REVISTA MATEMATICA de la
Universidad Complutense de Madrid
Volumen 3, niimeros 2 y 3; 1990.

3-Manifold Spines and Bijoins

LUIGI GRASSELLI

ABSTRACT. We describe a combinatorial algorithm for constructing all orientable
3-manifolds with a given standard bidimensional spine by making use of the idea of
bijoin ([BG], [Gr]) over a suitable pseudosimplicial triangulation of the spine.

1. INTRODUCTION

Throughout this paper, all spaces and maps are piecewise-linear (pl) in the
sense of [GI] or [RS]; all 3-manifolds are supposed to be compact, connected
and orientable.

If M is a 3-manifold with non-empty boundary, then a bidimensional
polyhedron K such that M collapses to K is said to be a spine of M; if M is
closed, a spine of M is a spine of M-B, B being an open 3-ball in M.

Given a group presentation ®={x,...,x, 1 r,...,r;}, denote by Ky the
bidimensional complex constructed as follows:

— K has only one O-cell (vertex),

— the 1-cells (resp. the 2-cells) of Ky are in one-to-one correspondence
with the generators (resp. the relators) of ®; denote them by «; (resp.
B

— each 2-cell B; is attached to the 1-skeleton by the formula given by the
corresponding relator r;.

Ky is said to be the standard complex associated to ®; of course, the factor
group of ® is I1, (] Kp|). We will not distinguish between a relator r; and any
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cyclic conjugate of it or its inverse, since the associated complexes are the
same. The above construction may be obviously reversed and each standard
complex K induces a‘ group presentation ¥, of the fundamental group
11, (1 K1).

It is well known that every 3-manifold M has a standard spine K, for
some group presentation ¢, and the factor group of & is clearly II, (M),
nevertheless, not every standard complex Kj is a spine of a 3-manifold. Every
group presentation P such that Ky is a spine of a 3-manifold (resp. of a closed
3-manifold) is said to be geometric (resp. strongly geometric).

In [N] Neuwirth gives an algorithm for testing if a balanced group
presentation (same number of generators and relators) is strongly geometric.
The same algorithm is restated by Osborne and Stevens ([OS,], [S]) by
making use of a graph-theoretical tool, the presentation-graph or P-graph
Py, which can be associated, by a one-to-one correspondence, to the standard
complex Ky of a group presentation ®. Namely, Py is essentially the bound-
ary of a regular neighbourhood of the unique vertex of Ky and it is easy to
prove that & is strongly-geometric if and only if a planar imbedding condition
on Py holds. Moreover, as pointed out by Montesinos in [M], a Heegaard
diagram of a 3-manifold M gives rise to such a planar imbedding of the P-
graph Py associated to a suitable group presentation & of II, (M); in fact, this
is nothing else than the Whitehead graph of the group presentation ® of
II, (M) coming from the given Heegaard diagram of M. Thus, a group
presentation ® is geometric (resp. strongly-geometric) if and only if there
exists a Heegaard diagram of a 3-manifold (resp. closed 3-manifold) M whose
associated presentation for I, (M) is &.

In [M] Montesinos describes an algorithm for checking if a given group
presentation is geometric; such an algorithm seems to be completely different
from Neuwirth’s one, since it makes use of branched covering techniques.

In the present paper, we give a combinatorial algorithm for obtaining all
3-manifolds with a given standard spine K by making use of the bijoin
construction ([BG], [Gr]) applied to a graph-theoretical structure representing
a pseudosimplicial triangulation of Ky. This construction allows us to unify,
in a common geometric description, both Neuwirth algorithm and Montesinos
one; namely, the necessary and sufficient conditions for the geometricity (or
the strong-geometricity) of a group presentation obtained in [N], [0S,],
[OS,], [S], [M] can be all derived from the bijoin construction.

2. EDGE-COLOURED GRAPHS AND ASSOCIATED COMPLEXES

The term pseudograph includes loops and multiple edges, while a
multigraph (or simply a graph) allows multiple edges only.



