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A Normability Condition on Locally
Convex Spaces

S. ONAL and T. TERZIOGLU'

ABSTRACT. In a previous work [11] we introduced a certain property (¥) on locally
convex spaces and used it to remove the assumption of separability from the theorem
of Bellenot and Dubinsky on the existence of nuclear Kéthe quotients of Fréchet
spaces. Our purpose is to examine condition (y) further and relate it to some other
normability conditions. Some of our results were already announced in [10].

1. PRELIMINAIRES

Our terminology and notation for locally convex spaces is quite standard
(cf. e.g. [5]). By U (E) we always denote a base of neighborhoods of a locally
convex space (lcs) E which consists of absolutely convex and closed
neighborhoods. Consequently the topology of a Fréchet space E'is defined by
a basic sequence of seminorms, i.e. an increasing sequence of seminorms
(Il |lx) such that the corresponding unit balls U, ={x€ E:||x||;<1} form a
base of neighborhoods. A linear operator T: E— F is bounded if T(U) is a
bounded subset of F for some neighborhood U. In case every continuous
linear operator from a lcs E into a lcs F is bounded, we write (E, F)€ B. A
complete characterization of those pairs of Fréchet spaces satisfying (E,
F)e B was given by Vogt [16].

Following Nachbin, we say that a lcs E satisfies the opennness condition
[12] if for every U U (E) there is a Ve U (E) such that for each We U (E)
there is a p >0 with

VCp' (0)+pW
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where p, denotes the gauge of U. A Fréchet space satisfying this condition is
called a quojection [2]. A Fréchet space is a quojection if and only if it can be
represented as the projective limit of a sequence of Banach spaces with
surjective linking maps.

A lcs E is said to satisfy the boundedness condition (b) if for each
U€ U (E) there is a V€U (E) such that for each We U (E) we have

WON E'[UYC p W0

for some p>0([12], [8]). Here and throughout E’[ U] stands for the span of
U%in E’. Clearly a lcs E satisfies (b) if and only if for each Ue U (E), VC U,
such that for each WeuU (E), WCV, E'[VY] and E’[ W'] induce the same
topology on E’[U°)]. In this case the closure of E'[U°] in E’[V?] and in
E’[W?] is the same. Vogt has proved in [18] that a Fréchet space satisfies (b)
if and only if its bidual is a quojection. Hence we follow Moscatelli and call
a Fréchet space which satisfies (b) a prequojection. For a recent survey on
quojection and prequojections we refer to [7].

A Ics E has property (y) if there is a neighborhood U, €U (E) such that

E = ETUN U
Uey(E) LUT]
where the closure is taken with respect to any topology compatible with the
duality <E, E’>[11]. Condition (y) implies that E’[U{] is dense in E’ and
therefore p, is a continuous norm on E.

Bellenot and Dubinsky have proved in [2] that a separable Fréchet space
which is not a prequojection, has a quotient space which is nuclear, admits a
continuous norm and has a basis, i.e. it has a nuclear Kothe quotient. In[11]
we have proved that if Fis a Fréchet space which has (y) and if there is an
unbounded continuous linear operator T: E— F, then there is a nuclear
Kothe space A (4), a surjection Q: F— X (A) such that QT: E— X\ (A) is also
a surjection. On the other hand, it is not difficult to show that (E, F)c Bif E
satisfies (b) and F satisfies (y)[11]. In fact a Fréchet space is a prequojection
if and only if (E, A (4) )€ B for any nuclear Kéthe space A (4)([12]). Hence
the assumption that E'is not a prequojection is also necessary in the theorem
of Bellenot and Dubinsky. However as a corollary of the main result in [11],
the assumption of separability in the theorem of Bellenot and Dubinsky can
be removed.

A

2. CONDITION (y)

We have already noted that condition (y) implies the existence of a
continuous norm. In this section we shall relate this condition to some other
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normability conditions. We recall first a condition introduced in [14] for
Fréchet spaces: A Ics E is asymptotically normable if there is a neighborhood
Ui€ U (E) such that for each Ve U (E) there is a We U (E) so that for every
€>0 one can find- M >0 with

Pr(X)=Mp,, (x)+e€p, (x).
Proposition 1.  Every asymptotically normable Ics satisfies ().

