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Optimal Control of Quasilinear Elliptic
Equations with non Differentiable
Coefficients at the Origin

EDUARDO CASAS and LUIS ALBERTO FERNANDEZ

ABSTRACT. In this paper we study some optimal control problems of systems
governed by quasilinear elliptic equations in divergence form with non differentiable
coefficients at the origin. We prove existence of solutions and derive the optimality
conditions by considering a perturbation of the differential operator coefficients that
removes the singularity at the origin. Regularity of optimal controls is also deduced.

1. INTRODUCTION

We will be considering optimal control problems involving the differential
operator '

Ay=—divie(x, |Vy NI+ (x, p) (1.1

withg: )X (0, +0) — (0, + ) and : Qx R~ R, where () is a bounded open
subset of RV with Lipschitz continuous boundary I'.

Authors have studied control problems associated with quasilinear elliptic
operators in [2, 3, 5]. The novelty of this work is that the non differentiability
of ¢ (x,.) at 0 is allowed, which causes the non differentiability of state with
respect to the control. This is not an obstacle to prove existence of optimal
controls, but it becomes complicated to derive the optimality conditions. To
overcome this difficulty, we introduce a family of approximating control
problems that fall in the class of problems treated in [3,5].
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Operator 4 introduced above is less general than those ones studied in
[2,3,5]. Nevertheless, most of the known quasilinear elliptic operators belong
to this class. Next, we establish the hypotheses on A.

Let b: QO x[0,+ ) —[0,+ ) be the function defined by

b(x,s)=¢(x,5)s

We will assume the following conditions

be C(QX[0,+2)NC' (X (0, ) (1.2)
(1.3)

{x,b(.,s) is a measurable function on ()

¥ (x,.) belongs to C'(R)

ab -
Ay (k+s)*? Sg(x, < Ay(k+s)-2 Vse(0,+ ) (1.4)

N ab
—(x,8) | A (kFs)2s Vse(0,t) (L5)
i=1 ax,‘
Oﬁi—f(x,s)ﬁf(lsl) VseR (1.6) |
b(x,0)=¢(x,0)=0 (1.7)

for some k €[0, 1], some a € (1, + ), some strictly positive constants Ay, Ay,
some positive and non decreasing function f'and a. e. x€(}.

Let us consider the boundary value problem:

Ay=v in (1
(1.8)
y=0 onI'
We make the following additional assumption on «
a>N/2 (1.9)

In the sequel, W-1-8(()) will denote the dual of the usual Sobolev space
whe @l + ['3 — 1y and (...) their duality product. Also, D (€) will denote

the space of infinitely differentiable functions with a compact support in Q.
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We will prove that problem (1.8) has a unique solution y,&
W () N2 (Q) for each v € L2(Q). Hypothesis (1.9) is essential to deduce
the boundedness of the solution y,. .

Remark:
Hypothesis (1.7) can be weakened in the following form:
U (,.00€L2(Q)
In this case it is enough to do the ‘change
P(x, )= (x,5)—¥(x,0)

Let us give some examples of the principal part of operators A that satisfy
previous hypotheses with b¢ C' (1 x[0, + %¢)):

Example 1.—(Case a=2, k#0)
@ (x, 8)=A(x)+sin (Ins)+ so2

‘with A€ C' (Q) such that 2<A(x) VxeQ.

Example 2.—(Case a<<2, k=0)

@ (s)=s5"2

Example 3.—(Case a <2, k#0)
¢ (x, s)=sin® |Ins|"2.exp (—s) + A (x) (k + 5)22

with A€ C'(Q) such that 0<<Ay<A(x) VxeQ for a sufficiently large
constant A.