3-Manifold Spines and Bijoins . 167

A (generalized) coloration on a pseudograph I'=(V/(I'), E(T')) is a map
v: EM)—~A,={0,1,...,n}; if T is a graph, vy is said to be proper if
v(e)# v (f), for each pair e, f of adjacent edges. For each ¥ CA,, set
I, = (@), v (¥)), each connected component of I', is often called an
S residue. For each ie A, set i =A,—{i}.

The pair (I',y), T being a graph and y: E(I')—~A, a (generalized)
coloration, is said to be an n-dimensional crystallized structure ([G]) if, for
each ie A, the {i}—residues are cliques (complete graphs). If all these cliques
are of order two, i.e. if 7 is proper and I is regular of degree n+1, (I',y) is
simply called an (n+ 1)— coloured graph ([F]).

An n-dimensional pseudocomplex K is an n-dimensional ball complex in
which every A-ball, considered with all its faces, is isomorphic with the
complex underlying an h-simplex; for this reason, each A-ball of K is called
h-simplex. The disjoined star Std(s, K) of a simplex s in K is defined to be the
disjoint union of the n-simplexes of K containing s, with reidentification of
the (n— 1)-faces containing s and of their faces; the subcomplex Lkd (s, K) =
{reStd(s, K) | TN s=¢ }is called the disjoined link of s in K.

As shown in [G] and [F], every n-dimensional crystallized structure (I, )
represents a homogeneous n-dimensional pseudocomplex K(I') constructed
by the following rules:

— take an n-simplex o (v) for each ve ¥ (I') and label its vertices by A,;

— if v, we V(') are joined by an i-coloured edge, identify the (n—1)—

faces of o(v) and o (w) opposite to the vertices labelled by i, so that
equally labelled vertices are identified together.

Every h-simplex s of K(T'), whose vertices are labelled by the distinct
colours ¢, ,...,cy€ A,, corresponds to a unique (A, —{¢,,..., ¢4} ) — residue R
of (', ) and viceversa; its associated pseudocomplex K(R) is Lkd (s, K(I')).

Moreover, (I', ) is an (n+ 1)-coloured graph if and only if | K(T')] is a
closed pseudomanifold ([ST]), which is orientable if and only if T is bipartite
([CGP}).

The construction of K(T') gives a coloration on the vertex set S, (K) of
K (T') by means of n+ 1 colours (i.e. a map £: S, (K) — 4, which is injective on
each simplex of K(I')). Given a homogeneous n-dimensional pseudocomplex
K with such a coloration on its vertex set S,(K), the construction can be
easily reversed yielding an n-dimensional crystallized structure, denoted by

I'(K).

It is easy to see that I'(K(I") )= (T, ¥); moreover (see [G]), K({I'(K))=K
if and only if K satisfies the following property:

(*) the disjoined star std(s, K) of every simplex s of K is strongly-
connected.



168 Luigi Grasselli

A homogeneous n-dimensional pseudocomplex satisfying (*) and admitting
a coloration on its vertex set by means of n+1 colours is said to be a
representable n-pseudocomplex, since it is uniquely represented by an n-
dimensional crystallized structure.

An n-dimensional crystallized structure (I, ) (or its associated pseudo-
complex K(I')) is said to be contracted if T'; is connected, for each ce A, (i.e.
if K(I') has exactly n+ 1 vertices). A contracted (n+ l)-coloured (bipartite)
graph (T', ) is said to be a crystallization of a closed (orientable) n-manifold
M if |[K(T')| = M. Every closed n-manifold admits a crystallization ([P]).

For a general survey on manifold representation theory by means of edge-
coloured graphs, see [FGG], [BM], [V].

3. THE BIJOIN CONSTRUCTION

If T is an oriented pseudograph and v: E(IY— A, is a (generalized)
coloration, the pair (I, ¥) is called an n-dimensional oriented structure
([BG]) if, for every ieA,, the {i}-residues are elementary oriented cycles,
possibly of length one or two.