Proof: For VeU(E), we choose WC V by asymptotic normability and
polarizing obtain for each ¢ >0 ’

VOC E'[UY+e WO,

This implies however VOC E'[UTN (2W).

We already know that a lcs which has the bounded approximation
property and a continuous norm also satisfies (y)[11]. In[14] a K6the-Montel
space A (4) is constructed which is not asymptotically normable. So although
this Kothe space has (p), it is not asymptotically normable and therefore the
converse of Prop. 1. is false.

In case of Fréchet spaces condition (y) can be strengthened.

Lemma 1. A Fréchet space E satisfies (v) if and only it has a base of
neighborhoods (U,) such that for each k there is an m with UYCETUNN Y.

Proof: We construct the base (U,) so that the first one U, is as in
condition (y) and let A;=E[U]NUY. Since U CAY, {AY:k=1,2,..}
defines a metrisable topology r on E which is weaker than the given one.

However condition (y) says E'=U7_| A, and so by the weak homorphism
theorem ([5]), 7 coincides with the original topology of E.

Behrends, Dierolf and Harmand [1] constructed a proper prequojection
which admits a continuous norm. We recall that a Fréchet space is countably
normed if it can be expressed as the intersection of a sequence of Banach
spaces. Moscatelli [9] (cf. also [7]) has devised a method for constructing
proper prequojections which are even countably normed (cf. also [4]). Such
a countably normed space F cannot have (), because it would then satisfy (E,
E)e B[11]. However the converse is true.

Proposition 2. A Fréchet space which satisfies (y) is countably normed.
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Proof: Let (U,) be a base of neighborhoods as in Lemma 1 and set /=
E’[U?]\{0}. For each k, let || |{; denote the dual norm defined on ETU}]
and ak=(1/]|ull}), u€l. We let A be the space of all scalar-valued functions
fon I with

|flk:SléI; | f ()| al <+o0

for each k=1, 2,.... With these norms, A becomes a countably normed
Fréchet space. Define now T: E—A by Tx=(u(x))ue T is continuous and
by (y), it is one to one. Since for each k there is an m with Upc(INUY) by
Lemma 1, we have that T'is an isomorphism of E onto a subspace of A. Hence
E is countably normed.

Remark: Using a somewhat different approach, Vogt also proved that one
can imbed a Fréchet space with (y) into a weighted sup-norm space [19].

Following Komatsu [7], we call a lcs £ a Komura space if for every
Ue U (E)there is a V€ U (E) so that the linking map p,. , is a weakly compact
map of the associated Banach spaces E, and E, We now give a partial
converse of our last result.

Proposition 3. Let E be a Komura space. If there is a neighborhood
U, € U (E) with the property that for each U€ U (E) thereisa VC U, VEU(E)
with p,,, one to one, then F satisfies (y).

Proof: Let ve E'. We may assume ve V0 where p,,, is one to one and
choose We U (E) such that p,, is weakly compact. The adjoint of 5,,, which
imbeds E’[UY] into E’[V], has a dense range. That is cl(E'[UN)=E'[V]
where ¢/ denotes the closure with respect to the duality <E’[V?], E.>. The
adjoint of 3, imbeds E’[V?] into E’'[W?] and it is continuous if we equip
E’[V°] with the Mackey topology u(E'[V°], E) and E’'[W?] with its norm
topology. So we obtain

E'[V=c(E'[UIDC E'LUT]

where bar denotes the closure with respect to the norm of E'[ W°)]. Hence for
each ¢>0 we have

VOC E'[U%] +e WY

and this yields (y) as in the proof of Prop. 1.
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A lcs E'is called totally reflexive if every quotient space of E is reflexive.
Valdivia [15] has proved that a Fréchet space is totally reflexive if and only
if it a Komura space. Hence we get the following result as a direct conse-
quence of Propositions 2 and 3.

