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Packing Constant in Musielak-Orlicz Sequence
Spaces Equipped with the Luxemburg Norm

HENRYK HUDZIK, CONGXIN WU and YINING YE

ABSTRACT. A more precise formula for the Kottman parameter D(X)
connected with the packing constant A(X) in such a way that A(X) =
D(X)/(2+ D(X)) for a Banach space X, in the case when X is a Musielak-
Orlicz sequence spaces %, is given. As a corollary, packing constant of the
Nakano space /(P where 1 < pi < oo forany: = 1,2,...,is computed.
This generalizes the results of [2] for [P spaces. It is also proved that A({¥) =
A(h?).

INTRODUCTION

In the sequel N, R, R and R stand for the set of natural numbers,
the set of reals, the set of positive reals and for the interval [0,+00],
respectively. The space of all real sequences ¢ = (z;){2, is denoted by
I° A map ¢: R — R is said to be an Orlicz function if ¢ is convex,
even, vanishing and continuous at 0, left-hand side continuous on the
whole R, and not identically equal to zero (see [9], [10] and [11]).

A sequence of ¢ = (p;)2; of Orlicz functions ¢; is called a
Musielak-Orlicz function.
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Given a Musielak-Orlicz function ¢ we define on [ a convex modu-
lar I, by

Iy (z) = Z%‘(wi) (Vz = (z:)2; €1°).

A Musielak-Orlicz space generated by ¢ is defined by
1 = {z€l®: I,(\z) < 400 for a certain A > 0}.
The functional
llzlly = inf{A>0: I,(2/X) <1}

is a norm in [ (called the Luxemburg norm) and the couple (I,[| ||o)
is a Banach space (see [9]). We denote by h¥ the subspace of [“ being
the closure in I¥ of all sequences in I° with finite number of coordinates
different from zero. This subspace will be considered with the norm |} ||,
induced from . In the case when all functions ¢; which define ¢ are
finite-valued (i.e. ¢; are continuous functions) we have simply

R = {z€l®: I,(\z) < +oo for any A > 0}.

We say a Musielak-Orlicz function ¢ satisfies the 69-condition if
there are positive constants a, K, a natural number m and a sequence

o0
(Ci)2; C RS such that ) C; < +oo and for any ¢ € N and u € R
satisfying ¢;(u) < a there holds

pi(2u) < Kgi(u) + Ci.

If a Musielak-Orlicz function ¢ satisfies the 69-condition with m = 1
we say that ¢ satisfies the §;-condition (see [4], [6] and [11}).

For any Musielak-Orlicz function ¢, h¥ coincides with ¥ if and
only if ¢ satisfies the 63-condition (see [5)).
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For any Banach space X denote by B(X) and S(X) the unit ball
and the unit sphere of X, respectively. The unit ball in X centered at
z € X and with radius 7 > 0 denote by Bx(z,r).

The packing constant A(X) of a Banach space X is defined by

A(X) = sup {r >0: 3(z")nz; C B(X), ||z™ —z™|| > 2r

for m # n, and U Bx(z",r) C B(X)}
n=1
(see [12]). Kottman [8] proved that for any Banach space X we have
A(X) = D(X)/(2+ D(X)), where

D(X) = sup inf |lz™ - 2"||.
(z")CS(X) m#n

It is well known that D(I?) = 2'/Pfor 1 < p < 400 and D(I®°) = 2 (see
[12]). Moreover, Cleaver [3] obtained some lower and upper estimations
for the packing constant of Orlicz sequence (as well as function) spaces
and he pointed out that these estimations give an exact formula for
the packing constant in a special class of Orlicz spaces, i.e. for Orlicz
spaces such that ||z||, = ¢~ 1(I,(z)) for any = € I¥ (respectively
for any ¢ € L¥). However, Zaanen [15] pointed out that this class of
Orlicz spaces reduces only to [? (respectively L?) spaces (see also Wnuk
[13]). Next, Ye [14] obtained a simpler formula for D(I¥), where ¢ is
an Orlicz function (i.e. all functions ¢; in the definition of ¢ are the
same). Namely, he has proved that for any finite-valued Orlicz function
@ which satisfies the A,-condition at zero, we have

D(I*) = sup {cx>0: I(a/cs) = 1}. (1)

z€S(1*) 2

In this paper we obtain an analogue for Musielak-Orlicz sequence spaces
¥ generated by finite-valued Musielak-Orlicz function

¢ = (i), which satisfies an additional condition (+). In the case
when ¢ is an Orlicz function this formula coincides with formula (1).
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We say a Musielak-Orlicz function ¢ = (¢;){2, satisfies condition
(+) if for any ¢ > 0 and any ¢ € (0,c) there is 6 > 0 such that ¢;((1 +
6)u) < ¢ whenever p;i(u) <c—¢fori = 1,2,... and u € Ry.