If «>2 and k=0, it follows easily from (1.2), (1,5), (1,4) and (1.7) that

.. db
be C' (A X[0,+ =) with Es_(x' 0)=0. Therefore, the operator A4 satisfies the

hypotheses of papers [3, 5], as we will see later (lemma 2.2).
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Let us introduce the following optimal control problem:

Minimize J(v)
(P [ ' (1.10)

veR

where % is a non empty, convex and closed subset of L2() and J: L2(Q) —R
is the functional defined by

Iyy—yd|7dx+‘2’f lv|?dx (1.11)

0 1}

J (V)ZI2J'

with y, a fixed element of L2({2) and p a non negative constant. Let us remark
that thanks to (1.9), it is verified the continuous imbedding '

12(Q) C W-1B(Q)

Remark

If we suppress (1.9), it is possible to carry out the study of (Py),
substituting (1.6) by condition

d
0_<_—8%[X,S)SA2(/<+|s|)"“2 : (1.6%)
for all x€Q and all seR.

and N= 3, we must formulate (P,)ina

Y ’ N 2

slight different form. Variations are motivated by the fact that in this case
W,-(Q) is not imbedded in L?({) (see Casas and Fernandez [2]).

The plan of the paper is as follows: in next section, we state some auxiliary
lemmas about the differential operator and state equation; in Section 3, we
prove existence of solutions and formulate the optimality necessary conditions
for (P,); Sections 4 and 5 are devoted to the proof of these optimality
conditions; in last section, we obtain H' (Q) regularity (resp. W'« (Q) if a <2)
for optimal controls.

2. SOME AUXILIARY LEMMAS

In this section, we prove existence, uniqueness and continuous dependence
of solutions of Dirichlet problem associated with operator A as well as some
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perturbed operators A,. We begin showing some properties about the coeffi-

cients:

Lemma 2.1. Let us suppose (1.2), (1.4) and b (x, 0)=0. Then, there are

positive constants Az and A, depending only on a, A, and A such that

As(k+5)22< g (x, )< Ay (k + 5)22 Vxef), Vse(0,+ )

Proof

Using (1.2) and the fact that b(x, 0)=0, we get

2

w(x,s)s:b(x,s):fg—i(x, 1) dt

0

In virtue of (1.4), we have that

Ay f(k+t)a~2dtﬁfﬁ(x, Ndt<A, i(k+t)“-2dt
0 0 95 0
If =2, it is clear that

(k +S)a—| — ka—l _

a— |

A f (k+ 02 di = A,
(]

0

k (k+s)e—2— ke=l+g5(k+ 5)*2 Ay
' =T kt+s)2s.

=4 o—1

If =<2, applying the mean value theorem, it follows that

k+ s)e—! — fa—!t
A, (k) l k =A/(k+0s)2s= A, (k+s)2s
a—

because 8< (0, 1).
In any case, we obtain that

Akt 2<p(x,9) Vxe(l, Vse(0,+ )
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A
a—1

with Ay = (if «=2) and Ay = A, (ifa<2).

For the upper bound, let us remark that if «=2, it is verified that

Az f (k + t)a—Z ar=< 1\2 (k + S)a—Z S
0
and if a2,

" k4 s)e—! — fo—! A
A, f (k+t)"—2dt=A2( ) < o (k+s)2s

, a—1 o

Ay

Thus, we deduce that Ay,= l
o —

(ifa<<2) and Ay=A;, (if a=2). =

Next, we introduce the perturbed differential operator coefficients and
state the coercivity and growth conditions.

Lemma 2.2. Let us suppose (1.2), (1.4), (1.5) and b(x,0)=0. For each
£=>0, let us introduce at: QO x RN — RN defined by

at(x,nM)=¢(x.et|n)n
Then, at€ C'(QXRN) if >0 and a€ C QxRN N C' (Qx (RMN{0})).

Moreover, there exist a positive constant As depending only on N, a, A, and
> such that

N

\ dd 2 i)
> T e EE= Ak +e+ nl) 2ER

iiooan;

No| ddf 5

Y =L | =Astk+e+n)) *
i dn;

N 8(1‘,? 5
'2’| —é‘;—(-\.' 77) SN‘\Z(I‘+C+ |"7|)" '|77|
i X

Sor all x< Q, for all £ RY and for all ne RN (resp. ne R0} ife=0).



Optimal Control of Quasilinear Elliptic Equations with non Differentiable... 233

Proof.

