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ABSTRACT

We consider pseudodifferential operators that have non-smooth negative definite
symbols and develop a corresponding symbolic calculus. Combining this sym-
bolic calculus with the use of non-smooth symbols that are asymptotically con-
stant in the co-variable we succeed in finding a parametrix for a certain pseudo-
differential equation. This in turn allows us to show that some pseudodifferential
operators with non-smooth negative definite symbols are pregenerators of Feller
semigroups.

Key words: symbolic calculus, non-smooth symbols, negative definite functions, Feller
semigroups.

2000 Mathematics Subject Classification: 47D06, 47G30, 35S05, 60J35, 47A53.

Introduction

Pseudodifferential operators with smooth negative definite symbols have for some time
been investigated as pregenerators of Markov processes. An extensive summary
of this topic including lists of references can be found in N. Jacob [10–12]. In or-
der to see the connection between pseudodifferential operators and Markov processes,
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the key observation is that every Lévy process (Xt)t≥0 with state space Rn is uniquely
determined by a function ψ : Rn → C which is defined by

E
(
eiXt·ξ

)
= e−tψ(ξ).

The function ψ is called the characteristic exponent of (Xt)t≥0 and is a continuous
negative definite function. The prime example is Brownian motion in which case
ψ(ξ) = |ξ|2. We will refer to this as the classical case.

Furthermore, following N. Jacob [9], see also R. Schilling [15], we have for a rea-
sonably nice Feller process

(
(Xt)t≥0, P

x
)
x∈Rn that

−q(x, ξ) = lim
t→0

Ex
(
ei(Xt−x)·ξ

)
− 1

t

is the symbol of the pregenerator of the semigroup

Ttu(x) = Ex
(
u(Xt)

)
,

i.e., on C∞0 (Rn),

Au(x) = −q(x,D)u(x) = −(2π)−
n
2

∫
Rn
eix·ξq(x, ξ)û(ξ) dξ.

Here, ξ 7→ q(x, ξ) is for every x ∈ Rn a continuous negative definite function and
the operator q(x,D) is called a pseudodifferential operator with negative definite
symbol.

W. Hoh showed in [6] how to construct Feller semigroups that are pregenerated
by pseudodifferential operators with smooth negative definite symbols. His symbol
classes of order m ∈ R consist of all smooth functions q : Rn × Rn → C such that∣∣∂βx∂αξ q(x, ξ)∣∣ ≤ cα,β(1 + ψ(ξ)

)m−ρ(|α|)
2

for all α, β ∈ Nn0 , where ρ(k) := min{2, |α|}. The function ρ in this context means that
higher derivatives with respect to ξ ∈ Rn of the symbol do not have an increasingly
faster decay at infinity. The decay only improves up to order two. This behavior
is typical for negative definite functions (compare, e.g., N. Jacob [11]). W. Hoh’s
construction of Feller semigroups is based upon the Hille-Yosida theorem, which gives
three conditions that an operator A has to satisfy in order to be the pregenerator
of a strongly continuous contraction semigroup (Tt)t≥0 on C∞(Rn): The first condi-
tion is that the domain of A is dense in C∞(Rn), and the second one requires that A
is dissipative. Both are usually easy to verify since they follow directly from proper-
ties of negative definite functions. The third condition states that the range of λ−A
is dense in C∞(Rn) for some λ > 0, and is the thoughest one to check. Assuming
that we have some nice embedding results at our disposal this means that we have
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to solve a pseudodifferential equation in a certain Hilbert space setting. This is usu-
ally done by constructing a parametrix to the operator λ − A. W. Hoh developed
standard tools from the classical theory also for the negative definite symbols case,
e.g., boundedness of pseudodifferential operators in scales of (anisotropic) Sobolev
spaces, (sharp) G̊arding inequality, Friedrichs symmetrization, etc., and successfully
constructed Feller semigroups using the Hille-Yosida theorem.

Let us go back for a moment to our original motivation in studying pseudodif-
ferential operators with negative definite symbols. One of the standard examples
aside from Brownian motion is the Cauchy process. In the space-invariant setting
it is easy to see that the semigroup corresponding to the Cauchy process is pre-
generated by a pseudodifferential operator with continuous negative definite symbol
ξ 7→ |ξ|. Now we make this symbol space-dependent, e.g., we consider a pseudodif-
ferential operator with symbol p : Rn → Rn → R, (x, ξ) 7→ a(x)|ξ|, where a : Rn → R
is a smooth function. Following W. Hoh’s approach of construction a corresponding
Feller process using the Hille-Yosida theorem, we first of all note that this symbol
is not even differentiable in the ξ-variable, i.e., it does not belong to any of W. Hoh’s
symbol classes. On the other hand, one could try the naive approach of construct-
ing a parametrix for pseudodifferential operators with non-smooth symbols and ask
the question how much differentiability the symbols would (at least) be expected
to have. First of all, parametrix constructions use asymptotic expansions up to first
order of the involved symbol, i.e., the symbol would need to be at least differentiable
up to order one in both variables. Also, since we in addition need to use embedding
results, we should expect to have certain restrictions imposed on the differentiability
with respect to x ∈ Rn. All of this tells us that by following W. Hoh’s approach
and using the Hille-Yosida theorem, we will not be able to cover the above-mentioned
case involving the state-space dependent version of the Cauchy process. Nevertheless,
we find at the end of section 2 that it is possible to construct Feller processes starting
with pseudodifferential operators that have negative definite symbols with sufficiently
high (but non-smooth) differentiability.

In section 1 we begin by formally introducing negative definite functions and some
of the associated concepts. The main part of this section is dedicated to the symbolic
calculus for non-smooth negative definite symbols.

Section 2 introduces a subclass of our non-smooth negative definite symbols,
which has the additional property that the symbols are asymptotically constant
in the co-variable. This technique as well as the part of Fredholm theory we use
can be found for classical symbol classes in H. Kumano-go [13] or V. V. Grushin [5].
We then proceed with using our symbolic calculus developed in section 2 to construct
a parametrix and in the end a Feller semigroup.
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1. Negative definite functions and symbolic calculus

Let us begin with the fundamental notion of this paper — negative definite func-
tions. The following theorem contains the Lévy-Khinchin formula which identifies all
such functions.

Theorem 1.1. Let ψ : Rn → C be a continuous negative definite function. Then
there exists a constant c ≥ 0, a vector d ∈ Rn, a symmetric positive semidefinite
quadratic form q on Rn and a finite measure µ on Rn \ {0} such that

ψ(ξ) = c+ i(d · ξ) + q(ξ) +
∫

Rn\{0}

(
1− e−ix·ξ − ix · ξ

1 + |x|2

)
1 + |x|2

|x|2
µ(dx)

holds.