By deleting all loops in E(T') and by replacing, for every ieA,, each
elementary oriented i-coloured cycle in F ; with a clique on the same vertex
set, 1t is easy to associate an n-dlmensmnal crystallized structure (T, y) to
every n-dimensional oriented structure (T, ¥). Of course, there are, in general,
many oriented structures associated to a fixed crystalhzed structure; they can
be easily obtained by reversing the above construction. If (T, ) is an oriented
structure associated to the crystallized structure (T, y), we set K(I')= K(I").

The following construction, given in [BG], allows to obtain an (n+ 1)-
coloured bipartite . graph (B(T),B) from an (n— 1)-dimensional oriented
structure (I, ¥):

— V(B(@)=V(@)x{0,1};
— for every vertex ve V(I'), join (v, 0) with (v, 1) by an edge e of B(T') and
set B(e)=n;,
— ifée E(F) and € (0) =v, é(1) =w, then join (v, 0) with (w, 1) by an edge
¢’ of B(I) and set B(e") ="y (&).

Note that the choice of the opposite oriented structure, obtained by
reversing the orientation of each {i}-residue, for every ie A, |, gives rise to the
same graph. The construction in an adapting to the edge-coloured graphs of
a standard method for associating a bipartite graph to an arbitrarily given
oriented graph ([BHM]). The (n+ 1)-coloured graph (B(T), B8) (and its
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associated pseudocomplex) is said to be the h-bijoin over (T, ¥), h being the
number of the A-residues in (B(T), B); if A=1, (B(T'), B) is simply called
bijoin. .

Given an (n+ 1)-coloured bipartite graph (I, ), it is easy to (uniquely)
construct, for each ieA,, an (n— l)-dimensional oriented structure (T, )
such that (B(T),8)=(T",v) ([BG]); thus, every closed n-manifold can be
obtained as a bijoin over a suitable (n— 1)-dimensional oriented structure. A
refinement of this result, in dimension three, obtained by making use of
«normal crystallizations» ((BDG]), is contained in [Gr].

Extending [M], a closed orientable n-dimensional pseudomanifold N
(triangulated by a pseudocomplex K) is said to be a singular n-manifold if the
disjoined link of each k-simplex, k>0, is a sphere and the disjoined link of
each vertex is a (closed) connected (n — 1)-manifold. A vertex of K such that
its disjoined link is (resp. is not) an (n— 1)-sphere is said to be regular (resp.
singular).

Every singular n-manifold can be obtained by capping off each boundary
component of an n-manifold by a cone. In the other sense, if K is a
pseudocomplex triangulating a singular n-manifold N and WCS, (K), let
M (K, W) denote the space obtained by removing from the barycentric
subdivision K’ of K the open stars in K’ of the vertices belonging to W; then
W contains all singular vertices of K if and only if M (K, W) is an n-manifold
whose boundary components are Lk (v, K’), with ve W.

Note that, in dimension three, the pseudocomplex K (T") associated to an
arbitrary (bipartite) 4-coloured graph (T',y) always triangulates a singular
3-manifold.

Proposition 1. Let (T, ) be a 4-coloured bipartite graph such that all c-
labelled vertices of K (T') are regular, for every ce A,. If W denotes the set of
all 3-labelled vertices of K(T') and (3T, 3¥) is the 2-dimensional oriented
structure such that (B(T), B)=(T", v), then K °T) is a spine of the 3-manifold
M (K (T), W).

Proof. It directly follows from the bijoin construction that K (1) is the
subcomplex of K(I') consisting of all simplexes of K(I') whose vertices are
labelled by colours different from 3. Thus, for a sufficiently small € > o, the
e-neighbourhood M, of K(I') in K(T) is an e-neighbourhood of K CTY) in
M (K(T'), W) too. For the collapsing criterion for regular neighbourhoods
([RS], corollary 3.30), the polyhedron N, | =M (K@), W) collapses on
IKCD)). .
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Corollary 2. If (T,v) is a 4-coloured bipartite graph representing a
(closed, orientable) 3-manifold M such that K(T') has a unique 3-coloured
vertex (in particular, if (T, v ) is a crystallization of M), then | K °T)| is a spine
of M.

