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ABSTRACT. In this work the authors prove the existence of global solutions for
damping nonlinear wave equation u”+ M (| A 7u|2) Au+ A% =f, 0<a=<1. Uniqueness

is obtained for — <a<1. They also prove the exponential decay for the energy,
when 0<a=<1.

INTRODUCTION

~ In this work we are concerned with global existence and exponential
decay for solutions of the mixed problem:

9%u 2 — A du —f 1 i <
W_M(fnwu(x, D2 dx) Au+(—A)e-5-=F, in Q, with 0<a<l
u(x, 1)=0 for (x, €Y, )

u(x,0)=u, (x),—z—l: (x,0)=u,(x) in Q,

where M (s) is a positive continuous function on [0,o[; Q is a bounded open
set of R", with smooth boundary I'; Q is the cylinder {1x]0, o[ of Rt with

n
lateral boundary 3, =T'x[0,00[; A=Y, d%dx?} is the Laplace operator and
n i=1
Vu(x, 012=73, |du/dx;|2
i=1

1=

The equation (1);, without damping (—A)* 3?

, has its origin in the study
of vibrations of an elastic string (cf. Carrier [3]). To obtain his model, he
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admits only vertical component for the tension on the string of length L.
Using a linear Hooke’s law, he obtained the model:

2y akE ( du 2u
Y et 2q 2l o<x<L
pasg =ty f PR g

7, 1s the initial tension on the string; E the Young’s modulus of the material;
p density; a the area of the cross section; u (x, t) the vertical displacement of
the point x of the string, at time 7. In this work we are interested in the case
7,->>0, that is, we have an initial tension. If we consider a Hooke’s law of the

type:

S—L
7|

T—T,=0C (

o a function not necessarily linear, 7 — 7, the variation of the tension, S— L
the variation of the lenght of the string, then we obtain a nonlinear model of
type (1),, without damping, with

M (s)=m, +0(s),

m, >0, 6 non linear. Therefore the so called Carrier-Narashimham model is:
2 u s .
(*) —8[2 _M(fn!Vu(x, ) dx) Au_f.

When u,, u, are chosen in a regular class of functions, Pohozhaev [17],
Lions [7], Arosio-Spagnolo [1] proved that (*), (1),, (1); has regular solution
in x€ (), global in ¢, that is, 0 <r<ecc. For the case n=1, cf. Bernstein [2],
Dickey [4]. Therefore, if we restrict u,€ H} ()N H2(Q), u, € H! (),
feL' (0, T; H!(Q)), no global solutions has been proved to (*), (1),, (1); and
no blow up studied. With this choice for w,, u;, f we can prove that there
exists a certain 7,>0 and a solution for (*), (1),, (1); defined only on
O x[0, T,], cf. Ebihara-Medeiros-Milla Miranda [5].

du

However, with the perturbation —A , 1.e., the case ¢ =1 in (1), there

exist results on global solutions in ¢ and on decay, when (u,, u,, f) belongs to
HY ()N H2(Q)x H} (Q)x L'(0, T; H! ()), cf. Nishihara [14], Yamada [18].
It is interesting to look Tsutsumi [17].

In the present work, we obtain global solutions of the mixed problem (1),

that is, mixed problem for (*) with the damping (—A)* wgti if0<a=<1, when

u, € H ()N D((—A)), u,€L2(Q), feL'(0, T; L?>({))). Our motivation
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was to have information when a — 0, but no result we know up today. If we

suppose M e C'([0,<[; R) we prove that when —12—5 a <1 we have uniqueness
for solutions, cf. Theorem 1.2.

In Section 2 we study the exponential decay for solutions obtained in
Section 1, 0<a <1, with f=0 to avoid technalities, following the ideas of
Haraux-Zuazua [6], cf. also Nakao [13], [14], Zuazua [22], Mufioz Rivera
[12], Strauss [18]. In Matos-Pereira [10] they obtained algebraic decay for the
energy, in the damping case a=1, with M (s)=s.