Corollary 1. A totally reflexive Fréchet space satisfies (v) if and only if
it is countably normed.

In case E is a Fréchet-Schwartz space, we know that E is countably
normed if and only if it is asymptotically normable ([17]; 5.7. Lemma). So
both of these conditions and condition (y) coincide in this case [11].

3. BOUNDEDNESS OF OPERATORS

In this section we give some results relating conditions () and (y) to the
boundedness of all continuous operators. For related results in the restricted
context of Fréchet spaces we refer to [3] and [12]. Vogt has proved that a
prequojection is always quasinormable [18]. Whether this is true in general
seems to be an open question.

Lemma 2. Let E be a lcs which satisfies (b). The following conditions are
equivalent:

(1) Eis quasinormable.

(2) For each UcU(E) there is VEU(E), VC U, such that E'[V9 and (E,
B(E", E)) induce the same topology on E'[U"].

(3) Foreach USU(E) there is VEU (E) and a bounded subset B of E such
that B°NE'[UY]C V°,

Moreover in the situation of condition (2) the closure of E'[ U] in E'[ V"]
and in (E', B(E', E)) is the same.

Proof: It is easy to see that (2) and (3) are equivalent and that condition
(3) implies that E is quasinormable.

Assume that E is quasinormable and fix Ucu(E). According to
condition (b) we find Ve (E), VC U, such that for each WeU(E), WCV,
E'[V®] and E’'[ W] induce the same topology on E'[ U°]. Now given V we can
find Weu (E), WCV, such that E'[ W] and (F’, B(E’, E)) induce the same
topology on V0. Let 7 denote the topology induced by £'[V°] on E'[U%. We
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have that 7 is finer than 8 (E’, E) on E’[ U?] but both coincide on VN E'[ U],
which is a 0-neighbourhood in (E’[U°)], 7). Consequently 7=B(E’, E) on
E’[U°] and hence (E’, B(E’, E)) and E'[V?] induce the same topology on
E'[U9.

We present now our result on the boundedness of all continuous
operators. We note that (i) is already proved in [11] and included here only
for the sake of completeness. v

Proposition 4. Each one of the following implies (E, F)€ B.
(i) E has (b) and F has ().

(i) E is a quasinormable lcs which satisfies (b) and F” with its natural
topology admits a continuous norm.

(i) E has (b) and F is a B,-complete Komura space which admits a con-
tinuous norm.

Proof: Let T:E—F be continuous, E and F as in (ii). If We U (F)is such
that F'[W°] is B(F’, F)-dense in F’, we find U€ U (E) with T(U)C W. By
Lemma 2 there is V€ U (E) such that the closure of E'[U%] in E'[V'] and in
(E, B(E', E)) is the same. We have

T (FCT (F[W)CT(F[W')CFE[UJCE[VY]

where the first closure is taken in (F’, B(F", F)) and the second and the third
in (E’, B(E’, E)). Therefore T is bounded ([11], 1.2. Lemma).

Let T: E— F be continuous, E and F as in (iii), Weu (F) be such that its
gauge is a norm on F and by continuity find U€ U (E) such that T(U)C W.
For this neighborhood we choose V€U (E) as in condition (b). Let

M=T"- (QO(E'[UO]+ € VO))

Since F'[ W] C M, this is o (E’, F)-dense in F". If we show M = F’, we then
get T'(F)C E’'[V°]. This will imply that T is bounded (cf. [11]).

Now to show M = F’ it is enough to prove that W°N M is o (F’, F)-closed
for every We U (F). Let (v,) be a net in WON M with limit v. Since Fis a
Komura space, we can find W, € U (F) so that the corresponding linking map
P, 1s weakly compact. Hence W0is a o (F'[WY], F )-compact subset of the
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Banach space F'[ W]. Therefore the o (F[WY], ﬁ,(.’l )-topology coincides with
o(F’, F) on W? and so (v,) converges to v in the a(F'[W)], F )-topology.
This means that v is in the closure of W°N M with respect to the norm
topology coming from F’[W?]. We now chose Uieu(E) with T(U)C W,.
Since the topologies defined by the balls ° and Uy on E'[ U] coincide by (b),
this means that 7"ve E’[U% where the closure is taken with respect to the
topology defined by the ball V0. So ve M and the proof is finished.