4. NEUWIRTH ALGORITHM VIA BIJOINS
Set Ny={1,2,.... k}.

H®={x,..,x,|r,..,r} is a group presentation, denote by A (x)), ie N,,
the number of occurrences of the generator x; in the relators of ¢ and by
A(r), jeN;, the length of each relator r;; the length A of & is defined by A =

S A(r r)= 2\ A(x). For each relator r;, take a 2-cell B; and triangulate its

jeNy

boundary by «reading» the relator r. Thus, we obtain a complex H,
triangulating dB; with A (r)) edges, each of which is labelled by a generator and
has a suitable orientation Label each vertex of H; by the colour 0, take the
barycentric subdivision H; of H; and label all the barycenters by the colour 1.
Note that each oriented x-labelled edge o of H; splits into an ordered pair
(a—, o) of oriented x-labelled edges in H/: more precisely, if b,, u,, Vv,
respectively denote the barycenter, the first and the second endpoint of «, the
ordered pair (u,, b,) (resp. (b,,Vv,)) represents the endpoints of the oriented
edge a~ (resp. a'). By starring B; from an inner point C; (labelled by the
colour 2) over H], we obtain a pseudocomplex K; mangulatmg B; with a
coloration on its vertex set by the colours 0, 1, 2 (fig. 1) Now, take the disjoint

union || 'K; and identify the oriented edges o~ (resp. at) of its boundary

jeNs
labelled by the same generator so that identified vertices have the same
colour. Let Ky be the resulting representable 2-pseudocomplex and let (T, )
be its associated crystallized structure.

The 0-adjacence (resp. l-adjacence) in (I',y) induces a fixed-point-free
involution B (resp. A) on the set V' (I') and the set of the vertices belonging to
the same {2}-residue of (I',y) can be thought of as an orbit of a suitable
permutation C on V(I'). These permutations are the homonimous ones
associated to @ in [N]. The assignment of such a permutation C gives rise to
a particular 2-dimensional oriented structure (I'c, ¥() associated to the
crystallized structure (I, y); in fact, C induces a cyclic ordering in the vertices
of each {2}-residue of (I, v) which are the only {c}-residues of order possibly
greater than two. Thus, the geometrical meaning of the choice of a particular
C is to give an ordering to the 2-simplexes of Ky = K(I') containing the same
I-simplex.

We always assume this ordering system with the property that the two
cyclic orderings on the A(x;) 2-simplexes containing the two distinct
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X-labelled edges of K, are opposite; this is equivalent to require the property
BC=C"'B for the permutation C. Let ((®) denote the set of all
permutations C on ¥ (I") whose orbits are the sets of vertices belonging to the
same {2}-residue of (I', ) and such that BC=C'B.

From now on, the symbol | P, ..., P,| will denote the orbit number of the
group generated by the permutations P,, he N,, acting on the same set.

Note that, for every C, C'e Q(P), |A, C| =14, C|; in fact, the number
| A, Cl only depends upon A and the orbits of C.

The cellular structure_of the pseudocomplex K, immediately shows that
| Ko/ is the quotient of |K¢| obtained by 1dent1fymg the 0-labelled vertices of
Ks. Moreover, the number of these vertices, i.e. the number of the {I,2}-
residues in (I', A), is |4, C|. As a consequence, we have:

Proposition 3. The pseudocomplex Ky is a (pseudosimplicial) triangu-
lation of the standard complex Ky if and only if |A, C| = 1.
a
Remark. Given a group presentation ®, the number of connected
components in the associated P-graph Py is | A, C| ([N]); moreover, it is easy
to verify that every 3-manifold admits a standard spine Ky such that the
associated P-graph Py is connected.

Thus, there is no loss of generality in restricting our study to those group

presentations for which | A, C| = I and in supposing that Ky triangulates K.

o

With the above notations and assumptions, let C be a given permutation

in Q(®) and let (I, Y¢) be the 2-dimensional oriented structure associated to
(T", v) and generated by C.

