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Dunford-Pettis-like Properties of Projective
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ABSTRACT. Several properties of weakly p-summable sequences and of the
scale of p-converging operators (i.e., operators transforming weakly p-summable
sequences into convergent sequences) in projective and natural tensor products
with an /, space are considered. The last section studies the Dunford-Pettis pro-
perty of order p (i.e., every weakly compact operator is p-convergent) in those
spaces.

0. INTRODUCTION

In this paper several properties of the scale of p-converging operators
in projective and natural tensor products with an [, space are considered.
This scale, introduced in [2] and [3], is 1ntermed1ate between the ideals of
unconditionally converging operators and the ideal of completely con-
tinuous or Dunford-Pettis operators. Since p-converging operators are char-
acterized by the property of sending weakly-p-summable sequences into
convergent ones, a part of the study is devoted to a special class of sub-
sets of vector sequence spaces, termed almost compact sets, nontrivial
examples of which are, in certain spaces, precisely the weakly-p-summable

AN
sequences, 1 =p<+ . Section 2 characterizes the compact sets of [,®, X

and lp@Ap X, extending results of Leonard [8] and Bombal [1]. Section 3

considers the Dunford-Pettis properties of order p in projective and natural
tensor product spaces of /, and a Banach space X. For [ -sums of se-
quences of Banach spaces, generalizations of results of Bombal [1] are
obtained. Those properties were introduced in [3].
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1. BACKGROUND

Throughout the paper p* denotes the conjugate number of p. We base
our approach to the properties of natural and projective tensor products on
the use of the representations of those spaces as sequence spaces. A se-
quence (x,) in a Banach space X is said to be weakly-p-summable (p=1)
if for every x*E€X* the sequence (x*(x,)) is in l,; equivalently (see[7]
19.4), if there is a constant C>0 such that, for each (£, in L,
W@ =sup {[Ze Euxi] 2 Gl S1}=C<+o. (Here, if p=1,

plays the role of [.) It is said to be absolutely-p-summable, when p=1, if

1
$,(x) =15 [Ix )7 <+oo. (If p=+, the I, norm has to be replaced
by the sup norm.) It is said to be strongly-p-summable for p=1 if
o, () =sup{|Z75 f.(x)| : w.({fLH=<1, (f)EX*}<+ . Following
[7], we shall denote by [,[X], [,{X} and [,<X> respectively the spaces
of weakly-p-summable, absolutely-p-summable and strongly-p-summable
sequences of X, endowed with their natural topologies: those induced by
the norms w,, s, and o,, respectively. The following isometries are well-
known (see [7] 19.4.3): L[IX]=L{,.,X), for 1<p<+oo, and
L[X]1=L(c,, X). The symbols 7 and ¢ shall denote the projective and in-
jective norms on the space I, ® X: they are, respectively, the strongest
and coarsest crossnorms (i.e. norms satisfying ||x®y|=||x| [ly|l) which is
possible to define on that space. The symbol A4, denotes the norm induced
by s, over [,&X; the topology induced by s, is termed the natural topo-

logy. We shall denote by lp@EX , lp@,, X and lp@APX =1,{X} the comple-

tion of [,®X with respect to £, 7, and 4, respectively. The space lp@,, X
also admits a representation as a vector sequence space: it is the closed
subspace of the space [,<X> formed by those sequences which are the
limit of their finite sections; this can be deduced without difficulty from
[5], where it is proved that the norm 0, induces & over [, QX .

Let E be any of the spaces I,,@,, X or lp@ApX , Di be the continuous

projection onto the k™ coordinate, and i, the canonical inclusion of X into
the k™ coordinate. If T:E—Y is a continuous operator, then a sequence of
operators T,EL(X, Y) exists such that T=2%, T, p, : explicitely, T,=Ti,.
We shall say that (7,) is the representing sequence of 7. If (X,) is a se-
quence of Banach spaces, and T is an operator from the Banach space
Z.®X,),={x=x)EIX, : |x|,=C,|x.|)"”<+} into ¥, then the
sequence (7T,) defined by 7,=Ti, is again called the representing sequence
of T (cf. [1]).
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We shall consider the following operator ideals: The ideal L of all con-
tinuous operators; the ideal W of weakly compact operators; the ideal U of
unconditionally converging operators, i.e., those sending weakly-1-summa-
ble sequences into unconditionally summable sequences; the ideal K of
compact operators; and the ideal DP of completely continuous or Dunford-
Pettis operators, i.e., those sending weakly convergent sequences into con-
vergent ones.

Definition. We say that an operator TEL(X, Y) is p-converging,
I=p<+x, if it transforms weakly-p-summable sequences of X into norm
null sequences of Y. We shall use C, to denote the ideal of p-converging
operators.