Another question, proposed by Lions [7] for (*), (1),, (1)3, is to study the
case (u, up,f) in HI(Q)XL2(Q)xL'(0, T; L?>()). An answer to this
question was done by Medeiros-Milla Miranda [11]. They proved that the
best choice is not the above but the following:

(4o 1, /) €D ((—A)'HX D((=A)V)X L' (0, T; D((—=1)")).

With D ((—A)B) one represents the domain of the operator (—A)8. With
this choice the authors proved, in [11], that (*), (1), (1), has at least one weak
solution, when () is a bounded open set. For the unbounded case cf. Matos
[9], as an application of the diagonalization theorem by Von Neumann-
Diximier, cf. Lions-Magenes [8].

The present work is dedicated to Jacques Louis Lions on the occasion of
his 60th anniversary, as an acknowledgement of our deep admiration for his
scientific work and reconnaissance for his permanent support to our research
work.

1. GLOBAL SOLUTIONS: EXISTENCE AND UNIQUENESS

Let ¥ and H be real Hilbert spaces with Hilbert structure given,
respectively, by ((+,-)), |1-]l, (+,*), | -|. We suppose VCH continuously
and V dense in H. Let A be the operator defined by the triplet {V, H, ((-,-))}.
As it is known, A is 2 positive self adjoint operator of H with domain D(A4)C

H, dense and D(A2)=V. We also knOYV that ((u, w))=(Au, v) for all ue

D(A), veV which implies ((&, v))= |A_2u|2. If we suppose V'C H compact,
then the spectral problem ((w, v))=A (w, v) for all v€ V, has for solution a
sequence of vectors (w,),en, W, € H, for all vEN, called eigenvectors of 4 and
a sequence (A,),en of real numbers A, called eigenvalues of A4, such that
0<A <A =... =\, =..diverges to +oo, and ((w,, v))=A\,(w,, V) for all
veV, veN. The sequence (w,),cn is dense in ¥ and we suppose it is
orthonormalized in H.
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With this framework, the mixed problem (1) can be written:

1
w+ M (|A%u|’) Aut A*w=f in]0, T[, 0<a=<1
2
u@=u, wO)=uy

In (2), w’ denotes the derivative of u, with respect to ¢, in the sense of the
vector distributions on ]0, 7T. We assume on M the natural condition:

MeCo([0,o[; R), M (s)=m,>0 for all s=0. 3)

Theorem 1.1: Suppose M (s) satisfies (3), 0<a<1,
u,€VND(A*), w,eH, feL (0, T;H). “@

Then, there exists one function u:[0, T|— H,0< T<eo, satisfying the
conditions:

weL” (0, T, VAD(A))N (0, T: D (A2 ))
welL=(0, T; N L2(0, T: D (A?)) ©
dif W @),v)+M (|A_12u(t)|2) (A_Izu(t), A%v)-l-(A%u’(t), 42 v=({()v) (6)
in D’ (0, T) for all ve V. We say u is weak solution of (2).
u@=u, w(0)=u, (7

Proof: Denote by V,, the subspace of VN D (42) generated by the first m
eigenvectors wi, @y ,...,w, of A. Let u,, (1)eV,, defined by:

1
(wn()v)+ M (|A_2um (t)|2) (Aup, (1), v) (A% up, (1), v) =(f(1), v)  (8)

for all ve V,,.
Uy, (0) = Uy, — 1, strongly in VN D (4*) 9

u, (0) = u,,, —u, strongly in H. (10)

The system (8) plus initial conditions (9), (10) has solution on [0, z,,[. Its
extension to the interval [0, 7] is a consequence of a priori estimates. The
crucial point in the proof of Theorem 1.1 is to obtain strong convergence of

solutions (u,,)mc n in the space L2(0, T; D (A?)), in order to obtain the limit
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1
of the nonlinear term M (|A 2u,, (t )|2). We need two a priori estimates. In the
computation we use u in place of u,,.

, FIRST A PRIORI ESTIMATE: Let us represent by M()\) a primitive of
M) ie.,

M\ = f ' M (s)ds.