Given i, jef{l,..., N}, it is immediate to verify that

€
da;

In;

nin;
7l

d )
(x, M) =0 (x, e+ [n])6,+ —f(mﬂnl) @.1)

Therefore, we have that

:"5 (x, m) € C(AX RNy if £>0 (resp. C(QAx (RV\{0})) if e=0) and

i

€

N 9a" d I AYA
2 % (.M &i&=w(x, et [nl) €2+ —‘p(x,eﬂnl)L 3
iLj=1 (97), ds |77|

d
Let us suppose that —a(p— (x,e+|nl) = 0. Hence,
s

N dat
.;I 377/- (x, n)fif/2<p(.v,e+|n|)|§lzzA3(k+8+lnl)u_zmz

thanks to lemma 2.1.

d
Otherwise, il'—aﬁ (x, £+ |n[) <0, using the Cauchy — Schwarz inequality
AY
and (1.4), we get

¢

N ddf de ,
> e (w(-v.8+l17|)+—‘ (x,c+m|>|n|)|f|-z
g dn; ds

H

ah
27 (et mDIEPZ A (k+e+nl) €= Ak +e+|n|)e 2 g2

Belore proving second inequality of lemma, let us note that from (1.4) and
lemma 2.1, it follows

0
}3‘? (x,8)s

at ,
a—:(.v. $)—(x, ) . S (A AY k9 Y xe Vs (0,+00)

Now, combining this expression with formula (2.1), we deduce

Y| et 3 )
Y St (m)l SN(lw.w|n|>|Jrir;r';‘"-(.\-.mu|,7|)|)z
i1 | 9 ds
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= A\s (/\ +e+ |T]|)”_2 where A\S = N(2A\4+ A\z)
Last inequality of lemma follows directly from (1.5).m
Lemma 2.3. Let us suppose (1.2)—(1.4), (1.6) and (1.7). Then, there

exist positive constants A, and A; depending only on N, a, A; and A; such
that

@ (Ul medAn = ifas2
a) 3, (@j(x,n)—d;(x, 7)) (n;— M= A f
. Im =l ifa>2
v
h) _},I lat(x, )| = A;(k +1q0) 2nl
/
Furthermore,

¢) (W (x,8)— Y (x,8))(s—5)=0
d) 1 (x, )l = s/ (1s])

for =0, for all xeQ, all s, s’€R and all n, 7w € RN,

Proof

For a) and b), see lemma | of Tolksdorf [13]. Condmons ¢) and d) follow
immediately from the hypotheses. s

Lemma 2.4. Let us suppose (1.2), (1.4) and b(x,0)=0. Assume a=2.
Then, for eache=0 we have

a) f (at (x, Vr)—da‘(x, Vi) (Vr—=Vy)dx=
0
A [IVr=V7 ”I"(n)” [+ (Vp] + V3] ] ‘1"7((1)

Moreover, there exist positive constants Ay and \y depending only on N,
.\, and \> such that

N ) A Inlu_
b) S ="

i=1 Ae(Unle—1[nl)

for €20, for all x€Q and all ne R,
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Proof

a) It is a simple consequence of Lemma 2.3-a) and Hélder’s inequality
applied with p=2/a and p'=2/2—):

fsl [Vy—Vy|edx<

(2—a) 2

a2
s(f rv.viv.y'v(l+|v.v1+|V.v'|)"-2dx) ([(l+|V.v|+|v_w|)"dx)
Q0 Q

b) It is enough to take into account Lemma 2.3-a) again, hypothesis
(1.7) and to distinguish the cases [n| =1 and |9|<!l.w

Now, we are ready to derive existence and uniqueness of solution for the
Dirichlet problems. First, for each ¢>0, let us introduce the perturbed
differential operator

A, y=—div(a*(x, V) + ¥ (x, ) =—divie (x, e+ |V ) V) + ¥ (x, »)

and the correponding Dirichlet problems

A.y=v in Q
(2.2)
y=0 on T
Utilizing previous lemmas 2.2 — 2.4, we can apply the result of Rakotoson
[10] to deduce that, given ve L?(Q)), there exists a unique y,(v)E
W (Q)N L= (Q) solution of (2.2) for each £>0 (resp. there exists a unique
€ WE (Q)NL=(Q) solution of (1.8), fore =0)

In the following result, we show continuous dependence with respect to
the data for this type of equations.

