REVISTA MATEMÁTICA de la Universidad Complutense de Madrid Volumen 6. número 1: 1993.

The Tensor Product of Triples as Multilinear Product*

JOSE L. FREIRE NISTAL AND MIGUEL A. LOPEZ LOPEZ

ABSTRACT. In this paper we introduce a notion of multilinear product for triples in Set, which if it is given by a distributive law then coincides with the one given by Bunge. We also demonstrate that the tensor product of two triples, if there exist, is an initial object in a suitable category of multilinear products.

INTRODUCTION

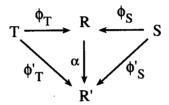
In "Producto de triples" ([8]) the definition that is given of the product of triples generalizes the notion of distributive law, according to Beck ([2]). The tensor product is studied by E. Manes in various articles ([10], [11], [12]), for triples in the category Set, of sets and maps.

M. Bunge, in ([3]), studies the relationship between composition triple and tensor product of triples, for triples in Set. In this paper, it is given the definition of distributive multilinear law, which is the

^{*} Supported by grant TIC91-0404 of Comisión Interministerial de Ciencia y Tecnología (Spain).

distributive law in which each algebra over the composition triple is also a bialgebra.

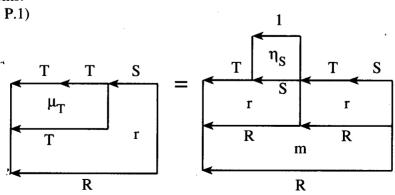
The aim of the present paper is to introduce a notion of multilinear product for triples in Set, which if it is given by a distributive law then coincides with the one given by Bunge, and to demonstrate that the tensor product of two triples T and S, if there exist, is an initial object in the category whose objects are multilinear products $R = (TS)_r$, and whose morphisms $\alpha: R \to R'$ are morphisms of triples that make the following diagram commutative



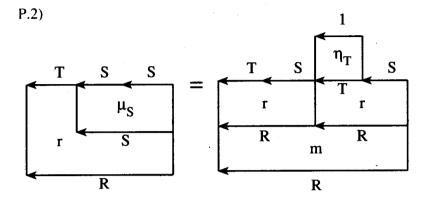
 ϕ_T and ϕ_S being the morphisms of triples associated to every product ([8]).

1. PRODUCT OF TRIPLES AND DISTRIBUTIVE LAWS

1.1 If $T = (T, \eta_T, \mu_T)$ and $S = (S, \eta_S, \mu_S)$ are triples in a category A, a product $R = (TS)_r$ is a triple $R = (R, \eta, m)$, where $\eta = r \circ (\eta_T \star \eta_S)$ and where the natural transformation r: $TS \implies R$ verifies the following axioms:



i.e.: $r \circ (\mu_{T \star} S) = m \circ (r \star r) \circ (T \star \eta_{S \star} TS)$



i.e.: $r \circ (T \star \mu_S) = m \circ (r \star r) \circ (TS \star \eta_T \star S)$ ([8], 1.1).

1.2 If $\mathbf{R} = (\mathbf{TS})_r$ is a product, then $\phi_T := \mathbf{r} \circ (\mathbf{T} \star \eta_S)$: $\mathbf{T} \Longrightarrow \mathbf{R}$ and $\phi_S := \mathbf{r} \circ (\eta_T \star S)$: $\mathbf{S} \Longrightarrow \mathbf{R}$ are morphisms of triples.

Conversely, if ϕ_T : $T \Longrightarrow R$ and ϕ_S : $S \Longrightarrow R$ are morphisms of triples, with $R = (R, \eta_R, m)$ then $R = (TS)_r$ with $r := m \circ (\phi_T \star \phi_S)$: $TS \Longrightarrow R$.

Moreover, if $\mathbf{R} = (\mathbf{TS})_r$ is a product, then $\mathbf{R} = (\mathbf{ST})_{r'}$ is also a product, where $\mathbf{r'} = \mathbf{m} \circ (\phi_{\mathbf{S}} \star \phi_{\mathbf{T}})$ ([8], 1.2, 1.3, 1.5).