For real-valued continuous negative definite functions we may state more explicitly

Corollary 1.2. Let ψ : Rn → R be a real-valued continuous negative definite function.
Then we have the representation

ψ(ξ) = c+ q(ξ) +
∫

Rn\{0}

(
1− cos(x · ξ)

)1 + |x|2

|x|2
µ(dx)

with c, q, µ as in Theorem 1.1. In addition µ is a symmetric measure.

Instead of working with µ we often consider the Lévy measure associated with ψ,
i.e.,

ν(dx) :=
1 + |x|2

|x|2
µ(dx).

Thus ν satisfies the integrability condition
∫

Rn\{0}(|x|
2 ∧ 1) ν(dx) <∞.

The following two results are due to W. Hoh [6]. The first relates the smoothness
of ψ to integrability properties of ν.

Theorem 1.3. Let ψ : Rn → R be a continuous negative definite function with Lévy-
Khinchin representation as in Corollary 1.2. Suppose that for 2 ≤ l ≤ k all absolute
moments of the Lévy measure ν exist, i.e.,

Ml :=
∫

Rn\{0}
|x|l ν(dx) <∞, 2 ≤ l ≤ k. (1)

Then ψ is of class Ck(Rn) and for α ∈ Nn0 , |α| ≤ k, we have the estimate

|∂αξ ψ(ξ)| ≤ c|α|


ψ(ξ), α = 0,
ψ(ξ)

1
2 , |α| = 1,

1, |α| ≥ 2,

with c0 = 1, c1 = (2M2)
1
2 +2λ

1
2 , c2 = M2 +2λ, and cl = Ml for 3 ≤ l ≤ k, where λ is

the maximal eigenvalue of the quadratic form q in Corollary 1.2.
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The next Lemma enables us to formulate in a sensible way symbol classes, compare
for this topic also W. Hoh [6].

Lemma 1.4. Suppose that the continuous negative definite function ψ : Rn → R
satisfies (1) for all k ∈ N. Then for all m ∈ R and all α ∈ Nn0 we have∣∣∂αξ (1 + ψ(ξ)

)m
2
∣∣ ≤ c|α|(1 + ψ(ξ)

)m−ρ(|α|)
2 (2)

where ρ(k) := min{k, 2}.

Definition 1.5. A continuous negative definite function ψ : Rn → R belongs to
class Λ∞ if it satisfies (2).

Let us moreover mention here that negative definite functions have at most qua-
dratic growth, i.e.,

Lemma 1.6. If ψ : Rn → C is a continuous negative definite function then

|ψ(ξ)| ≤ cψ(1 + |ξ|2)

for ξ ∈ Rn where cψ = 2 sup|η|≤1|ψ(η)|.

Since we want to work with non-smooth symbols let us introduce some notations:
We denote from now on by CMx,Mξ(Rn × Rn), Mx, Mξ ∈ N0 ∪ {∞}, the space of all
functions p : Rn×Rn → R, (x, ξ) 7→ p(x, ξ), such that for all α, β ∈ Nn0 with |α| ≤Mξ,
and |β| ≤ Mx, the derivatives ∂αξ p(x, ξ) and ∂βxp(x, ξ) are continuous. We can now
give the definition of symbol classes of non-smooth negative definite functions.

Definition 1.7. Let ψ ∈ Λ∞, m ∈ R, and p : Rn × Rn → C be a CMx,Mξ(R2n)-
function where Mx,Mξ ∈ N0 ∪{∞}. We say that p is a symbol of order m, and write
p ∈ Sm,ψρj (Mx,Mξ), if for all multiindices α, β ∈ Nn0 with |α| ≤ Mξ and |β| ≤ Mx

there exist constants cα,β such that

|∂αξ ∂βxp(x, ξ)| ≤ cα,β
(
1 + ψ(ξ)

)m−ρj(|α|)
2 (3)

where ρj(k) = min{k, j} and j ∈ {0, 1, 2}.

Let us give a remark concerning the role of the function ρj : Let p ∈ Sm,ψρ2 be
given, then ∂αξ p ∈ Sm−1,ψ

ρ1 for |α| = 1 and ∂αξ p ∈ Sm−2,ψ
ρ0 for |α| = 2. Note that

ρ0 ≡ 0. This notation will be useful when introducing asymptotic expansions later
on. Using (3) we can also define a family of seminorms on Sm,ψρj :

|p|(m)
k := max

|α|,|β|≤k
sup

x,ξ∈Rn
|∂αξ ∂βxp(x, ξ)|

(
1 + ψ(ξ)

)−m2 ,
where k ≤ min{Mx,Mξ}.

Since we will use oscillatory integrals to express the symbol of the composition of
two pseudodifferential operators we also need to modify the notion of amplitudes to
fit in with our non-smooth setting.
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Definition 1.8. The space of amplitudes AmMy,Mη
(Rn × Rn), m ≥ 0, is the set of all

CMy,Mη (Rn,Rn) differentiable functions such that

|∂αη ∂βy a(y, η)| ≤ cα,β(1 + |η|2)
m
2 (1 + |y|2)

m
2

uniformly in y, η ∈ Rn for all α, β ∈ Nn0 such that |α| ≤ Mη, |β| ≤ My. On
the space AmMy,Mη

we use the seminorms defined by

|||a|||k := max
|α|+|β|≤k

sup
y,η∈Rn

(1 + |η|2)−
m
2 (1 + |y|2)−

m
2 |∂αη ∂βy a(y, η)|,

where m is fixed and k ≤ min{My,Mη}.

Note that Definition 1.8 is similar to the definition of amplitudes in the smooth
case, compare W. Hoh [6], N. Jacob [11], or H. Kumano-go [13]. The following is
a standard theorem used for estimating oscillatory integrals and can be found in, e.g.,
S. Alinhac and P. Gérard [1] or H. Kumano-go [13]. In its original form the the-
orem tells us for smooth amplitudes a ∈ Am∞,∞ we can estimate the corresponding
oscillatory integral with∣∣∣∣Os-

∫∫
R2n

eiy·ηa(y, η) dydη
∣∣∣∣ ≤ Cm|||a|||m+2n+1. (4)

This statement leads us to suspect that (4) should also hold for amplitudes
of class AmMy,Mη

where My ≥ m + 2n + 1 and Mη ≥ m + 2n + 1. Indeed this is
easily verified by looking at the proof. Hence we may state

Theorem 1.9. If a ∈ AmMy,Mη
, m ≥ 0, My ≥ m+ 2n+ 1, Mη ≥ m+ 2n+ 1, then∣∣∣∣Os-

∫∫
R2n

eiy·ηa(y, η) dydη
∣∣∣∣ ≤ Cm|||a|||m+2n+1.