0

Taking v=2u' in (8), integrating from 0 to 7 and applying Cauchy-
Schwarz inequality, we obtain:

2+ (| A2 u)]) +2 J”IA%u’(S)IZ ds

<2 [17@11 6) ds-t P+ 5 (| A2t

Whence, by the assumption (3) on M (s),

|u’(t)|2+m0’AJiu(t)|2+2J”|A£2u’(s)|2 ds
; ’ | (1n
S2IIf(s)l|u’(s)|ds+[u,|2+M(!A_2u0|2).

0

Observe that M(\)=m,\. From (11) it follows:
N '
|u'(t)|25|u,|2+M(|A2uo|2)+2f|f(s)||u'(s)|ds.
0
Since | f(s)| € L' (0, T), this inequality implies, by Gronwall’s lemma:

jtf(s)nu'(suds

is bounded for all ¢ in [0, T]. Therefore, from this estimate and (11), we
obtain:

lu, (1))2<C; |A_I2 Uy, (z)|zs C; f’|A£2u,’,, (s)|2 ds<C (12)
0

for all 1€[0, T], where C>0 is a constant independent of m.

SECOND A PRIORI ESTIMATE: We take v= A*u(8); as above « in
place of u,,. We get:

._fi._(u'Aa )—IA% 2+ M A”lz 2 A‘izl 2+_L._i.|Aa 2 Ao
ar WA= AU (|42u]) |4 2 uf+5 —-ld=ul?=(f, A*u).
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Integrating from 0 to ¢, we find:

! 1 at+l
fM(lA_Zu'Z) |42 u|? ds+%|A"u|2:—(u’,A°‘u)
’ : , (13)
H i, At) + [ 1430 dst Lo 4 [ A
0 0
By the conditions (9), (10) on w,,, u,,; by the first estimate; by the
2
assumption (3) on M and by the inequality 2pq§£ + B43, B>0, we obtain,
from (13): B

a+l

m, f'[A‘7u|2 ds+(%—ﬁ) |'Aau|2~31<+f'|f(s)||Aau(s);ds (14)
0 0

for 0<,8<%, K>0 constant.

We obtain from (14),
IA“u(t)IZSa+bfIf(s)HA“u(s)I ds,
0

with | f(s)| € L' (0, 7). By Gronwall’s lemma, the last inequality and (14), it
follows:
1 atl

A% u,, ()12<C,, f |42 u, ()2 ds=<C, (15)
0

with C; independent of m, for all ¢ in [0, T].

We have:

ati !

D(A ? )CD(A?)CH, 0<a<l (16)
atl
with Icontinuous injections. We have compact embedding of D(A4 2 ) into

D (A?).

From (12), (15) we have:
atl
(4)men bounded in L2(0, T; D(A 2 ))
17
(4,)men bounded in L2(0, T, H)

By (16), (17) and Aubin-Lions compactness theorem, we can extract, from
(4m)men, a subsequence (u,), e, such that:
1

(u,).cn converges to u strongly in 12(0, T; D(Ai) ). (18)
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The vector u obtained from (12), (15), (18), is such that:
(4,).en converges to u weak star in L*(0, T; VN D (4%))

atl

and weakly in L2(0, T; D(A 2 ))
19
(u;),en converges to u’ weak star in L*(0, T; H)
and weakly in 12(0, T; D(A?)).

The convergences (18), (19) imply that we can take the limit, when y —co,
in the approximated system (8), to obtain (6). We also prove that u satisfies
the initial condition (7) and Theorem 1.1 is proved. Q.E.D.

Corollary 1.1: Under the hypothesis of Theorem 1.1, with f=0, there
exists a function u: [0, %[ — H, satisfying the conditions:

atl
ueL*(0,0; VN D(A2))NL?(0,%; D(A ? ))
we L (0,%0, HN L2 (0,%; D(A?))
1
u+ M(|A7u|2) Au+ A*u' =0 weakly as (6)
u@)=u, u0)=u,.

The next step of our work is dedicated to analyse the uniqueness. In order
to be clear we fixe notations and prove two lemmas.