Lemma 2.5. Let us'suppose (1.2)—(1.4), (1.6)—(1.7) and (1.9). Given
€=0, let y.€ W)y* (L) be the solution of
A.y=v in Q
{ y=0 onT
.and, for each meM, let y'€ W (Q) satisfy
{At_rzu,,, in )

r=0 onT
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with Ay= A. Assume that v,,— v weakly in L (Q)) as m —+ 0,

Then, y!' — vy, in W(')'" Q) as m— -+,

Proof

First, let us remark that v, — » in W=1-8(()), because L2(Q)C W-1-8(())
with compact imbedding (Adams [1]).

From the relations satisfied by ye and it follows that

S, s = (e ) OF = ) dx + [ (@ (6, V) =
at (X, VVL)) (V}“E” - vyz:) dx = (an - Vs.,Vle” - .Vs)

Suppose a=2. Applying a) and c) of lemma 2.3, we get
AV =yl = 1w — vl w1818 — vell wie
Finally, using the equivalent norm in W *(Q) (see [1]) and the hypotheses,
we obtain

W=y in WEO()

In the case a<{2, argumentation is similar using lemma 2.4-a). =

3. EXISTENCE OF SOLUTION AND OPTIMALITY
CONDITIONS

We begin showing existence of solutions of problem (P,) deflined in
(1.10)—(1.11):

Theorem 3.1. Let us suppose (1.2)—(1.4), (1.6)—(1.7) and (1.9).
Assume that

Either R is bounded in L2()) or p>0.

Then, there exists (at least) one solution of (P,).
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Proof
Let {u,},cn C ¥ be a minimizing sequence and {y,},cn the sequence of
associated states. By the hypothesis, there exists z€ H and a subsequence
(again denoted by {u,}) such that
u,—u weakly in L2(Q)

¥ is a convex and closed subset of L2({)). Therefore, K is weakly closed
in 12(Q) and zeR.

Let 7 be the associated state of #. From lemma 2.5, we obtain that
Ym—¥ in Wie(Q)

The lower semicontinuity of J in the weak topology of L[2(}) and the
imbedding W} (Q)C L2(Q)), completes the proof.m ’

Optimality conditions for problem (P,) can be formulated as follows:

Theorem 3.2. Let us suppose (1.2)—(1.7) and (1.9) with k#0 if a>2.
Assume that W is a bounded subset of L= (). Let T be a solution of (P,), ¥
the associated state and Q,={x€Q: |VV(x)|>0}. Then, there exists
pEH, Q) (resp. Wiy (Q) if a<2) such that :

[—div @ (x, |VPINT) T (x, F)=u in O
3.1
vy=0 on I
. — 8(0 — val +
—div ((cp(x, |V7]) I+—8s (x, |73 Dklvﬂ \Y/Z
av .
+— (., P)p=T—r,; in{ (3.2)
ds
fn (p+pu)v—1u)dx=0 WeK (3.3)
where I denotes the identity matrix Nx N and Wy -Vy" denotes the NX N
vy Iy
matrix with coefficients ——+—— [ =1, j=N.
dx; dx;

Proof of this theorem requires a rather long development and it will be
carry out in Sections 4 and 5.
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Remarks

1) Remember that if «>2 and k =0, it follows from the hypotheses that
be C' (1 x[0,+°)) with %(.\*, 0)=0 and we apply the results of [3,5].
2) In the case <2 and k =0, we can obtain some additional information
about the adjoint state p:
Vp(x)=0 a.e.xeﬂl\().(,
See the end of section 5 for the‘ proof.

3) Introduction of set ), was suggested by the work [6] of A. Friedman.

4. AN APPROXIMATING FAMILY OF PROBLEMS (P

Let @ be a solution of (P,) (see theorem 3.1). In order to derive the
optimality system for @ we introduce the following family of control
problems:

Minimize J, (v)
(R)
veR
where the cost functional is given by
=L (i m—v2 P 2 1 _ 2
Jo(v)= 2fn'~“‘(v) val2dx+ levl dx+ 2fﬂ|u 7|2 dx
and v, (v) is the solution of (2.2).

Following result can be proved arguing as in theorem 3.1, with the aid of
lemma 2.5.