These are all the prerequisites we need in order to develop our theory. Since
our aim is to work with non-smooth symbols let us from now on assume that we are
given for ψ ∈ Λ∞,

p ∈ Sm,ψρ2 (Mp
x ,M

p
ξ ),

q ∈ Sl,ψρ2 (Mq
x ,M

q
ξ ), (5)

where m, l ∈ R and Mp
x ,M

p
ξ ,M

q
x ,M

q
ξ ∈ N0∪{∞}. Our first step is to look at the sym-

bol of the composition of the two pseudodifferential operators p(x,D) and q(x,D).
Assuming for the moment that our symbols p and q are smooth, i.e., that Mp

x = Mp
ξ =

Mq
x = Mq

ξ = ∞, it is a well-known fact that the symbol (p ◦ q) of the composition
of both operators can be written using oscillatory integrals as

(p ◦ q)(x, ξ) = (2π)−n Os-
∫∫

R2n
e−iy·ηp(x, ξ − η)q(x− y, ξ) dy dη.
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The calculation leading to (5) is straightforward, one only needs to pay attention to
whether the oscillatory integrals exists. But this can be checked using (4). In the same
way, we might use (5) together with Theorem 1.9 as a starting point when considering
the non-smooth case.

Before continuing we would like to point out that our aim is not only to show
that p◦q is again a non-smooth symbol of orderm+l, but also to develop an asymptotic
expansion formula. This is needed for the parametrix construction in the next section.
Note that this essentially means that we need to show that

(p ◦ q)(x, ξ) = p(x, ξ)q(x, ξ) + r(x, ξ) (6)

where r is a symbol of order m + l − 1. Since pq is a symbol of order m + l this
also gives us that (p ◦ q) is of order m+ l. Of course the differentiability of each sym-
bol also needs to be investigated. Note that in this respect, (6) poses an interesting
question. In the (smooth) classical symbolic calculus one can find an asymptotic ex-
pansion for the symbol of the composition of two pseudodifferential operators where
the order of each successive term decreases by one. In case of W. Hoh’s symbolic
calculus, one only finds improvement in terms of order up to the third term of the ex-
pansion. As explained earlier this is due to properties of negative definite functions.
In our case, where we additionally need to take care of the differentiability conditions
on our symbols, we expect to see a difference in terms of required differentiability
when considering the expansions

(p ◦ q)(x, ξ) = p(x, ξ)q(x, ξ) + r1(x, ξ) (7)
and

(p ◦ q)(x, ξ) = p(x, ξ)q(x, ξ) +
∑
|α|=1

∂αξ p(x, ξ)D
α
x q(x, ξ) + r2(x, ξ) (8)

where Dα
x = (−i)|α|∂αx . If we would want to work with (8) we surely needed smoother

symbols than for (7). On the other hand, if we do not need asymptotic expansions,
but want only to work with the symbol (p◦q), we could do with less smooth symbols.
Of course, for parametrix constructions, (7) suffices. Nevertheless we will consider all
three cases.

Let us take a look at a simple example: Set n = 1 and consider the Laplace
operator ∆x = d2

dx2 that has symbol −ξ2. Set ψ(ξ) := ξ2 and note that this is
a continuous negative definite function of class Λ∞. Also, let q ∈ S2,ψ

ρ2 (Mq
x ,M

q
ξ )

be given where q(x, ξ) = a(x)q̃(ξ), i.e., a ∈ CMq
x (R), q̃ ∈ CM

q
ξ (R). Then

∆xq(x,D)u(x) = (2π)−
n
2

∫
R

2∑
r=0

(
2
r

)(
dr

dxr
eixξ

)(
d2−r

dx2−r q(x, ξ)
)
ũ(ξ)dξ

= (2π)−
n
2

∫
Rn
eixξ

2∑
r=0

(
2
r

)
irξr

(
d2−r

dx2−r a(x)
)
q̃(ξ)ũ(ξ)dξ,
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i.e., we need that Mq
x ≥ 2. Obviously, if we consider ∆m

x for m ∈ N instead of ∆x,
then we need Mq

x ≥ 2m. This leads us to suspect that if we consider the composition
p(x,D) ◦ q(x,D) of two symbols p ∈ Sm,ψρ2 (Mp

x ,M
p
ξ ) and q ∈ Sl,ψρ2 (Mq

x ,M
q
ξ ) then Mq

x

should depend on the order m of p.
Another important example to consider is the case where p ∈ Sm,ψρ2 (Mp

x ,M
p
ξ ) and

q ∈ Sm,ψρ2 (Mp
x ,M

p
ξ ) such that q(x, ξ) = q(ξ). In this case it is easy to see that

p(x,D) ◦ q(D)u(x) = (2π)−
n
2

∫
Rn
eix·ξp(x, ξ)q(ξ)û(ξ) dξ,

i.e., the symbol of the composition is just the product of the symbols. Clearly no re-
strictions on the differentiability of p and q are needed.

Theorem 1.10. Let ψ ∈ Λ∞, p ∈ Sm,ψρj (Mp
x ,M

p
ξ ) and q ∈ Sl,ψρj (Mq

x ,M
q
ξ ) be given

for m, l ∈ R, j ∈ {0, 1, 2} and Mp
x , Mp

ξ , Mq
x , Mq

ξ ∈ N0 ∪ {∞}.

(i) If
Mp
ξ ≥ |m|+ j + 2n+ 1 and Mq

x ≥ |m|+ j + 2n+ 1

then

(p ◦ q)(x, ξ) := (2π)−n Os-
∫∫

R2n
e−iy·ηp(x, ξ − η)q(x− y, ξ) dy dη (9)

defines a symbol of class Sm+l,ψ
ρj (Mp◦q

x ,Mp◦q
ξ ) where

Mp◦q
x = min{Mp

x ,M
q
x − |m| − j − 2n− 1}

and

Mp◦q
ξ = min{Mq

ξ ,M
p
ξ − |m| − j − 2n− 1}.