The classes C, form injective, non-surjective closed operator ideals. It
is not difficult to see that C,=U and, with the convention that the weakly-
c-summable are the weakly null sequences, that C.,=DP. A characteriza-
tion of p-converging operators is contained in the following proposition
(see [3D):

Proposition 0. Let X be a Banach space, and 1<p<+ . If p>1

the operator 1d(X) belongs to C, if and only if all operators from l,. into

X are compact. If p=1, 1d(X) belongs to C, if and only if all operators
from ¢, into X are compact.

2. COMPACT SETS

We shall study in Section 3 the relation between the membership of an
operator T in a class C,, and the membership of the operators forming its
representing sequence in that same class. To this end, we shall introduce a
class of subsets which have something of the flavour of compact sets.

Lemma 1. Let 1<p<+x. Let X and Y be Banach spaces. Consider
a set ACII,@,, X (resp. ACl, @APX ). The following are equivalent:

1. For each continuous operator TEL(I,,@,, X, Y) (resp.

AN
TeL(l, ®APX’ Y)), the representing sequence of T converges to T
uniformly over A.
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N—s+o xEA N—a+o xEA

2. lim sup7 [(x).=n=0, (resp., lim supd, [(x,),>»]=0).

Proof. That 1=-2 is obvious. Let us show that 2=>1 for the case of
the projective tensor product. Let (x,) be any sequence in A. Then

IT(x) = (T, (x), T, .., Tux), 0, 0, )]y =
=”T(0a 0’---’ 09 xN+l’ xN+2’-~-)“Y S ”T”n[(oy 07---, 0, -xN+17 xN+2"”)]

and this converges uniformly on A by Condition 2.

The computations for the natural product are very similar. .

Definition. Let p<+. A set Acl, ®, X, (resp. ACL, &, X), is

said to be almost-compact if it satisfies either of the equivalent conditions
of Lemmal .

Proposition 2. Let p<+ . A subset Acl, &, X, (resp. ACL, &, X),

is relatively compact if and only if it is bounded, almost-compact, and its
continuous projections p(A) are relatively compact in X for all kEN.

Proof. It is easy to see that all the conditions are necessary. They are

also sufficient: Let (x") be a sequence contained in Aglp@,,X . Condition
1 of Lemma 1 and a diagonal argument show that a certain sub-sequence,
again denoted (x"), exists having pointwise convergence to an element x.
To verify that the convergence occurs in the projective norm, it is only
necessary to take, in the following expression, the supremum over all el-
ements x* in the unit ball of /,.[X*]:

+ 00

k=N
Y <t —x > Y | <k —x, xF>]+

k=1 k=1

+o +00
+ Y <>+ Y, I<x, x>,

k=N+1 k=N+1

and observe that the first summand can be made, for large N, less than &;
since A is almost compact, the second and third summands tend to zero
when N tends to infinity.



Dunford-Pettis-like Properties of Projecti:/e and Natural... 237

The proof for the natural product is analogous. u

Remark. Lemma 1 and Proposition 2 have been proved in [1] and
[8] for [,{X}. The referee has informed to us that this proposition is a par-
ticular case of an old theorem due to Mazur, who stated it for the case of
a Banach space having a basis, and that a more general result has been es-
tablished by Goes and Welland as follows:

Theorem ([6] Thm. 1.) Let X be a complete locally convex topolo-
gical vector space. Let A be a bounded subset of X and {Ps}sc, a net in
L(X, X). Then A is relatively compact if {Ps}sc, converges uniformly to
the identity on A and Py(A) is relatively compact for each BEI.

Proposition 2 follows taking P,((x,),)=(,, x,..., Xy, 0, 0,...) for
NEN. We have left the proof of Proposition 2 for the sake of complete-
ness.

Nontrivial examples of almost compact sets in natural and projective
tensor products are provided by the next proposition.

Proposition 3. Assume that X is a Banach space and that

1<p, r<+ . If r<p*, then a weakly-r-summable sequence of lp@,, X or

VAN
lp®A,,X is an almost compact set. For p=1, a weakly null sequence of
1,{X} is an almost compact set.

Proof. We first show the proof for the projective product. Let (a") be

a weakly-r-summable sequence in l,,@,,X. Assume that A= {a":n€N} is

not an almost compact set. In that case, an £>0 and two sequences (n,)
and (N,) of naturals exist such that if I, denotes the set {N,+1, ..., Ny, }

and P,.:l,,@,, X - l,,@,, X denotes the projection over the indices of I; then

7, (Pa")>Ee.

Elements z,E(l,,@,, X)*=L(l,, X*) with |z]|<1 can be chosen such
that | <P,(a™), z;>|>¢. The proof of [4, Thm.1] shows that if Q,:/,—1,
denotes the projection over the indices of I, then |<P,(a™),z,Q0,>|>¢.