Let 8>0 be a real number. We consider D (A4#) with the norm ||u||g=
| Afu|. Then,

AB:D(AB)—H
is linear and continuous. It follows that the adjoint A%,
AB*:H'—(D(A")),
is also linear and continuous, with
<AP* f, wpp=<f, ABWyxn (20)

where >z is the duality between (D (AB)y and D(AF). Note that E’
represents the dual of E.

Lemma 1.1: If we identify H with H’ by Riesz isomorphism, then AB" is
an extension of AP.
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Proof: If fe H', then <f, v =<Ju, v>=(u, v), where J is Riesz’s isomorp-
hism. We have

D(AB)CH=H'C(D(A®))

continuous and dense. Let ve D(AB ), and ve H and Jve€ H'. It follows, from
(20), that:

CAB* Ju, g p=<Jv, ABW = (v, ABu)

=(APv,u) =T APv, g4,
what implies A" Ju=JAfv. Q.E.D.
Let us consider % <a<1. Then

D(A%)C D(A'_Ta) and (D (A'—Ta))'c (D (A%) Y (21
dense and continuous.

Lemma 1.2: If%SaSI and

atl o

ueLZ(o,T,-D(AT)), weL?(0, T; D(4?)),
then
d atl I—a atl l—a

LA u A2 u)=2(4 u 42 w)

Proof: Let W (0, T) the space
catl a
2

{v; ve L2(0, T,-_D(AT)), veL?(0,T; D(4?))}

normed by

2 2 atl 2 o
[v] |W(o,7)'—‘ [v] |L2(0,T:D(A 2 ))+ [v'] |L2(0,T:D(A 2))-

otl

We know that D ([0, T]; D(4 Z) ) is dense in W (0, T), cf. Lions-Magenes [8],
p. 13. Leto € D([0, T); D(A 2 )). Then,
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d otl atl atl l—a
d(A2<,aA2 ¢)= (Ach A2 )+(A2qo,A2<p’ (22)
:(A“(Az )A2 %) o AT

since A 2 ¢, A "2 ¢’ belong to D (A).

From (22), we have:
d atl atl

d(A2¢,A2 ) 2(A2<p,A2 ) (23)

If u satisfies the condmon in Lemma 2.1, then there exists a sequence
@,)ven of DO, TT; D(A : )) such that

lim ¢, =u in 12(0, T;D(A%))
1= (24)
lim ¢}, =w’in L*(0, T; D(4 * ))

From (24) we obtain:
atl l—a atl l—a
lim (4 2 oy A 2@)=(A 2 u A u)in L'(0, )
atl l—a atl l-a

lim (4 2 ¢,, 4 7 ¢}) :(AT u A? W) in L' (0, T)
Considering these convergences in the space D’ (0, T) and taking the limits
of (23) with ¢ =¢,, we prove Lemma 1.2. Q.E.D.
ESTIMATE FOR u”:

Let u the solution of Theorem 1.1 with f=0. Then, u satisfies:
T T __l_
[ wovat [ u(( ) (4T woaT @
0 0

T o L3
+I(A2u',0A2v)dt:0

0

1
for 8 D(0, T) and v eigenvector of A. Observe that M (|A_2u|2)€L°° ©,D
because () cn is bounded in L*(0, T; D (A?)). The eigenvectors of 4 are
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dense in D(A_Z_)ﬂ D(Az) which implies that (25) is true for all

(—a

ve D(A 2 ) N D( E) From (25) with such vectors v, we obtain:

—fr(u', 6 v) dt+fTM (|A‘5u|2) Jazy (ﬁI W) 0Dy )14, 9t
0 0 —2_ T
+ [ (A2 ur (A2u), 0D . o dE=0
J <l 7 0>y
This implies:
"+M(|A2u|)( I_Ta)* A]_Tau)u-i—(A; *Agfu':o (26)

in the sense of D'(0, T, (D(A * )} +(D(4%)).

Since,

-a atl l—a

M) (4 ) (4™ w)e 20.T(D(4 7))

and
(A7) 4Pue 20, T, (D(47)))
from (26):

wEeLO,T; (D4 7 )0 D(4?)))