(ii) If j ∈ {1, 2} and

Mp
ξ ≥ |m− 1|+ j + 2n+ 1 as well as Mq

x ≥ |m− 1|+ j + 2n+ 1

then
(p ◦ q)(x, ξ) = p(x, ξ)q(x, ξ) + r1(x, ξ)

with r1 ∈ Sm+l−1,ψ
ρj−1

(Mr1
x ,M

r1
ξ ) where

Mr1
x = min{Mp

x ,M
q
x − |m− 1| − j − 2n− 1}

and

Mr2
ξ = min{Mq

ξ ,M
p
ξ − |m− 1| − j − 2n− 1}.
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(iii) If j = 2 and

Mp
ξ ≥ |m− 2|+ j + 2n+ 1 and Mq

x ≥ |m− 2|+ j + 2n+ 1

then

(p ◦ q)(x, ξ) = p(x, ξ)q(x, ξ) +
∑
|α|=1

∂αξ p(x, ξ)D
α
x q(x, ξ) + r2(x, ξ)

with r2 ∈ Sm+l−2,ψ
ρ0 (Mr2

x ,M
r2
ξ ) where

Mr2
x = min{Mp

x ,M
q
x − |m− 2| − j − 2n− 1}

and
Mr2
ξ = min{Mq

ξ ,M
p
ξ − |m− 2| − j − 2n− 1}.

Proof. (i) Note that

∂αξ ∂
β
x (p ◦ q) =

∑
α′≤α

∑
β′≤β

(
α

α′

)(
β

β′

)(
(∂α

′

ξ ∂
β′

x p) ◦ (∂α−α
′

ξ ∂β−β
′

x q)
)
.

We set
cx,ξ(y, η) :=

(
∂α
′

ξ ∂
β′

x p(x, ξ − η)
)(
∂α−α

′

ξ ∂β−β
′

x q(x− y, ξ)
)

and find using the subadditivity of ρj as well as Peetre’s inequality for negative definite
functions (compare, e.g., Lemma 3.6.23 in N. Jacob [10]) that∣∣∂γy ∂δηcx,ξ(y, η)

∣∣ ≤ ∣∣∂δη∂α′ξ ∂β′x p(x, ξ − η)
∣∣∣∣∂γy ∂α−α′ξ ∂β−β

′

x q(x− y, ξ)
∣∣

≤ c
(
1 + ψ(ξ − η)

)m−ρj(|α′+δ|)
2

(
1 + ψ(ξ)

) l−ρj(|α−α′|)
2

≤ c′
(
1 + ψ(ξ)

)m+l−ρj(|α+δ|)
2

(
1 + ψ(η)

) |m|+ρj(|α′+δ|)
2

≤C
(
1 + ψ(ξ)

)m+l−ρj(|α|)
2 (1 + |η|2)

|m|+j
2 .

Therefore, cx,ξ is an amplitude of order |m|+ j. In order to use Theorem 1.9, we need
to calculate |||cx,ξ||||m|+j+2n+1 and determine what the minimal differentiability con-
ditions for p and q are. By definition we have

|||cx,ξ||||m|+j+2n+1

= max
|γ|+|δ|≤|m|+j+2n+1

sup
y,η∈Rn

(1 + |y|2)−
|m|+j

2 (1 + |η|2)−
|m|+j

2 |∂γy ∂δηcx,ξ(y, η)|,

which gives us that

|||cx,ξ||||m|+j+2n+1 ≤ C
(
1 + ψ(m+ l − ρj(|α|))

) ξ
2 .
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Revista Matemática Complutense

2009: vol. 22, num. 1, pags. 187–207



Alexander Potrykus Symbolic calculus for non-smooth negative definite symbols

With regard to the differentiability conditions, we look at

|∂γy ∂δηcx,ξ(y, η)| ≤
∣∣∂δη∂α′ξ ∂β′x p(x, ξ − η)

∣∣∣∣∂γy ∂α−α′ξ ∂β−β
′

x q(x− y, ξ)
∣∣.

Hence it is clear that the above calculations are valid if Mp
ξ ≥ |m| + j + 2n + 1

and Mq
x ≥ |m| + j + 2n + 1. Furthermore we need to restrict α, β ∈ Nn0 so that

|α| ≤ min{Mq
ξ ,M

p
ξ − |m| − j − 2n− 1} and |β| ≤ min{Mp

x ,M
q
x − |m| − j − 2n− 1}.

Now we use Theorem 1.9 and find

|∂αξ ∂βx (p ◦ q)(x, ξ)| ≤ C|||cx,ξ||||m|+j+2n+1 ≤ C
′(1 + ψ(m+ l − ρj(|α|))

) ξ
2 .

(ii) First of all, we know by (9) that

(p ◦ q)(x, ξ) = (2π)−n Os-
∫∫

R2n
e−iy·ηp(x, ξ − η)q(x− y, ξ) dydη.

Using Taylor’s formula we write

p(x, ξ − η) = p(x, ξ) +
∑
|α|=1

(−η)α
∫ 1

0

∂αξ p(x, ξ − tη) dt.

Now note that

(2π)−n Os-
∫∫

R2n
e−iy·ηp(x, ξ)q(x− y, ξ) dydη

=p(x, ξ)(2π)−n Os-
∫∫

R2n
e−iy·ηq(x− y, ξ) dydη

=p(x, ξ)q(x− 0, ξ) = p(x, ξ)q(x, ξ).

Hence we have that

(p ◦ q)(x, ξ) = p(x, ξ)q(x, ξ) + r1(x, ξ)

where

r1(x, ξ) =
∑
|α|=1

(2π)−n Os-
∫∫

R2n
e−iy·η(−η)α

∫ 1

0

∂αξ p(x, ξ − tη) dt q(x− y, ξ) dydη

=
∑
|α|=1

(2π)−n Os-
∫∫

R2n
e−iy·η

∫ 1

0

∂αξ p(x, ξ − tη) dt (−Dy)αq(x− y, ξ) dydη.

Then

∂γξ ∂
δ
xr1(x, ξ) =

∑
|α|=1

∑
γ′≤γ

∑
δ′≤δ

(
γ

γ′

)(
δ

δ′

)
(2π)−n Os-

∫∫
R2n

e−iy·ηar1,x,ξ(y, η) dy dη
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where we have set

ar1,x,ξ(y, η) :=
∫ 1

0

∂γ
′

ξ ∂
δ′

x ∂
α
ξ p(x, ξ − tη) dt ∂γ−γ

′

ξ ∂δ−δ
′

x (−Dy)αq(x− y, ξ).

