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Metric Projections and Best Approximants in
Bochner-Orlicz Spaces

RYSZARD PLUCIENNIK! and YUWEN WANG?

ABSTRACT. In the first section of this paper there are given criteria for
strict convexity and smoothness of the Bochner-Orlicz space with the Orlicz
norm as well as the Luxemburg norm. In the second one that geometrical
properties are applied to the characterization of metric projections and zero
mean valued best approximants to Bochner-Orlicz spaces.

INTRODUCTION.

Problems of finding best approximants are important in approxi-
mation theory and probability theory. Best approximants in the Hilbert
space L? are known as conditional expectations; in the space L? for
p > 1, as p-preditors [1]; in the space L! as conditional medians [17]; in
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an order closed sublattice of the space LP as p-means (3] and in Orlicz
spaces as ®-approximants [15]. Some existence problems of best ap-
proximants in Modular spaces were considered in [7] and [8]. In this
paper, we characterize the best approximant in Bochner-Orlicz spaces.
Bochner-Orlicz spaces are the natural generalization of classical Orlicz
spaces. Our preliminaries, Section 0, give some basic concepts and facts
of the theory. Section 1 is devoted to the characterization of the strict
convexity and smoothness of the Bochner-Orlicz space with the Orlicz
norm as well as the Luxemburg norm. Results from Section 1 are applied
to proofs of main theorems included in Section 2. In Section 2 there is
described metric projection II(u|C) of any element u ¢ C onto convex
subset C' of the Bochner-Orlicz space. The last theorem of this paper is
a theorem on representation of zero mean valued best approximant in
Bochner-Orlicz space.

0. PRELIMINARY DEFINITIONS AND LEMMAS.

Let (T, %, 1) be a measure space with atomless, finite measure de-
fined on o-algebra ¥ of subsets of 7', R the set of real numbers, (X, ||-||x)
a reflexive real Banach space and (X*,|| - || x») be the dual space to the
space X. Traditionally, symbol < z,z* > denotes the value of the func-
tional z* at the point z € X. By M(T, X ) we denote the linear space of
all u-equivalence classes of strongly measurable functions u(-): T — X.

A convex and even function & : R — [0, 00) is called an M-function
if ®(0) = 0, ®(u) > 0 for u # 0,

For every N-function ¢ we define the complementary function
¥: R — [0,00) by the formula

Y(v) = sup {uv — @(u)}

for every v € R. The function ¥ is also an N -function (see [10]).
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We say that the A-function & satisfies the Aj-condition (write
® € A;) if there exist constants K > 1, up > 0 such that

®(2u) < K®(u) for u > uo.

We say that the A-function ® satisfies the v/;-condition (write
® € ;) if the V-function ¥ complementary to & satisfies the A,-
condition.

Denote by small letters ¢ and- 1 the right-hand derivative of N-
functions ¢ and ¥, respectively.

The space
Lo(X) = {u(-) € M(T,X): Iusolo(ku) = /T S(k|Ju(t)||x) dt < 00}
equipped with so called Orlicz norm
lulle = inf £[1+ Lo (ku)]
ulle = 3ok ¢
or with equivalent to it Luzemburg norm
”u”(q.) = inf{k>0: IQ(k_lu) <1}

is said to be a Bochner-Orlicz space. Elements of the space Lg(X)
will be usually denoted by u instead of u(-) if it does not lead to mis-
understanding. Further, if a Bochner-Orlicz space is equipped with the
Luxemburg norm, then we will denote such space by Lg)(X). In the

case X = R, the spaces are reduced to classical Orlicz spaces (see [11]
or [16]) and they are denoted shortly by L¢.

Relation between spaces Lg(X) and Lg as well as L(g)(X) and
L(g) are expressed by the following obvious lemma

Lemma 1. u € Le(X) iff ||u(-)||x € Ls. Furthermore,

lulle = |[llw()lix|ls  and lluli@y = [|IkClx||q)
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for every u € Lo (X).

Bochner-Orlicz spaces Ly(X*) and L(y)(X*) are defined analagous-
ly. The next lemma shows some connexions between Lg(X) and
Ly (X™).