Theorem 4.1. Let us suppose (1.2)— (1.4), (1.6)— (1.7} and (1.9). Then,
for each >0, there exists (at least) one solution of (Fy).

Before deriving the optimality conditions for (P;), we need to define some
functional spaces.

Given yc W (). let H§ " (Q) be the space completed of D ({) respect to
the norm

1=l u:;"m):(f“(l + |V.n'|)"*3|Vz|3a'x)I ;
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It may be easily verified that H{'(}) is a Hilbert space with the inner
product

(12 = [ (1 101292, V23 d
Mpreover, we have
W Q) C HE (O)CHY Q) ifa>2
H{(Q)CHE () CT W) if =2
with continuous imbeddings.

More general spaces of this type have been studied by Murthy and
Stampacchia [9], Coffman et al. [4] and Trudinger [15].

Since operator A, satisfies the hypotheses of [3, 5] (see lemma 2.2), we
deduce the following results which are analogue to [5, theorems 3.2 and 3.7].

Theorem 4.2. Let us suppose (1.2)—(1.4), (1.6)—(1.7) and one of the
following conditions: ’

i)a=2,a>N/2 ii) a<2and N=1

For each >0, let u, be a solution of (E£) and y,€ W} *(Q) the associated
state. Then there exists a unique p,€ H§*<(Q}) such that

—div (ac (X, Vya))+ (/;(x’ yc): U, in
{ - (4.1
ye =0 onT
dat J .
—div (L (x, Vyc)VpL.) + —w—(x, Vo) Pe=Ve— Vu in O
In ds
(4.2)
p.=0 on I’
fn(l’c+Puc+ux—ﬁ)(v—uc)dx20 VveX (4.3)

Theorem 4.3. Ler us suppose (1.2)—(1.4), (1.6)—(1.7) and one of the
" following conditions:

i) 1<a<2and N=2 i) %<a<2amlN:3
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For each €>0, let u, be a solution of (P¢) and y.€ W, (Q) the associated
state. Then there exists p,€ W, (Q) satisfying (4.1)— (4.3) and

L9255 O Wpedrt [ 22 dx<[ (e yopedx (4.4)

Remarks

1) There exists a unique solution in Hg'¢ () of problem (4.2): it is
enough to consider the bilinear form defined in Hg™'* (Q) by '

r 0at d
B(Zl,zz):j;2 VZ{ —(977 (x, Vyc)VZZdX'i”j;l —-(;f (X, ye) 2y zodx

and to apply the Lax-Milgram theorem.

2) In theorem 4.3 (case «<<2 and N>1), we can only prove that p,
belongs to W% (Q) and satisfies the equation in the distribution sense. In
general we can not guarantee the uniqueness of p,. In relation with this
question see Serrin [11]. .

Before stating in what sense the problem (P,) is approxnmated by the
problems (£) we need to prove two previous lemmas:
Lemma 4.4. Let us suppose (1.2)— (1.4), (1.6)—(1.7) and (1.9). For each
e>0, let (v, (v,), ve) belong to (W§*(Q)N L=()) x L2(Q) and satisfy
—div (as(x' Vys(Vs))+¢(x’ys(Vc)):Va in Q)

4.5)
ye(ve) =0 onT

Let us assume that {v .}~ is bounded in L*(), then there exists C>0
such that

”_VE(VL-)”W(') "(g))+l|ya(yn)||l 0= =C for all e>0

Proof

The boundedness of {y.(v.)}.>o INW{§ () is a simple consequence of
lemmas 2.3 and 2.4.
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We will prove that {v, (v,)},>¢ is bounded in L= ({}).
First, given r=>0, we consider
yv)=max {r.(v,)—r,0} and A (N={x€Q: 1. (v)(x)=r}
We have 3" (v,) € Wi ({) and
U () (1) :{ " e (4.6)
Uil (v) (,r) ifxe A.(r)
for almost every x in ().

