, s — oo. Using Lemma 3.1 we can conclude the result of Proposition 3.5. O
Proof of Theorem 2.3. Step 1. We shall prove that

a(x, U, Vg )V, — a(r,u, Vu)Vu  strongly in - L'(€). (37)
We have

/ a(x, Up, Vg, )Vu, de = / [a(x, un, Vu,) — a(z, upn, Vuxs)|[Vu, — Vuys| dz
Q Q

+/ a(x, Up, Vu,)Vuys de

Q

+ / a(x, up, Vuxs)[Vu, — Vuys] dz.
Q

By (36) the first term of the last equality tends to 0. By the Proposition 3.5 and (30),
we have

/a(x,un,Vun)Vuxs dx—>/a(x,u,Vu)Vuxs dz
Q Q

as n tends to infinity. Letting also s to infinity, we get

/a(w,un,Vun)Vuxs daz—>/a(x,u,Vu)Vudx.
Q Q
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The third term of the last equality tends to 0 as n and s — co. We deduce
/ a(x, Up, V)V, dr — / a(z,u, Vu)Vudr. (38)
Q Q

Using Lemma 1.4 we get the result.
Step 2. Passing to the limit. Using in (16) the test function h(uy,)e with
h € CL(R) and ¢ € D(2), we obtain

/a(x,un,Vun)Vunh’(un)tpdx—|—/a(a:,un,Vun)Vgoh(un)dx
Q Q

4 /Q b (un)V ((un ) ) ez + /Q g, un)h(un) @ d = (. h(un)g). (39)

We shall pass to the limit in each term of last equality.
Since h and k' have compact support on R, there exist n > 0 such that supp h and
supp b’ € [—n,n]. We have for n large enough

Pn(O)R(t) = (T (0)h(t) = ¢(T;,(8)) (1),
G (N (1) = (T ()N (1) = (T ()N (1)
and the functions ¢h and ¢h’ belong to (C°(R) N L>=(R))V.
First we have that h(u,, ) is bounded in Wi Ly (). Indeed, since u,, is bounded in
W L (2) there exists two constants positive ¢, A > 0 such that [, M(Lj\”‘) dr <c.

Let ¢; be a constant positive such that [|h(u,)|Ve|lleo < 1 and [|R (un)@lleo < c1.
For p large enough, we have

h(un)Ve + b (un)e|Vuy|
/QM( L4 Ld )d;v

M
< / M(—Cl +62|vu"|/>\) dz with ¢z =1 A
Q

o
Co |V,
< —= < ¢4.
<ec3+ M/QM( 3 )d:c_c4
This implies that
h(un)p — h(u)p weakly in Wg Lps(2)  for O'(H Ly, HEM) (40)

By the convergence of (40), and since
S(Ty(un)) — &(Ty(u))  strongly in (Eyp)",

the third term of (39) tends to [, ¢(T;(u))V(h(u)@)dz, and the right hand side
of (39) tends to (f, h(u)p). For the first term of (39), we remark that

la(z, U, Vg ) Vunh (un) e < cra(z, tn, Vi, ) Vig;
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consequently, Vitali’s theorem and (37) give that
/ a(z, un, Vg ) Vun b (un) o de — / a(z,u, Vu)Vuh'(u)p dz.
Q Q

For the second term of (39), we have
h(un)V — h(u)Vy strongly in  (Ex(Q))V,
and
a(z,uy, Vu,) — a(z,u, Vu) weakly in (L37(Q))Y  for J(H LM»HEM)»
then
/Qa(x, Un, Vun)Vph(uy,) de — /Qa(amu7 Vu)Vph(u) dz.

The fourth term of (39) tends to [, g(x, u)h(u)p dz.
Using the limite proved above we can easily pass to the limit in each term of (39)
and obtain

/Q a(z,u, Vu) [/ (u)pVu + h(u) V] dz

+/ng(u)h’(u)ngudx—|—/Q¢(u)h(u)V<pdx+/Qg(x,u)h(u)<pdac
= (f.h(u)p) VheC.(R), Yy € D(Q),

which proves Theorem 2.3. O
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