One can easily derive several interesting results from Prop. 4. immediately.
For example from (i) one gets that a Ics satisfying (b) which has the bounded
approximation property and admits a continuous norm must necessarily be a
normed space (see also [8]). In fact using their methods for constructing
prequojections with specified properties, Metafune and Moscatelli have
shown that to have the bounded approximation property is not a three space
property within the class of Fréchet spaces (cf. [71, [9D).

To study the relationship between the conditions (b), (y) and the bounded
approximation property, we need a somewhat technical result.

Lemma 3. Let E be a lcs with the bounded approximation property. Let
(T,) be a equicontinuous net of finite rank operators as in the definition of
bounded approximation property. Then for each UE U (E) there is Ve U (E)
such that the inclusion

L(ETUDCEV

holds for each o, where the closure is taken with respect to o (E’, E).

Proof: For Ucu (E) we find Ve U (E) so that T, (V)C U holds for each
a. We consider E/p;(0) with the quotient topology. Let Q: E—~ E/p;'(0) be
the canonical quotient map. The dual of E/p;1(0) is p;! (0= ETU. If
u€ E'TUN WO for some WeUu(E), WC U, then we have

I<T; Q'(w), x>|=|<u, QT, x> | <pou(QT, x).

Pow and py,, are equivalent norms on the finite dimensional subspace QT, (E)
and so there is some p, >0 with

| <T; Q"(u),x>|=<p, pou(QT, x).
If xe ¥, since T, (V)C U we get
I<T]u,x>|=|<T Q'ux>|<p,

and therefore T ucp, V'* for each a.
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One consequence of the above results is the equivalence of condition (b)
and the openness condition when the space has the bounded approximation
property. This result was obtained independently by A. Galbis in his thesis
(University of Valencia, 1988).

Corollary 2. If E has the bounded approximation property and satisfies
(b), then it also satisfies the openness condition.

Proof: We will show that for each U€U (E) there is VEU(E) so that
E'TUYC E’'[V"] where the closure is taken respect to o(E’, E). This is
equivalent to the openness property. By Lemma 3 we choose V€U (E) so
that T/(E'[U°])C E’[V?] holds for each a. For V', we find V€U (E), as in
condition (b); i.e. for each We U (E) we have

WONE[VICpV?

for some p>0. Let uc E'{UIN W for some W,€U(E). By equicontinuity
we find Weu (E) with T, (W)C W, for each a. So,

T/ue WON E'[V0]Cp VO,
Since u=lim T’ u in o (E" E)-topology, we get u€ E'[V°].

Another corollary of Proposition 5 is the following result which was
already proved in [11].

Corollary 3. If E admits a continuous norm and has the bounded
approximation property, then E satisfies (y).

Proof: If U is the unit ball of a continuous norm on E, we have
E’=E'[U". By Lemma 3 we find U, €U (E) such that T} (E'TUT)CETUY]
for every a. So T.(E’)C E’'[U{]. For u€E’, by equicontinuity we find
Weu (E)so that T ue W for each . Since u=1im Tju, and T;u€ E'TUNN
W° we have shown that E satisfies (y).

We finish by giving by a generalization of the main result of [13].

Proposition 5. Let T: E—F be a continuous linear operator which is
unbounded, where E is a Fréchet space and F a Fréchet space which satisfies
(v). Then there is a subspace M of E which is isomorphic to a nuclear Kothe
space such that T: M — T (M) is an isomorphism.
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Proof: By the theorem in [11], there is a nuclear Kothe space A (A4), a
quotient map Q:F—A(A) such that QT(E)=\(A) also. Hence QT is
unbounded. So we can apply the theorem of [13] to QT and find a nuclear
Kothe subspace M of E such that the restriction of QT to M is an imbedding.
It is easily seen that T(M) is a closed subspace of F.
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