Assuming in this definition ¢ = 1 we obtain condition (*) defined
by A. Kaminska in [7].

RESULTS.

To obtain main results we need to give some auxiliary lemmas.

Lemma 1 (see [4] and [6]). If ¢ = (i), is a finite-valued
Musielak-Orlicz function i.e. all functions ¢; are finite-valued and ¢
satisfies the 69-condition (equivalently, the §;-condition), then ||z||, = 1
if and only if I,(z) = 1.

Lemma 2. Let ¢ = ()2, be a Musielak-Orlicz function sat-
isfying condition (+) and such that all ¢; are finite-valued. For any
sequence (z%)2, of elements in S(1¥) and & > 0 there ezist a subse-
quence (y*)$2, of (z¥)52, and a strictly increasing sequence (ik)z; of
natural numbers such that

o0
(4) Y eiyh)<é (k = 1,2,...),
1=ig41+1
(i) Ner-vr)<d2 (k= 1,25 mn>k)
i=1
k41
(i) X ei(u) <9 (k = 1,2,...; n2 k),

=1k

where y¥ denotes the i-th coordinate of y*.
The lemma can be proved in the same way as Lemma 4 in [14].
Therefore, we omit the proof.

Lemma 3 (see [7]). Let ¢ = (pi)2; be a finite-valued and
satisfying the §;-condition and condition (+) Musielak-Orlicz function.
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For a given ¢ > 0 and ¢ > 0 there ezist § = 6(c,e) > 0 such that
I (z +y) < I,(x) + € whenever z,y € 19, I,(z) < c and I,(y) < §.

Corollary 1. Under the assumption of Lemma 3 concerning ¢ we
have that for any n > 0 there erists o > 0 such that I,(z — y) > «
whenever z,y € 1%, I,(z) > n, I,(y) < n/2.

Proof. Assume that ¢ satisfies the assumptions and that the as-

sertion from the corollary does not hold, i.e. there exists 7 > 0 such
that for any a > 0 there exist z,y € [¥ such that

I(z) 21, I,(y) < g and I,(z —y) < a.

Let § > 0 be the number corresponding to ¢ = ¢ = 7 in Lemma
3, and assume @ = §. Then we have

N3
+
(B

|

Io(2) = To(y+(2 =) S Tp(y) + 3 < =,

a contradiction. Therefore, the corollary is proved.

Now, we shall introduce a parameter d, for finite-valued Musielak-
Orlicz functions ¢ = (¢;)2;.
Define

n+m .
c(z,m,n) = inf{c >0: E cp,-(%) < %} (Vz € S(1¥); m,n € N).

i=n

The sequence (c(z,m,n))p_; is nondecreasing for any = € $(I¥) and
n € N. Therefore, for any z € S(I¥) and n € N, the limit

d(z,n) = Hr-{-loo c(z,m,n)

exists. Moreover, we have d(z,n) > c¢(z,m,n) for any z € S(I¥) and
m,n € N. Let

dn = sup {d(z,n): z € 5(¥)} (Vn € N).
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It is easy to see that 1 < d, < 2 for each n € N. Since the sequence
(d,)3%, is nonincreasing, we can define

Obviously, 1 < d, < 2.

Remark 1. Note that if we change only finite number of Orlicz
functions ¢; in the sequence ¢ = (9;)2,, the parameter d, remains the
same. Also the 69-condition holds true for the Musielak-Orlicz function
changed in such a way, whenever ¢ satisfies the §2-condition.

We are now in a position to give one of the main results of this
paper.

Theorem 1. Let ¢ = (¢;)2; be a finite-valued Musielak-Orlicz
function satisfying the 83-condition and condition (+). Then D(I¥) =
dy.

Proof. First, we will prove that D(I{?) > d,. For any ¢ > 0 and
each ny € N there exist 2! € §(I¥) and m; € N such that

€ € €
e(zt,my,ny) > d(a:l,'nl) ~ 1 >dy, — 3 >d,— 2’
i.e. N
ny+rma 1
T; 1
Z ‘P’< : s) 25
i=n1 d¢ ) 2
Take ng = mq + n1 + 1. There exists z2 € §(I¥) and my > m; such
that ¢
c(xZ’ m2,n2) .>_ dtp - 5’
i.e.