Proposition 4. Let (T'c, vc) be the h-bijoin over (T, Yc) and let W be the
set of all 3-labelled vertices in K(T'¢).

(@) h=|AC, BC|;

(b) the space M(K(T¢), W) is a 3-manifold, having Ky as a standard
spine, if and only if |AC| =\—-2g+2;

(c) if (b) holds, the Euler characteristic of K(T¢) is g—s+h—1;

(d) if g=s (resp. g=s+1) and (b) holds, then |K(T)| is a closed
3-manifold (resp. M (K (T'¢), W) is the exterior of a knot), having Ky
as a standard spine, if and only if |AC, BC| =

Proof. If ¥ CA,(resp. % CA;), the symbol g, (resp. g’,) will denote the
number of % -residues in (I, y) (resp. in (¢, Y¢)).
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Since the number of 2-simplexes in each K; is 2\ (r;) and 3, A(r)=
then JeNs

Card (V(Tp))=2-Card (V(I'))=4A\. [1]

Each {c}-residue (ceAl) in (I",y) is a complete graph of order two and
8oy =&1;=A\; in fact, in each K there are exactly A (r;) edges whose endpoints
are labelled by the colours 2 and ¢ and they are faces of exactly two 2-
simplexes.

Hence:

80,3 =80 = |Bl=A
(2]
gun=gn=I14l=Ar

For every ie N, there are exactly two {2}-residues in (I",y) which are
complete graphs of order A(x;). In fact, there are exactly two x;-labelled

edges in Ky and the number of 2-simplexes of which each x;-labelled edge is
a face is the number A (x;) of occurrences of the generator x; in the relators of
®. Hence:

gpy=8u=1Cl=2g [3]
Recall that an alternating path in an oriented graph ' is a path whose
adjacent edges have opposite orientations. In an oriented structure (T, ¥), for

every pair A, k of distinct colours, a weak {h, k}-cycle ([BG]) is an alternatmg
cycle of (T, ¥) whose edges are alternatively coloured by 4 and . Ifg, g,,k de-

notes the number of weak {A, k}-cycles of (T'¢, Yc), we have g%y, 1= g, for
each h, ke A,.

The number of the {3}-residues in (I'¢, () is the number of the orbits in
the permutation group generated by AB, BC and AC. Since AB=(AC)(BC)™!,
we have: '

h=g3=|AB, BC, AC|=|AC, BC| [4]
and this proves (a).
If P(c), ce A2, denotes the permutatlon on V(I'o) = V(") induced by t the

c-adjacence it is easy to see that g, = |P(h) P (k)| =|P(W) ' P(k)| = Zins
for each pair of distinct colours 4, k € A,. Thus, the following equalities hold:

go.1= 81=|AB'|=|AB|=
g0,2= 80o=|B"'Cl=|BC|=A [5]
gn,n= 2= A7Cl=|AC|.
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Note that, | BC| =\ since BC= C'B and hence (BC)2=1.

For each je N,, there is one {0, 1}-residue in (I", ) which is a bicoloured
cycle of length 2A (r); in fact, the {0, 1}-residues in (T, y) are in one-to-one
correspondence with the inner vertices C; of 8;. Hence:

g5=g=|A, Bl =s. (6]

For each i€ N,, there is one {0, 2}-residue in (T', y) with 2A (x;) vertices; in
fact, the {0, 2}-residues in (T, y) are in one-to-one correspondence with the
barycenters in dK;. Hence:

gi=gi=|BCl=¢g [7

Flnally, since, as pointed out for the proof of Proposition 3, the 0-labelled
vertices in Ky are in one-to-one correspondence with the {1,2}-residues in
(I, ), the assumption |A4, C| =1 gives:

gy=g=14,Cl=1 [8]

Let us now compute the Euler characteristic x (Kj;) of the pseudocomplex
K;=K((T'¢),), for each de A,, by making use of the equalities (1) -(8) and by
recalling that the number of 2-simplexes (resp. 1-simplexes) in Kj; is
Card (V(I'¢)y=4A\ (resp. 3Card (V' (I'¢))/2=06A).