Once more, the proof of [4, Thm. 1] shows that the operator B:lp@,, X1,
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defined by B(Y)=(<P,y, z;0,>) is continuous. By [3, Prop.1.6.], it
transforms (a") into a norm-null sequence of /,, which is a contradiction.

The proof for the natural product is essentially the same. We shall give
it for the sake of completeness: If A={a":nE€N} is not almost compact,
then an £€>0 and two sequences (n;) and (N,) of naturals exist such that

k=N,

Y, lazlr > e.
k=N,

Normalized elements x* (k) € X* can be chosen such that:
<x¥(k), ay>=|ay|. If yr=x¥(k), for N<k<N,,, then (y¥) is a
bounded sequence of X* which defines an element of L([,{X}, /,). This
operator transforms (@") into a weakly-r-summable sequence of /,, which
must be norm-null (see [3, Prop. 1.6.]). Thus one has

1
k=+c 7
lim sup 2 | <y¥, a;>F| =0
N—+o neEN k=N

which is a contradiction.

The proof for the case p=1 follows closely that of the natural product,
and it is only necessary to recall that /, has the Schur property, i.e.:
weakly null sequences are norm null. That yields the proof for the pro-

jective tensor product since ll@,,X =1,{X}. In other words: the statement
holds for p=1 and r=. u

Remark. Let X, be a sequence of Banach spaces, and 1<p<+ . A
set Ac(2,X,), is said to be almost compact if Conditions 1 or 2 of
Lemma 1, with suitable modifications, are satisfied. In this form, Prop-
ositions 2 and 3 can be translated to /,-sums of sequences of Banach spaces.

3. DUNFORD-PETTIS PROPERTIES

A Banach space X is said to have the Dunford-Pettis property (DPP) if
weakly compact operators defined on X are completely continuous, that is,
if for any Banach space Y:W(X, Y)cDP(X, Y). Typical examples of Ba-
nach spaces having DPP are L, and L, spaces. No reflexive Banach space
can have DPP. Weakened versions of the Dunford-Pettis property were in-
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troduced in [3]. A Banach space X is said to have the Dunford-Pettis prop-
erty of order p=1, if WX, Y)cC,(X, Y) for all Banach spaces Y. We
shall call this property DPP,. Notice that DPP,.=DPP. Every Banach
space has DPP,. Other examples are (see [3] for details): [, has DPP, for
all r<p*; L,[0, 1] has DPP, for r<min{p*, 2}; Tsirelson’s space has
DPP, for all r<+ o, but not DPP since it is reflexive; if id(X)E€C, then
C(K, X) has DPP,.

Lemma 4. Let 1=p<+». Let (X,) be a sequence of Banach

spaces. Assume that E represents any of the spaces (X®X,), or l,,@,, X,
and that T is a continuous operator from E into a Banach space Y, having
(T,) as a representing sequence. If r<p* (or p=1 and r=®), then T is r-
_ converging if and only if each T, is r-converging.

Proof. Let (a") be a weakly-r-summable sequence of E. Since (a”) is
an almost compact set, the convergence of (T,) to T is uniform over the
set {a"}. Furthermore, T,({a"}) is relatively compact in Y since T, is r-
converging. The relationship

k=N(¢)
T({a'})c T.({a"})+¢eB,

k=1

implies that T({a"}) is relatively compact, and therefore (Ta”) must be
norm-null. (]

Remark. When p*=<r< the result is clearly false: simply consider
the example /,{/,} and T=id.

Proposition 5. Let A denote an operator ideal and r<p* (or p=1
and r =), With the same notation as in Lemma 4,
A((X @X,),, Y)cC,((2DX,),,Y) if and only if, for all n,

AX,, Y)cC(X,, Y). Moreover A(lp@,, X) c C,(lp@,, X) if and only if
AX,Y)c C (X,7).

Remark. Recalling that C,=U and that C,=DP, one sees that these
results include and generalize the following results of Bombal [1]:
Theorem1.5, part a) for the unconditionally converging operators (p=1,
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r=1 in Lemma 4) and Dunford-Pettis operators (p=1, r= in Lemma 4,
Corollary1.6. part a) for the unconditionally converging operators (p=1,
r=1 in Proposition 5) and Dunford-Pettis operators (p=1, r=o in
Proposition 5) and Proposition 2.6. a) (p=1, r=%, A=L), and ¢) (p=1,
r=1, A=L); this last case also appears in [4].

Theorem 6. Let 1<p<+oo. Assume that r<p* (or p=1 and
r=): these are the cases when l, has DPP,. Assume that X also has

DPP,. Then 1,8, X and 1,9, X also have DPP,.

Proof. Let E denote any of those spaces, and let T:E—Y be a
weakly compact operator. Since X has DPP, the operators (T}) in the re-
presenting sequence of 7, which necessarily are weakly compact, are p-
converging. By Lemma 4, T must also be p-converging. u
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