Using Peetre’s inequality for negative definite functions we find in a similar manner
as in (i) that∫ 1

0

|∂γ
′

ξ ∂
δ′

x ∂
α
ξ p(x, ξ − tη)|dt|∂γ−γ

′

ξ ∂δ−δ
′

x (−Dy)αq(x− y, ξ)|

≤ c
(
1 + ψ(m+ l − 1− ρj−1(|γ|))

) ξ
2
(
1 + ψ(η)

) |m−1|+j−1
2

≤ C
(
1 + ψ(m+ l − 1− ρj−1(|γ|))

) ξ
2 (1 + |η|2)

|m−1|+j−1
2 .

We conclude

|ar1,x,ξ(y, η)| ≤ C ′
(
1 + ψ(m+ l − 1− ρj−1(|γ|))

) ξ
2 (1 + |η|2)

|m−1|+j−1
2 ,

i.e., ar1,x,ξ is an amplitude of order |m− 1|+ j − 1. We hence find

|||ar1 ||||m−1|+j−1+2n+1 = |||ar1 ||||m−1|+j+2n ≤ c
(
1 + ψ(m+ l − 1− ρj−1(|γ|))

) ξ
2

which together with Theorem 1.9 yields

|∂γξ ∂
δ
xr1(x, ξ)| ≤ C|||ar1 ||||m−1|+j+2n ≤ c

(
1 + ψ(m+ l − 1− ρj−1(|γ|))

) ξ
2 .

This means that r1 ∈ Sm+l−1,ψ
ρj−1

. It remains to find the differentiability conditions.
As in (i) we find that the above calculations are valid as long asMp

ξ ≥ |m−1|+j+2n+1
and Mq

x ≥ |m − 1| + j + 2n + 1. Furthermore we need to restrict γ, δ ∈ Nn0 to
|γ| ≤ min{Mq

ξ ,M
p
ξ −|m−1|−j−2n−1} and |δ| ≤ min{Mp

x ,M
q
x−|m−1|−j−2n−1}.

(iii) This follows from the same reasoning as in (ii). Here, we use use the Taylor
expansion

p(x, ξ − η) = p(x, ξ) +
∑
|α|=1

(−η)α∂αξ p(x, ξ) +
∑
|α|=2

(−η)α
∫ 1

0

(1− t)∂αξ p(x, ξ − tη) dt.

The first term of the expansion then follows as in (ii). For the second term we calculate∑
|α|=1

(2π)−n Os-
∫∫

R2n
e−iy·η(−η)α∂αξ p(x, ξ)q(x− y, ξ) dy dη

=
∑
|α|=1

∂αξ p(x, ξ)(2π)−n Os-
∫∫

R2n
e−iy·η(Dy)αq(x− y, ξ) dy dη

=
∑
|α|=1

∂αξ p(x, ξ)D
α
x q(x, ξ).
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We next consider the remainder term r2 given by

r2(x, ξ) =
∑
|α|=2

(2π)−n Os-
∫∫

R2n
(−η)α

∫ 1

0

(1− t)∂αξ p(x, ξ − tη) dtq(x− y, ξ) dy dη.

The proof from here on is basically identical to the one for (ii). All that remains
to be done is to set |α| = 2 and use the function ρj−2 instead of ρj−1 as done
in (ii).

Note that this theorem coincides with our observations made earlier on. The min-
imum differentiability that the symbol q needs to have with respect to x depends
on the order of the symbol p! In terms of embedding results which we need in the next
section this means that we expect to choose Mq

x very large. Also we emphasize that
we do not mention the symbol of the adjoint of a pseudodifferential operator within
our symbolic calculus for non-smooth symbols. One might argue that the symbol
of the adjoint is given by the oscillatory integral

(2π)−n Os-
∫∫

R2n
e−iy·ηp(x− y, ξ − η) dy dη

and hence can be treated with the same technique as in the proof of Theorem 1.10.
But one prerequisite for discussing adjoints in the classical symbolic calculus (or
in W. Hoh’s symbolic calculus) is that first one needs to show that p(x,D) is con-
tinuous from S(Rn) to S(Rn). This is not the case when working with non-smooth
symbols. More precisely we find that

|p(x,D)u|k,S ≤ ck|p|(m)
k |u|m+2(n+1)+k,S

holds for all k ∈ N, where |·|k,S denotes the Schwartz space seminorm. But clearly,
|p|(m)

k exists only for k ≤ min{Mx,Mξ}. Using adjoints has the distinct advantage
that we could show that tools like the (sharp) G̊arding inequality or Friedrichs sym-
metrization are also available within our non-smooth symbolic calculus. Further in-
vestigations in this direction will be postponed to another paper. Instead, we present
in the next section an easy way to identify compact pseudodifferential operators. This
will allow us to use Fredholm theory to construct a parametrix.

2. Parametrices and Feller semigroups

We want to construct Feller semigroups, i.e., strongly continuous contraction semi-
groups on C∞(Rn) that are positivity preserving, by using the Hille-Yosida theo-
rem and the symbolic calculus developed in section 1. The novelty here is that we
work with non-smooth symbols. Assume for the moment that

(
A,D(A)

)
extends
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to the generator of a Feller semigroup (Tt)t≥0. A result from Ph. Courrège [3] states
that if C∞0 (Rn) ⊂ D(A) then A is on C∞0 (Rn) a pseudodifferential operator

Au(x) = −q(x,D)u(x) = −(2π)−
n
2

∫
Rn
eix·ξq(x, ξ)û(ξ) dξ,

with symbol q : Rn × Rn → C such that ξ 7→ q(x, ξ) is continuous negative definite
for all x ∈ Rn. On the other hand, it was shown by N. Jacob [8], see also W. Hoh
[6] in the context of a symbolic calculus, that starting with certain smooth negative
definite symbols q, one can construct Feller semigroups by using the Hille-Yosida theo-
rem, for details see also [11]. Since our symbolic calculus admits non-smooth symbols,
we are going to assume from now on that we are given a symbol p ∈ S2,ψ

ρ2 (Mx,Mξ)
where ψ is a continuous negative definite function of class Λ∞, Mx, Mξ ∈ N0 ∪ {∞},
and ξ 7→ p(x, ξ) is negative definite for all x ∈ Rn. Note that every negative definite
function is of order 2, compare Lemma 1.6. We want to show, under certain conditions
on Mx and Mξ, that the corresponding pseudodifferential operator −p(x,D) extends
to the generator of a Feller semigroup. The Hille-Yosida theorem yields the desired
result if the following conditions are satisfied:

• D(−p(x,D)) ⊂ C∞(Rn) dense; (10)
• −p(x,D) is a dissipative operator;
• R(λ+ p(x,D)) is dense in C∞(Rn) for some λ > 0. (11)