Using Holder’s inequality and lemma 2.3 or lemma 2.4, we deduce from
(4.5) and (4.6) that

193 @Il 4y = M (A (D) BT Wl .o ) <
< (11937 G5 p, = 193 B o) =
=) e TGNV ) dx /. PO G dr=
=] @ (e e+ D)) Dre(v) V) (v dx + IREAOTCS dx =

:j;l VU.VLVI'(VL‘) dx :Lt(” VL'.VL."(VE) dx= ” Vs” [}(AL.()')) ”VL'(VL)“ Lz(/l,_.(l‘))
Thus, by the continuity of the imbedding W« () C ¥ (Q), with = WNPI
84
(ifa<<N) or u>2a(ifa=N), see Adams [1], and the hypothesis, we get

17 Gl o (17 GO iy m (A 8)= Ul @ 201,00 =

= Crm (AN 74 I e o= Cﬂm(A N2 ke

and hence,
[y (VL)H/#( 1, =Cam (A () 21w 4.7

Now, let s>r>0; then A,(s)C A,(r) and moreover

(s=r) m (AN = 7wl mcron S 7 )l om (4.8)
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From (4.7) and (4.8) it follows

U N
a—l(2 M)

Cy
m(A.(r))

m(A, ()< Y

Finally, applying lemma 4.1 of Stampacchia [12] to the function
b (1)=m (A, (1) for t>0, and noting that thanks to (1.9)

N N A
a—l(Z M)>l’

it follows the existence of a constant Cs<<+oc independent of € such that
V() ()= Cs ae. xe().

In the same way, taking y’(v,) = min {y, (»,) +r, 0}, we derive the existence

of C4>—20 such that y,(v)(x)= C, a.e. xe€() for every e>0.n

Lemma 4.5. Let us suppose (1.2)—(1.4), (1.6)—(1.7) and (1.9). Assume
that v.—u weakly in L’ (Q)) as € — 0. Then, v.(v.)— v, in Wi (Q) as e —0.
Proof

From previous lemma we derive that {y,(v,)}.> is bounded in W} (Q).

Thus, there exist a subsequence (again denoted {v, (v,)}.>0) and y€ W (Q)
such that

re(p)— 1 weakly in W{*(Q)
Furthermore, v, (v.) is the solution of (2.2) with v =, and then we have
f e+ [V () Uy (v)V dx+ f W (X, v (v)) b dx = f vepdx  (4.9)
[} Q QO
for all p€ W (). '
For proving that y =y, it is sufficient to pass to the limit in (4.9) as ¢ — 0.
In virtue of b), d) of lemma 2.3 and lemma 4.4 we have

_[;, o (x, e+ [V (v )NV ()P dx = C f“(k +e+ |V (v)])e dx < G

J e @y < G
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Therefore, we may infer that there exist a subsequence (denoted in the
same way) and x € (L8 ({}))" such that

@ (x, e+ [y, (r)]) Uye(v) — X weakly in (LF ()Y
b (x,y.(v))—~¥(x.y)  weakly in LE(()
Let us introduce the element L of W—-'8((}) defined by the formula
L($)=[ xV$dx
Letting etend to 0 in (4.9) we deduce
L()=[ (u—(x 1) dx (4.10)

for all € W (Q). Moreover, by (4.10) and the strong convergence of y, (v,)
to y in L2(Q)) and L*(Q)

limsup ([ (x4 V. (-01) 19y (v dx) =

=timsup ([ voyo(vo) dx— [ ¥(x p. ) re (v dx ) =

=fn(u—¢(x,y))y dx=L(y)

Since the operator V: W} *(Q)— W-'-8(Q) defined by

(Vy, w) F,fn¢(x, 1Vy]) Uy Iw dx

satisfies M-property (Lions [8, pp. 171-187]) and -V, (v,)— L weakly in
W-1B (1), it is verified that

fnq,(x, [Vy|)VyV¢dx+f“¢(x,y)d>dx=fn updx  Voe W)

Hence, y=y, and then
Ye(v)—p,  weakly in W§*(Q)

Finally, from the above results and lemma 2.3, we conclude in the case
o =2 that

]iII}:SUp ‘\6 ”v.‘yc (Vs) - v.‘fu“ ([Y_"(Q) =
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= lirr;sup fn (@ (x, e+ |V (1)) Vye (v) —o (x, e+, NV ) (Vy. (v) ~Vp,) dx =
= lirgsup fQ v (Ve () — y,) dx— f( ) Y (x, Y. (v) (Ve (ve) — y,) dx=0.