1.3 If $T = (T, \eta_T, \mu_T)$ and $S = (S, \eta_S, \mu_S)$ are triples in A, a distributive law of T over S is a natural transformation τ : TS \Longrightarrow ST which verifies:

$$\begin{array}{c} \text{D.L. 1) } \tau \circ (\eta_{T \ \star} \ S) = S \ \star \ \eta_{T} \\ \text{D.L. 2) } \tau \circ (T \ \star \ \eta_{S}) = \eta_{S \ \star} \ T \\ \text{D.L. 3) } (S \ \star \ \mu_{T}) \circ (\tau \ \star \ T) \circ (T \ \star \ \tau) = \tau \circ (\mu_{T \ \star} \ S) \\ \text{D.L. 4) } (\mu_{S \ \star} \ T) \circ (S \ \star \ \tau) \circ (\tau \ \star \ S) = \tau \circ (T \ \star \ \mu_{S}) \\ ([2], 1). \end{array}$$

1.4 A distributive law τ of **T** over **S** makes a product $\mathbf{R} = (\mathbf{TS})_r$ with $r = \tau$, $\mathbf{R} = (ST, \eta_S \star \eta_T, (\mu_S \star \mu_T) \circ (S \star \tau \star T)$ and $\mathbf{r'} = \mathbf{1}_{ST}$ ("half unitary law") ([8], 2.2).

- **1.5** Conversely if $\mathbf{R} = (\mathbf{TS})_r$ is a product with $\mathbf{R} = \mathbf{ST}$ and verifies the half unitary law, $\mathbf{r'} = \mathbf{1}_{ST}$, then \mathbf{r} is a distributive law of \mathbf{T} over \mathbf{S} ([8], 2.3).
- 1.6 Taking one of the examples given in [2], we obtain a product $(TS)_r$, in which r is not a distributive law. In fact, if T and S are graduated rings, $R = S \otimes T$ is a ring with the product operation:

$$(s_1 \otimes t_1)(s_2 \otimes t_2) = (-1)^{\partial s_1 \partial t_2} s_1 s_2 \otimes t_1 t_2$$

(∂ indicates the degree), being $1\otimes 1$ the unity element. Moreover, the maps

$$\phi_T$$
: $T \longrightarrow T \otimes S$, $\phi_T(t) = 1 \otimes t$
 ϕ_S : $S \longrightarrow S \otimes T$, $\phi_S(s) = s \otimes 1$

are homomorphisms of rings.

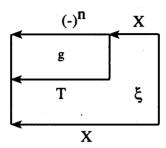
The rings T, S and R give the triples $\mathbf{T}=(-\otimes T,\,\eta_T,\,\mu_T),\,\mathbf{S}=(-\otimes S,\,\eta_S,\,\mu_S)$ and $\mathbf{R}=(-\otimes R,\,\eta_R,\,\mu_R)$ in the category A of abelians groups (the natural transformations η and μ are the ones induced by the unities and the multiplications of the rings). The homomorphisms ϕ_T and ϕ_S induce morphisms of triples

$$\phi_T: T \Longrightarrow R$$
 and $\phi_S: S \Longrightarrow R$

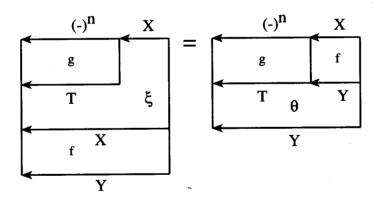
 $\mathbf{R} = (\mathbf{TS})_r$, being $\mathbf{r} = \mu_R \circ (\phi_T \star \phi_S)$ (1.2). However, in this case r is not a distributive law, because the half unitary law is not verified, that is, $r' \neq 1$.

2. TENSOR PRODUCT OF TRIPLES

- **2.1** Let $n \in |\text{Set}|$ and $(-)^n$: Set \longrightarrow Set be the functor Hom(n,-). If $T = (T, \eta_T, \mu_T)$ is a triple in Set, a *n-ary operation* over T is a natural transformation $(-)^n \Longrightarrow T$.
- If (X,ξ) is a **T**-algebra, each n-ary operation g over **T** induces an operation, $\xi^g = \xi \circ (g \ X)$: $X^n \longrightarrow X$, over the set X

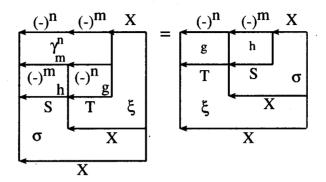


Moreover, a T-morphism f: $(X,\xi) \to (Y,\theta)$ is a map f: $X \to Y$ which is a morphism in the classic sense, commuting with each operation, that is, for each g: $(-)^n \to T$



i.e.: $f \circ \xi^g = f \circ \xi \circ (g \ X) = \theta \circ (g \ \star \ f) = \theta \circ (g \ Y) \circ f^n = \theta^g \circ f^n$ ([3], 1).