X (Kﬁ) :4)\—6)\+(g'{1‘2}+g'[|’3;+g’{2,3}):—2A+(|AC' +)\+2g)= IACI +2g— )\,
X (Ki) =4A—6A+(g'10,21+ 810,318 2.3)) =—2A +(A+ A +28) = 2g;
X (Kj) :4)\—6)\+(g’{0,3}+g’{|,3]+g’{0’”):—2)\-0-()\+)\+2s)= _2S.

As pointed out in section 2, each {d}-residue in the 4-coloured graph
(Tc, Yo) represents the disjoined link of the represented d-labelled vertex in
K(T'p). Since the equallty [6] (resp [7])) states that the number of {2}-residues
(resp. {1}-residues) in (I, ¥¢) is s (resp. g), the equality x (K3)=2s (resp.
x (K;)=12g) proves that the disjoined link of each 2-labelled (resp. 1-labelled)
vertex in K(T) is a 2-sphere. Hence all 1-labelled and 2-labelled vertices of
K (To) are regular. Moreover, the disjoined link Kj of the unique 0-labelled
vertex of K(I'¢) is a 2-sphere if and only if x (K) =|AC| +2g—A=2, that is
if and only if |AC| =\ —2g+2. This result, together with Proposition 1,
proves (b).

The Euler characteristic computation of K(I'¢) gives:
xX(K(To))=(gy+gi+85+85) —(€0.u3180.3+t803+803+t8nn+8w )+
+ Card (E(I'p)) — Card (V(I'p)) =
=(l+g+5s+h)—(2s+A+A+|AC|+A+2g)+8A—d4A=A+h+]1—s—g—|AC|.
Thus, if (b) holds, x (K(I'¢)) =g—s+h—1.
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Finally, if g=s (resp. g=s+1) and (b) holds, x (K(I'c))=h—1 (resp.

X (K(I'c)=h) and hence | K(I'¢)| is a closed 3-manifold (resp. M (K (T'c), W)

is the exterior of a knot) if and only if A= 1; proposition 1, corollary 2 and
equality [4] complete the proof of (d).

[m]

Proposition 5. Let M be a 3-manifold having K4 as a standard spine.
There exists a permutation CeQ(P) such that M= M (K(T¢c), W).

Proof. If aisa l-simplex of Kg, the imbedding of its star st (a, Ky) in the
(arbitrarily oriented) 3-manifold M induces a cyclic ordering of the 2-
simplexes of Ky containing a. Thus, a permutation C on ¥(T) or, equiv-
alently, an oriented structure (I‘C, Yc) can be associated to the crystallized
structure (I, 7y) representing Ks.

Note that the imbedding of Ky in M directly gives BC= C~'B and hence
CeQ(®P). Let (I, VC) be the h- bl_]Oln over (I'c, Y); note that the choice of the
opposite orientation in M gives rise to the opposite oriented structure but to
the same graph (I'¢, ¥(), as pointed out in section 3. If M denotes the singular
3-manifold obtained by capping off each boundary component of M by a
cone, them M= |K(I'¢)| and hence M= M (K(T¢), W), W being the set of all
3-labelled vertices in K(I'¢).

(]

If (V' (P) denotes the subset of () (®P) consisting of all Ce (2 (P) such that
|AC| = A —2g+2, then proposition 4 and proposition 5 lead to the following
result:

Corollary 6. The complex Kg is a standard spine of a 3-manifold M if
and only if there exists a permutation Ce ) (P) such that M= M (K(T'¢c), W).
[m]

The above result directly produces an effective algorithm for testing the
geometricity of a group presentation, extending Neuwirth’s one to non-
balanced presentations.

Example. Let =< x, y| x3y2>. In this case, g=2, s=1 and, with the
notations of fig. 1, the permutations 4, Bcan be written in the following way:

A=(12)(23)(34) @45 (1), B=(11) (22) (33) (449) (55).