N =

n2+m2 z?
w( : ) >
E ' d, — '25'

1=ng
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Generally, putting ny = ng_1 + mg_1 + 1, there exist z*¥ € S(I¥) and
m;4+1 > m; such that

€
c(zk,mk,nk) >d, — 3

i.e.

ng+mg k
T} 1
> wl()2 5
=N, ¥ 2
Let y* = (y¥)R;, where ’
ykz{zf when n; <1 < ny + mg
! 0 otherwise

Define z = (2*)32,, where 2 = y*/||y*||,. Then z*¥ € S(I¥) and
llv*lly < |lz*||l, = 1. Therefore,

| (Zk_zl) "kilk ( zk ) na-kzmz z!
£ )= i\ —o ) T S"-‘(—'—e)
\d,—3 P\l (dy - 5) o (dy — 5)

t=ny t=ny

ng+mg m'.‘ ni+m :l:l- 1
i 1
; E : . > -
E <P(d¢—%)+ (Pi(dcp_%)_?-i-

i=ny i=n

= 1.

N =

v

This means that ||z¥—2!||, > d,— £, whence it follows immediately
that D(I®) > d,.

We shall prove now that D(I¥) < d,. Assume that this inequality
does not hold. Then there exists a natural number n such that D(I¥) >
d,. Denote = D(I¥) — d,. By the definition of D(I¥) there exists a
sequence z = (z*), such that

,

llz* - 2'||, > D) = 2 Vk, l€N; k#£1). (13
v 3
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Put ¢ = (7/3)/2(dn + 1/3). In view of Lemma 3 there exists
6 € (0,¢) such that
€
I(z+y) < I,(z) + 3 (14)
whenever [,(z) < 1 and I (y) < é.

In virtue of Lemma 2 we can choose a subsequence (y*)52, of
(z*)%2, satisfying conditions (i), (ii) and (iii) from this lemma with
4/2 instead of 6.

For any n1,n2 € N, n < ny < ng, and any y € S(I*), we have
d, > ¢(y,ny — n1,n1). Therefore,

i%‘(d y+n> Z dd+ﬁ<p,(g') < (15)

i=n1 i=n,

N -

dy, - Yi ) dn
< — i < =
T dy + do+ 7 ESO'(C('!/,nl’nZ—nl) - 2(dn.+g)

3 1=ni
For all natural numbers k,[; k < I, we have
yk -y s o y
W) = (B 50 B () oo
t= =1 +1 t=ig41+1

We may assume without loss of generality that i, > n. In view of (ii) in
Lemma 2 and the inequality d,, > 1, we get

Z%(d Lon) o E%(y. ~<z<y A

In virtue of (iii) in Lemma 2 and the inequality d,, > 1 we have

ik41 y‘ k41
f— ) < (! )
> <P,(dn+n/3) <) wia) <8 (18)

=t +1 =t +1



Packing Constant in Musielak-Orlicz Sequence... 21

Moreover, by (15) we have

5 (i) <!
o tr) <5 (19)
i=ip+1 dn +1/3 2

Applying (14) with (0,...0,—y% ,,..., —yikk“ ,0,...) in place of z and
(0,.-.0,9}, 41,--+» ¥, ,,,0,...) in place of y, we get

T4l k - ]
Yi — Y 1 ¢
() 1 e -
i='zk:+1 dn +1/3 2 2

We have by Lemma 2 (i) and (iii) with §/2 instead of § and | = k + 1
that

o0

Y ew)<s G = kk+1),

=i 41+1

so applying again inequality (14), we get

E =t )<« E Ay~ — o -
(P'(dn + n/3> = iy —gi) <8+ 2 (21)

i=ip 4141 i=tip 4141

Combining now inequalities (17), (20) and (21), we get

k i
Yy -y 1 ¢ € €
- < {==2 - =<
’4%+WQ-(22)+O+Q+2—L
whence it follows that
k1 oy 2"
ly* =yl < dn+10/3 = D(I )——3-,

which contradicts (13), and consequently finishes the proof.

Theorem 2. If ¢ = (¢;)2, is a Musielak-Orlicz function which
does not satisfy the 63-condition, then A(1¥) = 1.
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Proof. It follows from the assumption that {¥ contains an isomor-
phically isometric copy of [*°. In the case when all ¢; are finite-valued

this was proved by Kaminska in [6]. The proof can be repeated in the
general case. Therefore,

2 = DI®)< D(¥) <2,
whence we get D(I®°) = 2,i.e. A(I*) = %, what completes the proof.