2.2 If T and S are triples in Set, a S-T-bialgebra is a 3-triple (X,σ,ξ) , with (X,σ) and S-algebra and (X,ξ) a T-algebra such that for all $n,m \in |Set|$, g: $(-)^n \Longrightarrow T$ and h: $(-)^m \Longrightarrow S$ the following holds true:



i.e.:
$$\sigma \circ (S_{\star}\xi) \circ ((h_{\star}g) \ X) \circ (\gamma_m^n \ X) = \xi \circ (T_{\star}\sigma) \circ ((g_{\star}h) \ X)$$
, where
$$\gamma_m^n : \ (-)^n (-)^m \Longrightarrow \ (-)^m (-)^n$$

is the canonical isomorphism.

This is equivalent to, for every g: $(-)^n \Longrightarrow T, \xi^g$ is an S-morphism, or equivalently, for every h: $(-)^m \Longrightarrow S$, σ^h is a T-morphism ([3], 1).

This defines the category $Set^{[S,T]}$ of S-T-bialgebras as a full subcategory of the category $Set^{[S,T]}$ whose objects are triples (X,σ,ξ) with (X,σ) an S-algebra and (X,ξ) a T-algebra, and whose morphisms $f\colon (X,\sigma,\xi) \to (Y,\tau,\theta)$ are maps $f\colon X \to Y$, being f an S-morphism and T-morphism.

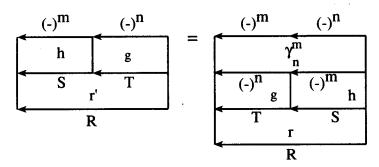
If the forgetful functor $U^{[S,T]}$: Set $^{[S,T]}$ \longrightarrow Set is tripleable, it makes a triple $S \otimes T$ that is called tensor product (symmetrically, $T \otimes S$) ([3], [10], [11], [12]).

The existence of tensor product of triples is, in general, an open question.

3. MULTILINEAR PRODUCTS

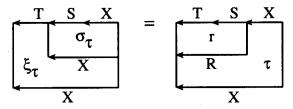
3.1 Let $T = (T, \eta_T, \mu_T)$ and $S = (T, \eta_S, \mu_S)$ be triples in Set and $R = (TS)_r$ a product, $R = (R, r \circ (\eta_{T*}\eta_S), m)$.

We will say that **R** is a multilinear product if for whatever $g:(-)^n \implies T$ and $h:(-)^m \implies S$ it are verified

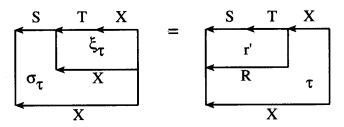


i.e.: $r' \circ (h_{\star}g) = r \circ (g_{\star}h) \circ \gamma_n^n$.

3.2 If $\mathbf{R} = (TS)_r$ is a product, the morphisms of triples $\phi_S \colon S \Longrightarrow \mathbf{R}$ and $\phi_T \colon T \Longrightarrow \mathbf{R}$ (1.2) give functors (change of triple) $\operatorname{Set}^{\varphi_T} \colon \operatorname{Set}^{\mathbf{R}} \longrightarrow \operatorname{Set}^{\mathbf{S}}$ and $\operatorname{Set}^{\varphi_T} \colon \operatorname{Set}^{\mathbf{R}} \longrightarrow \operatorname{Set}^{\mathbf{T}}$, respectively, that commute with the forgetful functors to Set. As a result, each \mathbf{R} -algebra (X,τ) gives an S-algebra $(X,\sigma_\tau) = (X,\tau \circ (\phi_S X))$ and a T-algebra $(X,\xi_\tau) = (X,\tau \circ (\phi_T X))$. Moreover, it is verified

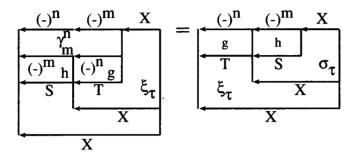


i.e.: $\xi_{\tau} \circ (T_{\star}\sigma_{\tau}) = \tau_{\star} (r X)$, and



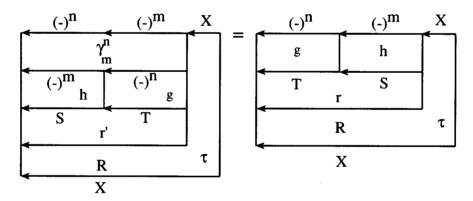
i.e.: $\sigma_{\tau} \circ (S_{\star} \xi_{\tau}) = \tau \circ (r' X)$ [12], proposition 2.9, page 210).