Note ‘that u’eD(AE). Then to make sense the duality («”, ¥’) we must
have:

D(4%)CD(4 * )N D(4?)
what implies

i>l—a
2 7 2
1
2

or a= %

It follows that for «= —-, we have:

|R

wel?(0,T; (D(A4?))). ' @n
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Remark 1.1: From
wel?0,T; D(A'Z)) and weI2(0, T: (D(A%)),)’
it follows:
weC([0,T]; H)
and

wp=20"u) q

dt G5

NIQ

Theorem 1.2: (Uniqueness). Suppose
MeC! ([0,[; R), M(s)=m,>0, %Saﬁ].
If u, v are two solutions of Theorem 1.1, then u=v.
Proof: If w =u—v, from (26) we have:

l—a l—-a

o + M (| AR (47 )7 (47 )= M(AT) (A7) (A7)
+'(A%)* A2 &'=0in L2 o, T; (D (A%)'))
w(0)= o’ (0)=0.
Since o’ € L2(0, T;D(A%)), from (28) we obtain:
(29)
a+| [—a

fo<w”, w'>( = )ds+jM(|A2u’ J(42 w, A )ds
+ L (| azuf) = (A5 (A v, A7 w)ds
+j"A(;w’

Remark 1.2: We have 4 2 4, AZueD(A?) Then

2ds=0
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From this equality and Lemma 1.2, we obtain:
d |Al2u|2=2 (A%Llu, Al—Tau’).
dt
By Remark 1.1 and Remark 1.2, we get from (29):

¢ 1 t a
gl o+ [ 3 v (|ATup) lol s +[ [hofa o

:JHM’ (|A—12u|2) A%u, Al-Tau’) |lw||? ds
0
atl l—a

+ I'M’(f)(llull+llv||)(IIvII—IIuII)(ATv. AT w)ds.

0

We have, observing that% > I ;a s
1 otl  l-a
|M’ (|A2u|2) (A 2u A? u’) ||w||2|
+1 (31)
<e|d ? uf ||o|2+c|d2w]? ol
Also we have:
‘ atl  l-a
IM (LA lull+ ol DTl =Tl (A 2y, A°? w') (32)

atl L3 atl «
=¢ |lwll |A 2 wl lAzw' <c IA 2 vl2 ||w||2+nIAzwr2

0<n<lL.

By (30), (31) and (32), we obtain:

!t o« t  atl
%mo||w||2+(l——n)f|A2w’|2Scj|A 2 ul? ||l |? ds
0 0

+cf,|A£2u’|2 [{w|]? ds+ ¢, J”|Aa:2r—lv|2 Ilw| |2 ds.
0 0

This inequality implies:

|lw(t)lIZng(s)n-w(s)uzds, geL'(0,T),

that is, w (1)=0, 0=<¢=< T. Fhus we have uniqueness. Q.E.D.
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2. ASYMPTOTIC BEHAVIOR

On this section we obtain informations on the behavior of the energy
associated to (6), Section 1, when ¢ goes to oo.

Theorem 2.1:  If u is the solution of Corollary 1.1, then

E(t)<4E(0)e-', for all t=0, (33)
where
" |
E(z):%|u’(t)|2+%M[A2u(t)|2), >0, (34)
and
m, M2, 20\
2y=( )mn( : , ) (35)
T 2my? M2+ 1 21+ m,
2E(0
T:max{M(s),'OSSS m()}, (36)

N, the first eigenvalue of A.

We use, in the proof, the method of Haraux-Zuazua [6], cf. also Zuazua
[22]. It is sufficient to obtain (33) for the approximated solutions u,, of (8).
The convergences obtained in the proof of Theorem 1.1 imply the inequality
(33) for the limit u. By this reason we write  in place of u,, and E(2) or E'in
place of E,, (1).

For €>0 we define the perturbed energy E,(?) by:

E()=(1+eC)E()+ e, u), 37

where C is a constant to be determined later.