_ Moreover, the orbits of the permutation C are {1,2,3}, {1,2,3}, {4,5},
{4,5}.
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The choice of C=(123)(321)(45)(54)¢ Q;(<I>) produces the 4-coloured
graph (I'¢, ¥¢) drawn in fig. 1 and M (K (I'), W) is the exterior of the trefoil
knot.

Figure Ib.



Luigi Grasselli

176

(T,

Figure Ic.

Figure Id.
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5. MONTESINOS ALGORITHM VIA BIJOINS
We sketch Montesinos algorithm described in [M].

With the notations of the previous section, let & be a given group
presentation whose associated P-graph Ps is connected; make ® positive and
call the new presentation ® again.

Take the permutation 7=(1,2,..,A(r)) - (A(r)+1,.,A(r)+A(r)).%
(..., A) on N, and the set of all permutations g on N, whose orbits d| ,..., d, are
defined as follows: the number je N, belongs to d; if and only if there is a
relator r, whose (j—A (r,_,)) — th letter is x;. Let 3. () denote the subset of all
such o satisfying |0, 7077'{ =1 and |[o,7]| =\ —2g+2.

If 2(®)# @, then, for each o ¢ (®), construct the singular 3-manifold
N(o,7) by taking A copies {¢,,...,7,} of the standard tetrahedron t_whose
bidimensional faces are denoted by S, S, T, 7. Label the faces S, S, 7, T in the
COPY #; a8 Si(iys Sio—1G)> Lir(» T;,-1(; respectively; identify S;; with §;; and T;
with T;; by an orientation-reversing linear homeomorphism respecting the
edges SNSand TNT.

If W denotes the set of all singular vertices of N (o, 7), then{ M (N (0, 1), W)
| 6e2(®)} is the set of all 3-manifolds M3 admitting a Heegaard diagram
whose associated presentation for II, (M3) is ®.

Since Py is connected, the representable 2-pseudocomplex K triangulates
Kg; now, it is possible to label the vertices o_f the crystallized structure (I, )
associated to Ky by the set N,={1,2,...,A, 1,2,...,A} so that:

A=12)-23).. () =T A(r))- NG DA (r)+T A(r)+2) ...
A(r)+A(r) A(r)+1)-
TN+ AN () + D) and B= 11 (hh).

Moreover, if C is a permutation on N, satisfying the following properties:

— j(resp. j) belongs to the orbit d; (resp. d;) of C if and only if there is a
relator r, whose (j— A (r,_,))—th letter is x;,
— the ordering of the elements j in d; is opposite to the ordering of the
elements j in d,
then Ce (D).

Thus, the choice of o induces an associated C, (and hence an oriented
structure (T,, ¥,)=(T'¢c,, Y¢,)) in a standard way and viceversa.
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Proposition 7. The singular 3-manifold N (o,7) is pl-homeomorphic
with |K(T,)|, (T, V,) being the h-bijoin over (T,, 7V,).

Proof. If ¢ is the standard tetrahedron, subdivide it into four tetrahedra
in the following way. If Vs (resp. V7) is the barycenter of SN.S (resp. TN T'),
join Vs with ¥ by an edge whose interior is contained in the interior of ¢ and
subdivide S, S (resp. T, T) by joining V (resp. V') with the endpoints of TN T
(resp. SN S). Label Vg by 1, V7 by 2 and the endpoints of SN S (resp. TN T)
by 0 (resp. 3) (fig. 2).

Figure 2

In this way, N (o, 7) is triangulated by a representable 4-pseudocomplex
K’ in which each ¢, splits into four tetrahedra.

If (I, ') is the 4-coloured graph representing K, it is straightforward that
the oriented structure (?I,3¥’) is isomorphic with (I',, ¥,) and hence
N(o,7)=|K(T,)I.

m]

Since  |[o, 7]l =g, =14C|, lol=g |7l=s |0, 7o7!|=g}=
|4, C| =1, |r,or0"! | =g'y=h=|AC, BC|, all results in [M] can be restated
in terms of spines or in terms of bijoins and edge-coloured graphs.

It appears as evident that the graph-theoretical bijoin construction is the
idea which unifies both Neuwirth and Montesinos algorithm.
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