We will say that an R-algebra (X,τ) is a *bialgebra* if the S-algebra (X,σ_{τ}) and the T-algebra (X,ξ_{τ}) make an S-T-bialgebra $(X,\sigma_{\tau},\xi_{\tau})$, i.e.:



i.e.: $\sigma_{\tau} \circ (S_{\star}\xi_{\tau}) \circ ((h_{\star}g)X) \circ (\gamma_{m}^{n} \ X) = \xi_{\tau} \circ (T_{\star}\sigma_{\tau}) \circ ((g_{\star}h) \ X)$, for all operations g: $(-)^{n} \Longrightarrow T$ and h: $(-)^{m} \Longrightarrow S$.

It is immediately proved that the last equality is equivalent to:

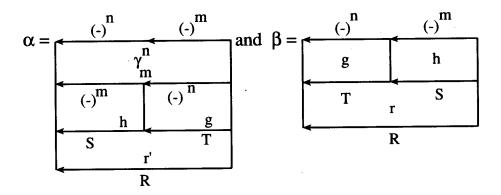


$$i.e.: \tau \circ (r'\ X) \circ ((h_{\star}g)\ X) \circ (\gamma_m^n\ X) = \tau \circ (r\ X) \circ ((g_{\star}h)\ X).$$

3.3 From former definitions we can conclude, trivially, that for a multilinear product \mathbf{R} , every \mathbf{R} -algebra is a bialgebra. Its reciprocal result is also true. If \mathbf{R} is a product and every \mathbf{R} -algebra is a bialgebra, then \mathbf{R} is multilinear as a consequence of the following result:

If **T** is a triple in Set and α,β : $(-)^k \Longrightarrow T$ are k-ary operations over **T**, then $\alpha = \beta$ if and only if $\tau^{\alpha} = \tau^{\beta}$ for every **T**-algebra (X,τ) ([3], lemma 2.5, page 145).

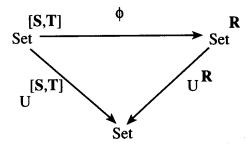
To obtain our result, it is enough to take



i.e.: $\alpha = r' \circ (h_{\star}g) \circ \gamma_m^n$ and $\beta = r \circ (g_{\star}h)$.

4. THE TENSOR PRODUCT AS MULTILINEAR PRODUCT

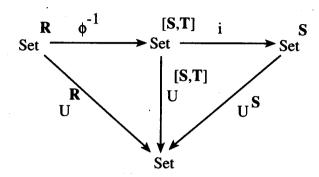
4.1 Let $T = (T, \eta_T, \mu_T)$ and $S = (T, \eta_S, \mu_S)$ be triples in Set. Let us suppose that the tensor product $S \otimes T = R = (R, \eta_R, m)$ exist, i.e., the following diagram



is commutative, ϕ being an isomorphism.

For the inclusion functor i: $Set^{[S,T]} \longrightarrow Set^S$,

i(f:
$$(X, \varepsilon, \delta) \longrightarrow (X', \varepsilon', \delta')$$
) = f: $(X,\varepsilon) \longrightarrow (X',\varepsilon')$) the following diagram of functors is commutative:



Since $i \circ \phi^{-1}$ commutes with the forgetful functors, a natural transformation exists σ : $SR \Longrightarrow R$ such that $\phi_S = \sigma \circ (S_\star \eta_R)$: $S \Longrightarrow R$ is a morphism of triples ($i \circ \phi^{-1} = Set^{\phi_S}$ is the change of triple functor). For $X \in |Set|$, and (RX,mX) being the free **R**-algebra over X, ($i \circ \phi^{-1}$) (RX,mX) = ($RX,\sigma X$). For any **R**-algebra (X,τ), ($i \circ \phi^{-1}$) (X,τ) = ($X,\tau \circ (\phi_S X)$).