Corollary 1. Let I{?) be a Nakano space, where | < p; < +oo for
any t € N. Then:

A(l(”‘)) = -;-, if imsupp; = +oo, (22)
t—+400
APy = 25 /(2+25), if limsuppi < 400, (23)
t—+o00

where p = l_iminf Pi.
1—=1+00

Proof. The space I(79) is the Musielak-Orlicz space I, where ¢ =
(;)$2, is the Musielak-Orlicz function with ¢i(u) = [ulP* for each
i € N and u € R. It is obvious that ¢ satisfies the 63-condition if and

only if limsup p; < 400 and that the §3-condition implies in this case
1—+00
condition (+). Therefore, (22) follows inmediately from Theorem 2.
Assume now that limsup p; < +0c and define p = liminf p;.
i—+00 ) i—+oo
Take an arbitrary £ > 0. There exists j € N such that p; > p — ¢ for
any ¢ > j.

Given a > 0 there exist m € N and ¢ € S(I¥) such that z; = 0
for : < n and ¢(z,m,n) > d, — a/2. We have

n+m T n+m I n4+m T: 1

. 1 _ 1 pi 1 Pi =
Z%(dn—a) - z (dn—a) 2 Z (c(z,m,n)—a/2) 22
i=n t=n =1

whence
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Z""(d ) - i(d—a)zé

Then we get for any z € S(I¥):

1 > Ti \pi _ g™ 1
<G = Lo S wle @

Hence, in view of the arbitrariness of ¢ > 0, we get d, — a < 21/7,
whence d, < 2!/7 by the arbitrariness of a > 0.

Conversely, for any € > 0 there is an infinite subset A of N such
that p; < p+ ¢ for any ¢ € A. Denote the sequence (¢;)ica by ¥. If
¢ = (pi)i>1 is a sequence of Orlicz functions and ¥ = (¥;);>1 is
a subsequence of ¢, then dy < d,. So, we can assume without loss of
generality that A = N and ¥ = ¢. Take any m,n € N and z € S(I¥)
with suppz = {ie N: z; #0} C {n,n+1,...,n+ m}. We have

% ) Mi‘”(c(z m n)) ’f(c(xlﬂp;»))m

i=n
1 = 1
> a P = )
= [e(z, m,n))rte ; |z [e(z, m,n)JPte

Hence it follows that d, > 2!/? since ¢ > 0 is arbitrary.
Note. The packing constant of co is equal to %

Proof. Taking the sequence

' = (1,0,..)), 22 = (-1,1,0,...),..., (24)
" = (-1,...,-1,1,0,...),...,
N, s’

(n—1) times
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we have z™ € §(cp) for any n € N and ||z™ — 2"||cc = 2 for any
m,n € N, m # n. Therefore, D(cy) = 2,i.e. A(cy) = 1.

Theorem 3. If ¢ = (¢:)R2; is a Musielak-Orlicz function such
that all functions ¢; are finite-valued then A(h¥) = A(I®).

Proof. Assume first that ¢ satisfies the §3-condition. Then h¥ =
I¥ (see [5]), whence the desired equality follows.

Assume now that ¢ does not satisfy the 82-condition and take an
arbitrary ¢ > 0. Then there exists a closed subspace [ of h* and a linear

operator P: ¢ 2% 1 such that

llzlleo < ||1P2lly < (1 +6)llzllec (V2 € o) (25)

(see [1]). Consider the sequence (2")32, defined in (24) and define a
new sequence (Pz"/||Pz"||,)$2, in . In view of (25) we have

l‘i (l:j xi z]
= | < p(_._)_p(_.. )
““Pm‘”w 1Pzl |l oo II 1Pz, Pz,
and
1 1 1 €
e - <1- = <e. 27
’llev'll«p llpzillo| = 14+e 1+~ (27)
Applying (27), we get
" g - g 1 1
" zi _ x. > z__l.‘?__ _‘ : - . (28)
1Pz, Py | = TP || ~ TP, ~ TP,
ot = aill,  _ 2
=T 1te T T4 ©
Combining (26) and (28), we have
zt zt 2
p(_) _p(—.) > .
|7 () - (o 2T
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Since € > 0 is arbitrary it follows that D(h¥) > D(l) = 2. In view of
the obvious inequality D(h¥) < 2, we get D(h¥) = 2. The proof is
finished. ’
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