The first two conditions are easily verified, it is the third condition that we have to
work hardest for and for which we need the symbolic calculus developed in section 1.
The dissipativity of −p(x,D) follows directly from the fact that it satisfies the pos-
itive maximum principle, see, e.g., S. Ethier and T. Kurtz [4]. Also, following the
construction of Feller semigroups by W. Hoh [6] the anisotropic Sobolev spaces

Hs,ψ(Rn) := {u ∈ S ′(Rn) : ‖(1 + ψ(·)) s2 û‖L2 <∞}

are the right choice to handle the operator −p(x,D). An embedding result, compare
N. Jacob [11], yields that if ψ(ξ) ≥ c|ξ|r for some c > 0, r > 0 and sufficiently large |ξ|,
then for s+ 2 > n

r we have

Hs+2,ψ(Rn) ↪−→ C∞(Rn). (12)

If we set D(−p(x,D)) = Hs+2,ψ(Rn) then this gives (10).
As mentioned before, showing that (11) holds is non-trivial. It amounts to solving

the equation (
λ+ p(x,D)

)
u = f (13)

where f is an element of a dense subset of C∞(Rn) and u ∈ D(−p(x,D)) =
Hs+2,ψ(Rn). Since Hs+2,ψ(Rn) ⊂ Hs,ψ(Rn) and −p(x,D) is an operator of order 2
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we suspect that we should choose f ∈ Hs,ψ(Rn). In order to justify this choice we need
to prove that

p(x,D) : Hs+2,ψ(Rn) −→ Hs,ψ(Rn)

is continuous. We need the Calderón-Vaillancourt theorem, see H. Kumano-go [13].

Theorem 2.1. Let q : Rn × Rn → C be a C3,3(R2n)-function such that∣∣∂αξ ∂βx q(x, ξ)∣∣ ≤ cα,β .
Then

‖q(x,D)u‖L2 ≤ c|q|(0)3 ‖u‖L2

for some constant c > 0.

Note that if we are given a symbol q ∈ S0,ψ
ρj (Mx,Mξ) and Mx ≥ 3, Mξ ≥ 3, then

we may apply Theorem 2.1. Now we can prove the following result.

Theorem 2.2. Assume that q ∈ Sm,ψρj (Mx,Mξ) where m ∈ R, Mx, Mξ ∈ N0 ∪ {∞},
j ∈ {0, 1, 2}, and ψ continuous negative definite symbol of class Λ∞. Then for s ∈ R,
if

Mx ≥ |s|+ j + 2n+ 4 and Mξ ≥ 3

we have that

‖q(x,D)u‖Hs,ψ ≤ c
∣∣(1 + ψ)

s
2 ◦ q ◦ (1 + ψ)

−s−m
2
∣∣(0)
3
‖u‖Hs+m,ψ ,

for all u ∈ Hs+m,ψ(Rn) and some c > 0.

Proof. Since ψ ∈ Λ∞ we know that it is smooth, i.e.,(
1 + ψ(·)

) s
2 ∈ Ss,ψρj (∞,∞).

As q ∈ Sm,ψρj (Mx,Mξ) we have by Theorem 1.10 (i) that, if Mx ≥ |s| + j + 2n + 1,
then (

1 + ψ(·)
) s

2 ◦ q(·, ·) ∈ Sm+s,ψ
ρj

(
Mx − |s| − j − 2n− 1,Mξ

)
.

Also, since
(
1 + ψ(·)

)−s−m
2 is a constant coefficient symbol, we find directly using

Fourier transforms that(
1 + ψ(·)

) s
2 ◦ q(·, ·) ◦

(
1 + ψ(·)

)−s−m
2 ∈ S0,ψ

ρj

(
Mx − |s| − j − 2n− 1,Mξ

)
.

By Theorem 2.1 we now find if

Mx − |s| − j − 2n− 1 ≥ 3 and Mξ ≥ 3

then

‖q(x,D)u‖Hs,ψ =
∥∥(1 + ψ(D)

) s
2 q(x,D)u

∥∥
L2

= ‖
(
1 + ψ(D)

) s
2 q(x,D)

(
1 + ψ(D)

)−s−m
2 ‖L2→L2‖u‖Hs+m,ψ

≤ |(1 + ψ)
s
2 ◦ q ◦ (1 + ψ)

−s−m
2 |(0)3 ‖u‖Hs+m,ψ .
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It remains to solve equation (13), i.e., that for f ∈ Hs,ψ(Rn) there exists a so-
lution u ∈ Hs+2,ψ(Rn) such that (10) holds. In order to achieve this we construct
a parametrix using Fredholm theory. The starting point is the idea to use a spe-
cial class of symbols that are asymptotically constant in the co-variable. We ex-
tend this idea that can be found, e.g., in V. V. Grushin [5] or H. Kumano-go and
K. Taniguchi [14] to include our non-smooth negative definite symbols.

Definition 2.3. We denote by Sm,ψ∞,ρj (Mx,Mξ) the set of all symbols q ∈
Sm,ψρj (Mx,Mξ), such that for |α| ≤Mξ and |β| ≤Mx,

∣∣∂αξ ∂βx q(x, ξ)∣∣ ≤ cα,β(x)
(
1 + ψ(ξ)

)m−ρj(|α|)
2

with cα,β ∈ C∞(Rn).

Cleary, we have that Sm,ψ∞,ρj (Mx,Mξ) ⊂ Sm,ψρj (Mx,Mξ), i.e. all results from pre-
vious sections remain valid. Note that such symbols are in the classical case some-
times called slowly varying symbols, and are denoted by Ṡm or ÜSm (compare, e.g.,
H. Kumano-go [13]). We choose here to follow V. V. Grushin’s notation.

Lemma 2.4. Let p ∈ Sm,ψρj (Mp
x ,M

p
ξ ) and q ∈ Sl,ψρj (Mq

x ,M
q
ξ ) where Mp

ξ and Mq
x

satisfy the conditions as given in Theorem 1.10 (ii) and j ∈ {1, 2}. Furthermore let
∂βx q ∈ Sl,ψ∞,ρj (M

q
x − 1,Mq

ξ ) for |β| = 1. Then

p ◦ q(x, ξ) = p(x, ξ)q(x, ξ) + r(x, ξ)

where r ∈ Sm+l−1,ψ
∞,ρj−1

.

Proof. The Lemma follows directly from Theorem 1.10 (ii) by looking at how the es-
timate of the remainder term is derived.