In the case a <2, the argument is the same, utilizing lemma 2.4.

Hence, v, (v,) — v, strongly in W§*(Q), as e—0.=

Theorem 4.6. Let us suppose (1.2)—(1.4), (1.6)— (1.7) and (1.9). Let u,
be a solution of (P£). Set v=yvy and v, =y, (u,). Then, we have

u.—u in L2(Q) @.11)
ye—¥ in Wye(Q) (4.12)
Jo () — J (@) (4.13)
as €—0.
Proof

Applying previous lemma to v,=u Ve>0, we deduce
ye(@—y in Wi ()
Since me K, it follows that for all e>0
3 =Tl 20 S () S @ C (4.14)

Thus, {u..~o is bounded in L?({}) and selecting a subsequence, if
necessary, we may infer that there exists w € such that

u,—u weakly in L2(Q))
Using once more lemma 4.5, we obtain
Vo=, in WEOW)
From (4.14) and the lower semicontinuity of J,, we get

| p ! _ .
) e = valli 2+ ) lullZ2,+ 5 ||u—u||f;m)illm8mf Jo(u) <
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. . — 15 2 P2
= llmCSUP Jt:(uc)Slém J. (@)= 5 17— valli2q) T 5 Nzl 720y =/ (@)

Since % is solution of (P,), we know that J (@) <J(w), thus =7 and
J(u)—J(@ ase—0

Moreover, i, converges strongly towards %, because

1 .. _ . | 2 p 2
llmsup “ul;_u”%}(()) SllmSUP ('IL (uu)_ ”yc_y‘/H[,z(()) Y Huu”[_l(g))):
2 e e 2 2

:iz’.(unn}_z(m — liminf [|2]1320, ) =0.n
5. PROOF OF THEOREM 3.2

In the preceding section, given # a solution of (P,), we have obtained the
optimality conditions for the solutions of the perturbed problems. Hereafter,

our purpose is to pass to the limit in conditions (4.1) —(4.3) with the aid of the
last results. We will distinguish two cases:

5.1. Casea=2and k#0
Let {p,}omo C HE-'* () C H)(Q) be given as in theorem 4.2.
Applying (4.2‘) to p., we derive

,. dat ' oY '
f( ) Vp, I (x, V) Vp. dx+ j;) 25 (e pldx= j; ) (ve— vy pedx

By lemma 2.2, (1.6) and Holder’s inequality, we have

Aske=2 [ (Op2dx S s [ (ke 1902 19p S Collpell iy (1)
In particular, since k#0, it follows from (5.1) that {p,}.~¢ is a bounded
sequence in H)({)) and there exist a subsequence (again denoted p,) and an

element p€ H)({)) such that
p.—P weakly in H}(}) (5.2)

It is immediate to obtain (3.3) taking into account (4.11) and passing to
the limit in (4.3) as € — 0.
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It remains to verify that p satisfies equation (3.2):

Since e W C [*(Q) and thanks to lemma 2.2, we can apply a Tolksdorf’s
result [13] and deduce that the optimal state y belongs to C L.t (Q)) for some
0<pu<1. Therefore, Qy={xeQ: |V¥y(x)| >0} is an open set of RN.

Let ¢ € D({}y) and let us denote sop ¢ =1’ C (). Our purpose is to pass to
the limit as € —0 in the following expression

fV¢7——(X Vy,) Vp, dx+f (X, yo) p® dx—f (Ve—ya) ddx (5.3)

Utilizing again the Tolksdorf’s result [13], it follows the existence of
constants C; and C, depending only on N, a, Ay, Ay, d(V, T), |luell ;=) and
[lell z=(0y such that

IVy. ()| = C, Vxe)
|9y (x) =y (X = Gyl x — x7|# Vx, x'e (Y
By hypotheses, H is bounded in L= (Q)). Furthermore, we know that
[l¥ll = is uniformly bounded by a constant independent of € (see lemma
4.4). Then, we can apply Ascoli — Arzela theorem to deduce the existence of
a subsequence (denoted in the same way) such that :
¥y, (x)— V¥ (x) uniformly in (V/ (5.4