The method depends on an inequality relating E(7) and E, (z), which is
isolated in the following lemma:

Lemma 2.1: We have

éEf W<EM)<2E.(1)
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for all t=0 and 0<e<¢,, where

(mo )\I)I/Z
2 (1 +ec (mo )\I)I/z) ‘

€=

Proof: Let us consider ¢ (1)=(v'(2), u(t)) We have:

1
W S5 1P+ 5w W1 w>0,

1
and we know that [Azu(z) 2>\, li(1)]?, then

| S | )
Iu(t)lﬁmM(|A2u(t)| ).

From (39), (40) if follows:

U
2m0A|

~ s |
@) < M(|A7u @)+ 51w 0.

Choosing u=(m,\)' 2, we get:
w1 < (m)"2 E(1)
and we have:
E.)S(1+e0) EQ+e(mA) "2 Eq),
This inequality implies:
E(1)<2E(),
for 0<e<e,.

From (41) and the definition of E, we get:

|
E(WZEM)—ely = E@)—€,(mN) 2 E(1)= ;—E(I),

which is the other side of the inequality in Lemma 2.1. Q.E.D.

(38)

(39)

(40)

(41)

(42)

Proof of Theorem 2.1:  The idea of the proof is to obtain E, (1)< —nE(1),
7 a positive constant. This inequality, with Lemma 2.1, permit us to obtain

the exponential decay.
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We have from the approximated equation:

E@M)=—|A 1),
hence,
E ()<—\y|u'|2.

Also from the approximated equation (8) we obtain:

Z‘f W u)=|u— M (]A'ilulz) |A3u|2—(A3u', A;u).

Thus, from (44), (45) we get:
)+ e 2 0, =i+ eluwl—e o (| A2uf) [ A7u]
—e(AZu, A‘u), €>0.
We have:

(47w, A7) <2 |t S| ARuf

Since 0<a=1, we get:
|[A2uf=3 Mlmo)?+ X KW o)?
Azl

0<A =1
}\
(A7),

<|u12+|A2 |2<[

By (43) and this last inequality, we obtain, from (47):

(47w, A7) | < —iE’(t)+ —k—M(|A2u|)
for
1A

k=
mo)\l

227

(43)

(44)

(45)

(46)

(47)

(48)
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The inequality (48) permits us to write (46) in the form:

E’(t)+e%E’(t)+e£(u’,u)S—(A‘.’—é) P4k (49).

— e M (|47u]) |A'zulz+%zr4 (|47,

We need to compare the last two terms of (49). For this, we know from
(11) in Section 1, since f=0:

1
|A3u(t)|2s—2’i—(0?, for all =0, (50)

which implies:
(|A2u(z)| )< for all 1=0,
with 7 defined by (36).
Define
_ 2 E0) and 6= kt ‘

m() m()

7’

By the definition of M (M), we have for 0< A <a:

MOV A maxgege, M@ =22 m= 22 pn),
Therefore,
ek ek
AM(N) =55 M= 2 M\ for all 0SA=<a (51)

k

By (50), (51) and observing that - :’%’, we have from (49)

E'(t)+ei;—E' (z)+ed—‘f '\ u) (52)

<-(NY—¢) 'u,lz_e;n: M (|Av£u|2).
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2T

27+m,

For 0 <e<¢ = , we obtain:

X —e>0 and 2 <\ —e.
27
Thus, from (52):
, € ., d ., em,
E (t)+TE (t)+(:7(u,u)S——T— E(t),0<e<€|.

By Lemma 2.1, with C:%, it follows, from (53):

Ee’(t)S—SzmTQEe(t), 0<e<e;=min (&, €),

which implies:

E.(1)<E.(0)e- 52"

229

(53)

(34

If we apply Lemma 2.1, with 0<e<¢,, to (54) we obtain Theorem

2.1. Q.E.D.
Remark 1.3: In Y. Yamada [21], he observed that if

MeC([0,%); R), -;—Saél,

(35)

with (u,, u))€ VN D(A*)x H, f=0 to avoid technalities, then he obtained
further regularity for the solution u given by Theorem 1.1. In fact, he proves

that if we have (55), then u satisfy:
Viuel>,T; D(Aa;l ))
Vi el (0, T: D(A;)OLZ(O, T: D(A%))
Viuw e [2(0, T: H)

for all r=0.
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