In the same way, for the triple **T**, a natural transformation exists ξ : TR \Longrightarrow R, such that $\phi_T = \xi \circ (T_\star \eta_R)$: **T** \Longrightarrow R is a morphism of triples.

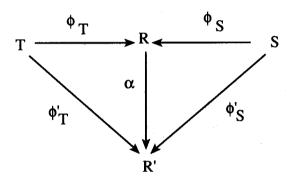
If (X,τ) is an **R**-algebra, $\phi^{-1}(X,\tau)=(X,\tau\circ(\phi_S\ X),\ \tau\circ(\phi_T\ X))$. In particular, $\phi^{-1}(RX,\ mX)=(RX,\ \sigma X,\ \xi X)$.

4.2 From all this and from (1.2) it follows that **R** is a product, $\mathbf{R} = (\mathbf{TS})_r$ with $r = m \circ (\phi_{T\star}\phi_S) = \xi \circ (T_\star\sigma) \circ (TS_\star\eta_R)$ (this last equality is true since mX: (RRX, σ RX, ξ RX) \longrightarrow (RX, σ X, ξ X) is a morphism of Salgebras and of T-algebras).

If (X,τ) is an **R**-algebra, $\phi^{-1}(X,\tau) = (X,\tau \circ (\phi_S X), \tau \circ (\phi_T X)) = (X, \sigma_\tau, \xi_\tau)$ is an **S-T**-algebra and, by (3.2) and (3.3), **R** is a multilinear product.

5. THE CATEGORY OF MULTILINEAR PRODUCTS

5.1 Let T and S be triples in Set. Taking as objects the multilinear products $R = (TS)_r$ and as morphisms, $\alpha: R = (TS)_r \rightarrow R' = (TS)_r$, those morphisms of triples $\alpha: R \rightarrow R'$ that make the diagram commutative

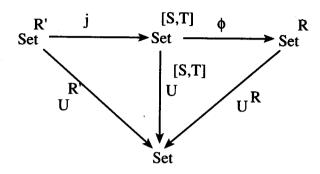


we obtain the category of multilinear products of T and S.

5.2 In the category of multilinear products of T and S, S \otimes T is an initial object. Let us write S \otimes T = R = (R, η_R , m) = (TS)_r.

Let $\mathbf{R'} = (\mathbf{R'}, \eta_{\mathbf{R'}}, \mathbf{m'}) = (\mathbf{TS})_{\mathbf{r'}}$, be an arbitrary multilinear product and $\phi'_{S} : \mathbf{S} \Longrightarrow \mathbf{R'}, \phi'_{T} : \mathbf{T} \Longrightarrow \mathbf{R'}$ the corresponding morphisms of triples. If (\mathbf{X}, τ') is an $\mathbf{R'}$ -algebra, $(\mathbf{X}, \sigma_{\tau'}, \xi_{\tau'}) = (\mathbf{X}, \tau' \circ (\phi'_{S} \mathbf{X}), \tau' \circ (\phi'_{T} \mathbf{X}))$ is an \mathbf{S} - \mathbf{T} -bialgebra.

If j is the functor j: $Set^{R'} \longrightarrow Set^{[S,T]}$ such that $j(X,\tau') = (X,\sigma_{\tau'},\xi_{\tau'})$, then the following diagram of functors is commutative:



Thus, a natural transformation exists λ : RR' \Longrightarrow R', so that $\alpha = \lambda \circ (R_\star \eta_R)$: $\mathbf{R} \Longrightarrow$ R' is a morphism of triples, being $\phi \circ j = \operatorname{Set}^\alpha$ the change of triple functor. Moreover, $(\phi \circ j)(X,\tau') = (X,\tau' \circ (\alpha X))$ and, in particular, $(\phi \circ j)(R'X, m'X) = (R'X, \lambda X) = (R'X,(m'X) \circ (\alpha R'X))$. Then,

$$(R'X,(m'X) \circ (\phi'_S R'X),(m'X) \circ (\phi'_T R'X)) = \phi^{-1} ((\phi \circ j)(R'X,m'X) =$$

= $\phi^{-1}(R'X,(m'X) \circ (\alpha R'X)) = (R'X, (m'X) \circ (\alpha R'X) \circ (\phi_S R'X), (m'X) \circ (\alpha R'X) \circ (\phi_T R'X))$ from which we can obtain

$$\begin{array}{l} m' \, \circ \, (\varphi'_{S^{\star}}R') = m' \, \circ \, ((\alpha \, \circ \, \varphi_S)_{\star}R') \iff \varphi'_S = \alpha \, \circ \, \varphi_S \\ m' \, \circ \, (\varphi'_{T^{\star}}R') = m' \, \circ \, ((\alpha \, \circ \, \varphi_T)_{\star}R') \iff \varphi'_T = \alpha \, \circ \, \varphi_T \end{array}$$

that is, there is a morphism in the category of multilinear products $\alpha: \mathbb{R} \to \mathbb{R}'$.