Lemma 2.5. Let p : Rn×Rn → C be a CMx,Mξ(R2n)-function, such that there exists
a r > 0 with p(x, ξ) = 0 for all (x, ξ) ∈ Rn × Rn with |x| > r or |ξ| > r. Then

p(x,D) : Hs1,ψ(Rn) −→ Hs2,ψ(Rn)

is compact for all s1, s2 ∈ R, s2 ≤ Mx, where ψ is a continuous negative definite
function of class Λ∞.

Proof. By Theorem 3.10.4 from N. Jacob [10] we know that

H2k(Rn) ↪−→ H2k,ψ(Rn) ↪−→ Hs2,ψ(Rn)

for 2k ≥ s2 since ψ is a continuous negative definite function. Since the embedding is
continuous it remains to show that p(x,D) : Hs1,ψ(Rn) → H2k(Rn) is compact, i.e.,
that the operator

(1−∆x)k ◦ p(x,D) ◦
(
1 + ψ(D)

)− s12 : L2(Rn) −→ L2(Rn)
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is compact. The symbol of ∆x is −|ξ|2 and as (1 + |ξ|2)k is a polynomial we know
that (1−∆x)k is a linear partial differential operator

(1−∆x)k =
∑
|α|≤2k

aαD
α
x

with constant coefficients. Then for u ∈ S(Rn) and noting that Mx ≥ s2,

(1−∆x)kp(x,D)
(
1 + ψ(D)

)− s12 u(x)

= (2π)−
n
2

∫
Rn

∑
|α|≤2k

aαD
α
x

(
eix·ξp(x, ξ)

)
(1 + |ξ|2)−

s1
2 û(ξ) dξ.

Using Leibniz’ formula this gives us

(1−∆x)kp(x,D)
(
1 + ψ(D)

)− s12 u(x) =
∫

Rn
h(x, ξ)û(ξ) dξ

where h is continuous and vanishes for |x| > r or |ξ| > r. The Lemma now follows
from the well-known fact that the integral operator

L2(Br(0)) 3 v 7−→
∫
|y|≤r

k(·, y)v(y) dy ∈ L2(Br(0))

is for a continuous kernel k compact.

Note that Lemma 2.5 was proven without using Theorem 2.2. Now it is possible
to show the following, compare V. V. Grushin [5] or H. Kumano-go [13, chapter 3,
Theorem 5.14] for a similar technique.

Theorem 2.6. Let q ∈ Sm,ψ∞,ρj (Mx,Mξ), s ∈ R, and

Mx ≥ |s|+ j + 2n+ 4
Mξ ≥ 3.

Then for every ε > 0

q(x,D) : Hs+m,ψ(Rn) −→ Hs−ε,ψ(Rn)

is compact.

Proof. Let ϕ ∈ C∞0 (Rn) such that ϕ(x) = 0 for |x| > 1 and ϕ(x) = 1 for |x| ≤ 1
2 .

We set
qs(x,D) :=

(
1 + ψ(D)

) s−ε
2 ◦ q(x,D) ◦

(
1 + ψ(D)

)−s−m
2 .

The operator

ϕ
(x
l

)
◦ qs(x,D) ◦ ϕ

(D
l

)
: L2(Rn) −→ L2(Rn)
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has symbol

ϕ
(x
l

)
qs(x, ξ)ϕ

(ξ
l

)
and hence is by Lemma 2.5 compact. It follows that∥∥∥qs(x,D)− ϕ

(x
l

)
◦ qs(x,D) ◦ ϕ

(D
l

)∥∥∥
L2→L2

−→ 0

since
(
1− ϕ

(
x
l

)
ϕ
(
ξ
l

))
qs(x, ξ)→ 0 in S0,ψ

ρj for l →∞. As the limit of a (with respect
to the operator norm) convergent sequence of compact operators is again compact,
we conclude that qs(x,D) : L2(Rn)→ L2(Rn) is compact. Now we write q(x,D) as

q(x,D) =
(
1 + ψ(D)

)−s+ε
2 ◦ qs(x,D) ◦

(
1 + ψ(D)

) s+m
2

and find that q(x,D) : Hs+m,ψ(Rn)→ Hs−ε,ψ(Rn) is compact.

We need the following result from functional analysis (see, e.g., K. Yosida [18]).

Theorem 2.7. Let T ∈ L(E,F ), where E,F are normed spaces and L(E,F ) denotes
the set of all continuous linear operators from E into F . Then T is a Fredholm
operator if and only if there exist S1, S2 ∈ L(F,E) with

TS1 = IdF +K1 and S2T = IdE +K2,

where K1 and K2 are compact.

Now we are in a position to prove the main theorem, for classical parametrix
constructions (see, e.g., K. Yosida [18]). We point out that we restrict ourselves
to the case where the order of the symbol is 2 since this is the case of interest to us,
compare Theorem 2.9. It is nevertheless possible to construct a parametrix also
in the general case.

Theorem 2.8. Let p ∈ S2,ψ
ρ2 (Mx,Mξ), such that ∂βxp ∈ S2,ψ

∞,ρ2(Mx − 1,Mξ) for all
|β| = 1. Also assume that there exists r > 0 and δ > 0 such that

|p(x, ξ)| ≥ δ
(
1 + ψ(ξ)

)
(14)

for all |x|2 + |ξ|2 ≥ r2. Then for s ∈ R, if

Mx ≥ |s|+ 4n+ 12
and

Mξ ≥ 2n+ 9

we find that
p(x,D) : Hs+2,ψ(Rn) −→ Hs,ψ(Rn)

is a Fredholm operator.
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Proof. If Mx ≥ |s| + 2n + 4 and Mξ ≥ 3 we have by Theorem 2.2 that
p(x,D) : Hs+2,ψ(Rn) → Hs,ψ(Rn). It remains to show that p(x,D) is a Fredholm
operator.

Let ϕ ∈ C∞(Rn × Rn) with ϕ(x, ξ) = 0 for |x|2 + |ξ|2 < r2 and ϕ(x, ξ) = 1 for
|x|2 + |ξ|2 ≥ 2r2. If we set

q(x, ξ) :=

{
ϕ(x, ξ)p(x, ξ)−1, if |x|2 + |ξ|2 ≥ r2,
0, if |x|2 + |ξ|2 < r2,

then q ∈ S−2,ψ
ρ2 (Mx,Mξ) and ∂βx q ∈ S−2,ψ

∞,ρ2 (Mx − 1,Mξ) for |β| = 1 as is easily seen
using Leibniz’ formula and the chain rule (note that for a differentiable and pointwise
invertible matrix-valued function a we have that (∂xja

−1) = −a−1(∂xja)a−1). It holds
that

p(x, ξ)q(x, ξ) = q(x, ξ)p(x, ξ) =

{
ϕ(x, ξ), if |x|2 + |ξ|2 ≥ r2,
0, if |x|2 + |ξ|2 < r2.