By other hand, in virtue of lemma 2.2 and taking €€(0, |) we obtain that

”——u Tl < Atk +e+ (Tr )2 S Astk+ 14 C)e? Vxeqy

Taking into account (1.6) and lemma 4.4, it follows that

I%(x, »e)

=fUlvell =) =G Vxel Ve>0

Thanks to the hypothesis (1.3), lemma 2.2, convergence (5.4), (4.12) and
the Dominated Convergence Theorem, we deduce that as e -0

a—l'b ) _.._ai ) 1 r
3s (x. v 2% (x,¥)  in Lr({)

] ‘ 0 .
S T~ S i (@)
for all 1 =r<{+Hoo.

Now, we can pass to the limit in (5.3) with the aid of (5.2) and (4.12).=
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5.2. Case a<2

Let {p,} C W} () be given as in theorem 4.2 (if N=1) or theorem 4.3 (if
N>1).

Using the same argument as in the proof of lemma 2.4—a) and the
" conclusion of lemma 4.4, we get

1Vp.|?

Combining lemma 2.2 —a), (1.6), (5.5) and taking into account that P 18
solution of (4.2) if N=1 or using (4.4) if N> 1, we deduce

dat Yy
2 oy
||Pc||W(')-um, SCZ([”VpJ an (x, Vya)Vpedx-%—f“ 55 %8P} dx)S

S [ 0= 2D pedx= Collve— vl 200 1P:M 1o

Remind that W *(Q) C L2()) thanks to (1.9).

Thus, {p.}.>¢ is bounded in W} *(Q) and it is possible to choose a
subsequence €(n) — 0 such that

Peemy—P weakly in W(I)a(n') (5.6)

for some pe Wi (Q).
Rest of the theorem follows exactly as in the previous proof. s

We conclude this section proving the following additional property about
p in the case « <2 and k =0:

VB (x)=0 a.e. xe O\, (5.7)
Let K be a compact subset of ON)y. Then, we know that
Ve (x) = Vv (x)=0 uniformly in K
Given 6 >0, there exists £’>>0 such that

e+ |Vr (x)])y<$ Ve<le’ Vxek
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Now, thanks to (5.5), we deduce

X ,
L wppansf YL _aesc,
IN (8+|VV |)2 a

and we can conclude that
Upsn—VP  weakly in (L2(K)
Hence, we have

f]VﬁlzdeIiminfL (VDo 2dXx < Co8 ¥8>0
IS " :

which implies Vp(x) =0 a.e. x€ K.
Since (\(), can be written as a countable union of‘ compact sets (except
a set of measure zero), assertion (5.7) holds.
6. REGULARITY OF THE OPTIMAL CONTROL
In this last section, we deduce some qualitative properties about optimal
controls, using the optimality conditions.
Theorem 6.1. Les us suppose that p is strictly positive in (1.11) and
K={vel2(Q):m<=v(x)<Mae xc}}
H'(Q) if « =2
with—oo<m< M<+oo. Then, ue
Wie(Q)) if o <2
Proof

Inequality (3.3) characterizes & as the projection of — P on K. Hence, it
follows that P

N O
@ (x) = max { m, mm{ o p(x), M }} a.e. xe(l
We conclude the proof noting' that function f:R— R defined by

f(s)=max{m, min{s, M}}
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is uniformly Lipschitz, using lemma 28.1 of Treves [14, pg. 261] and the fact

H(Q) ifa=2
that pe »

whe@Q) ifa<2

Remarks
1) If 0€[m. M], moreover we obtain that @ =0.

2) If p=0, it follows from (3.3) that

u(x)e[m, M] if p(x)=0
d(x)=m if p(x)>0
ulx)=M if p(x)<0

When p (x)#0 a.e. x€ ), we have that @ is «bang-bangy.

_In the conditions of theorem 6.1 and if N= 1, the Hélder continuity of
in ) is a consequence of the Sobolev imbedding theorem. In general (N>1),
assuming that y,e L (Qy) with p’> N/2, we can apply Theorem 14.1 of
Ladyzhenskaya-Ural’tseva [7, p. 201] and deduce that p is Holder continuous
in Q) (and then @ too), see [3,5].
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