5.3 Let us see the uniqueness of α . Let $\beta: \mathbb{R} \to \mathbb{R}'$ be a morphism of triples such that $\beta \circ \phi_T = \phi'_T$ and $\beta \circ \phi_S = \phi'_S$. Set^{\beta}: Set^{\beta}: Set^{\beta} is the change of triple functor corresponding to β (note that $\phi \circ j = \operatorname{Set}^{\alpha}$). Then

 $\alpha = \beta \iff \operatorname{Set}^{\alpha} = \operatorname{Set}^{\beta} \iff \operatorname{Set}^{\alpha} (R'X, m'X) = \operatorname{Set}^{\beta} (R'X, m'X) \text{ for every free } \mathbf{R'}\text{-algebra } (R'X, m'X) ([12], \text{ prop. 2.9, page 210). Also}$

$$\beta \circ \phi_T = \phi'_T = \alpha \circ \phi_T \iff m' \circ (\beta_* R') \circ (\phi_{T*} R') = m' \circ (\alpha_* R') \circ (\phi_{T*} R')$$
$$\beta \circ \phi_S = \phi'_S = \alpha \circ \phi_S \iff m' \circ (\beta_* R') \circ (\phi_{S*} R') = m' \circ (\alpha_* R') \circ (\phi_{S*} R')$$

But,
$$j(R'X, m'X) = (R'X, (m'X) \circ (\alpha R'X) \circ (\phi_S R'X), (m'X) \circ (\alpha R'X)$$

 $\circ (\phi_T R'X)) = \phi^{-1} Set^{\beta}(R'X, m'X)$, so $Set^{\alpha}(R'X, m'X) = Set^{\beta}(R'X, m'X)$,

References

- [1] BARR, M. Coequalizers and free triples. Math. Z. 116 (1970), 307-322.
- [2] BECK, J. Distributive laws. Lect. Notes in Math. 80. Springer (1969), 119-140.
- [3] BUNGE, M. On the relationship between composite and tensor product triples. Journal of Pure and Applied Algebra 13 (1978), 139-156.
- [4] CARUNCHO CASTRO, J.R. *Teoría de triples*. Alxebra 5. Dpto. Álgebra y Fundamentos. Santiago (1971).
- [5] FREIRE NISTAL, J.L. Propiedades universales de triples de grado superior. Tesis. Alxebra 11. Dpto. Algebra y Fundamentos. Santiago (1971).
- [6] FREYD, P. Algebra-valued functors in general and tensor products in particular. Colloq. Mathem. XIV (1966), 89-106.
- [7] LOPEZ LOPEZ, M.A. Algebras de Hopf respecto a un cotriple. Tesis. Alxebra 17, Doto. Álgebra y Fundamentos. Santiago (1976).
- [8] LOPEZ LOPEZ, M.A. y VILLANUEVA NOVOA, E. *Producto de triples*. Rev. Mat. Hisp.-Amer. T. 38 (1978), 61-70.
- [9] LOPEZ LOPEZ, M.A. y BARJA PEREZ, J.M. El triple Hom(M,-) en conjuntos. Alxebra 26. Dpto. Álgebra y Fundamentos. Santiago (1980), 51-61.
- [10] MANES, E. A triple miscellany. Thesis. Wesleyan University (1967).
- [11] MANES, E. A triple theoretic construction of compact algebras. Lect. Not. in Math. 80. Springer (1969), 91-118.

Recibido: 18 de mayo de 1992

Revisado: 12 de febrero de 1993

[12] MANES, E. Algebraic Theories. Springer (1976).

Departamento de Computación Universidad de La Coruña 15071 La Coruña SPAIN

Departamento de Álgebra Universidad de Santiago 15771 Santiago de Compostela SPAIN