We now assume that |x|2 + |ξ|2 ≥ r2. We want to use Theorem 1.10 (ii) and hence
need to check that the differentiability conditions are satisfied. We find that

(q ◦ p)(x, ξ) = ϕ(x, ξ) + r1(x, ξ) and (p ◦ q)(x, ξ) = ϕ(x, ξ) + r2(x, ξ) (15)

if

Mx ≥ |−2− 1|+ 2 + 2n+ 1 = 6 + 2n,
Mξ ≥ 6 + 2n.

Here, r1, r2 ∈ S−1,ψ
∞,ρ1 , see Lemma 2.4, and

Mr1
x = Mr2

x = Mx − 6− 2n,
Mr1
ξ = Mr2

ξ = Mξ − 6− 2n.

Since 1 − ϕ(x, ξ) ∈ C∞0 (Rn × Rn) we have that 1 − ϕ ∈ S−1,ψ
∞,ρ1 (∞,∞) and thus we

may write (15) as

(q ◦ p)(x, ξ) = −1 +
(
1− ϕ(x, ξ)

)
+ r1(x, ξ),

(p ◦ q)(x, ξ) = −1 +
(
1− ϕ(x, ξ)

)
+ r2(x, ξ).

Hence we find for the corresponding pseudodifferential operators that

q(x,D) ◦ p(x,D) = Id +R′1(x,D) and p(x,D) ◦ q(x,D) = Id +R′2(x,D),

where r′1, r
′
2 ∈ S−1,ψ

∞,ρ1 and M
r′1
x = Mr1

x , Mr′1
ξ = Mr1

ξ , Mr′2
x = Mr2

x , and M
r′2
ξ = Mr2

ξ .
We also have by Theorem 2.2 that if

Mx ≥ |s|+ 2n+ 6 and Mξ ≥ 3
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then q(x,D) : Hs−2,ψ(Rn)→ Hs,ψ(Rn). Hence

p(x,D)q(x,D) : Hs−2,ψ(Rn) −→ Hs−2,ψ(Rn),

q(x,D)p(x,D) : Hs,ψ(Rn) −→ Hs,ψ(Rn).

In order to apply Theorem 2.7 it remains to show that

R′1(x,D) : Hs−2,ψ(Rn) −→ Hs−2,ψ(Rn)

and

R′2(x,D) : Hs,ψ(Rn) −→ Hs,ψ(Rn)

are compact. The compactness and the mapping properties of R′1(x,D) and R′2(x,D)
follow from Theorem 2.6 if

M
r′1
x = M

r′2
x ≥ |s|+ 2n+ 6 and M

r′1
ξ = M

r′2
ξ ≥ 3.

But this means that we need

Mx ≥ |s|+ 4n+ 12 and Mξ ≥ 2n+ 9.

Using Theorem 2.7 we can now solve equation (12) and arrive at the following
theorem.

Theorem 2.9. Let p ∈ S2,ψ
ρ2 (Mx,Mξ), ψ ∈ Λ∞, be given such that ξ 7→ p(x, ξ) is con-

tinuous negative definite for all x ∈ Rn and ∂βxp ∈ S2,ψ
∞,ρ2(Mx − 1,Mξ) for |β| = 1.

Assume further that ψ(ξ) ≥ c|ξ|r for some c > 0, r > 0,

Mx ≥
∣∣∣∣nr − 1

∣∣∣∣+ 4n+ 12, Mξ ≥ 2n+ 9

and that there exists a δ > 0 such that

|p(x, ξ)| ≥ δ
(
1 + ψ(ξ)

)
for large ξ and x ∈ Rn. Then the corresponding pseudodifferential operator −p(x,D)
extends to the generator of a Feller semigroup (Tt)t≥0.

Proof. Following the discussion at the beginning of this section, it remains to solve (13).
We already know that Hs+2,ψ(Rn) ↪→ C∞(Rn) for s > n

r − 2 where ψ(ξ) ≥ c|ξ|r.
Since r > 0 is small we can assume without loss of generality that s > 0 is large.
Furthermore, as ξ 7→ p(x, ξ) is negative definite we have that p(x, 0) = 0 for all
x ∈ Rn. On the other hand, Theorem 2.8 requires the symbol to satisfy (14). Hence
we consider the operator p(x,D) + δ with symbol p(x, ξ) + δ and find that this sym-
bol satisfies (14). By setting s := n

r − 1 and using Theorem 2.8 we now get that
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p(x,D) + δ is a Fredholm operator. Hence we can use Theorem 2.7 and reduce solv-
ing the equation λu + p(x,D)u = f to solving the equation 1

λu + Ku = Sf where
K is compact. Using the Fredholm alternative we either find that this equation has
a unique solution for all f , and in this case we are done — or, that this equation
does not have a solution for λ ∈ M , where M is some countable subset of the real
numbers. In this case we simply choose λ > 0 in such a way that it does not belong
to M since it suffices to solve the equation λu+ p(x,D)u = f only for one arbitrary
λ > 0. An application of the Hille-Yosida theorem now yields the result.

The condition on Mx in the above Theorem can in practice be read as Mx = ∞
since r > 0 small. Compared to W. Hoh’s construction of Feller semigroups that are
pregenerated by pseudodifferential operators with negative definite symbols, com-
pare [6], let us make some remarks: Our approach admits non-smooth symbols
whereas other constructions require smooth symbols. In particular, if we set in The-
orem 2.9, Mx =∞ and Mξ =∞, and if we take away the additional restriction that
the symbol has to be asymptotically constant, our result in Theorem 2.9 coincides
with the result of W. Hoh. Note that our result simplifies the construction since tools
such as the G̊arding inequality, Friedrichs mollifier and variational solutions, are not
needed.

3. Final remarks

The differentiability conditions found in Theorem 2.9 can in principle be tracked back
to the fact that we use the oscillatory integral representation of the symbol of the com-
position of two pseudodifferential operators. It is a subject of further study whether it
is possible to use the singular integral representation and direct estimates on the kernel
to weaken these conditions. As mentioned before, it might also be interesting to con-
sider the adjoint representation of a pseudodifferential operator with non-smooth
symbol to develop further tools such as the G̊arding inequality. This would enable
to us to extend the final result in such a way that we could also include symbols that
are not asymptotically constant in the co-variable.

Acknowledgement. The author would like to thank N. Jacob for many helpful
discussions.
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