Lemma 2.

a) The following Holder inequalities

‘A<wmwwwﬂswmwwy

L<wmmn>ﬂswmmmm

hold for every u € Lg(X) and v € Ly (X™*);

b) If ® € Ay, then (La(X))* = Leg)(X*) and (L@)(X))* =
Ly(X™);

¢) The space Lg(X) is reflezive iff ® € Ay N2, i.e. ® € A; and
dc \V2 1

The proof of Lemma 2 can be found in the monograph [20].

It is well known that the infimum in the definition of the Orlicz
norm is realized for some k > 0. That fact is very useful in the theory
of classical Orlicz spaces. It is also true in the case of Orlicz-Bochner
spaces. More precisely, there holds the following

Lemma 3. If there ezxists a ko > 0 such that

/T‘I’[d’(k"”"(t)ux)]dt =1,

then

mm:iﬁwwMMMMmuw.
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b) For every u € Le(X) \ {0} there exists a kg > 0 such that

llulle = %{1+A¢(kollu(t)llx)dt}-

Proof. The proof of a) is an inmediate consequence of Theorem
1.25 from [20] and Lemma 1. By Lemma 1, b) follows from Theorem
1.27 in [20].

Definition 1. (cf. [5]). Let E be a Banach space, E* its dual space
and S(E™) the unit sphere of E*. A multi-valued mapping
Ag: E\ {0} - S(E*) defined by the formula

Ae(u) = {u* € S(E*): <u,u*> = |[lu]|, ue E\{0}}
is called a support mapping of E.

Definition 2. (cf. [2]). Let E and E* be as in Definition 1. A
multi-valued mapping Fg : E — E* defined by the formula

Fg(u) = {uv* € E*:<u,u* > = ||u|)® = ||u*|?, u€ E}
is called a duality mapping of E.

Remark 1. A relation between the support mapping of E and the
duality mapping of E is expressed by the following formula

Fg(u) = ||u||Ag(u) for every u € E,
where
Ag(u) forue E\ {0}
Ap(u) = {
0* foru = 0
and 0* is the zero element in E*.

It turns out that the properties of Fg are closely related to the
geometry of the space E. The following results may be found in [2]
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Lemma 4. Let Fg be a duality mapping of the Banach space E.
Then

a) Fg is surjective iff E is reflexive;

b) Fg is single-valued iff E is smooth;

¢) Fg is injective iff E is strictly convex.

Definition 3. Let C be a convez subset of a Banach space E. The

multi-valued mapping II(C|-) : E — C defined for each u € E by the
formula

M(Clu) = {wo€C: llu=uoll = inf [lu—oll}

is called a metric projection onto C. IfII(C|-) is single-valued, then it is
called the best approzimate operator and II(C|u) the best approzimant of
u. In particular, if C is a linear subspace of the space E = LY(T,Z,u),
then II(C|u) is said to be a generalized conditional ezpectation of u.

The set II(C|u) is characterized by the following lemma.

Lemma 5. (cf. [2]) Let up be an element of a convez subset C' of
a smooth Banach space E and let u € E\ C. TFAE.

a) uo € I(Clu);
b) <up—w, Ag(u—1ug)> >0 for every we C.

1. STRICT CONVEXITY AND SMOOTHNESS OF
BOCHNER-ORLICZ SPACES.

We will begin the study of geometrical properties with the following
theorem

Theorem 1. A Bochner-Orlicz space L(4)(X) is strictly convez iff
the following conditions are satisfied

a) X is a strictly convezr Banach space;

b) ® € Ay;
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c) ® is strictly convez.

Proof. That result is a special case of the main theorem in [6).
A criterion for strict convexity of Bochner-Orlicz spaces with Orlicz
norm is furnished by the following theorem

Theorem 2. A Bochner-Orlicz space Ly(X) is strictly convez iff
the following conditions are satisfied

a) X 1is a strictly convex Banach space;
b) @ is strictly convez.
Proof of sufficiency. Denote by S(Ls(X)) the unit sphere of the

space Lg(X). Suppose that a) and b) are satisfied. Let u,v € S(Lg(X))
be such that ||u + v||¢ = 2. We have to proved that

u(t) = o(t)forae. teT.

To this end observe that ||u(-)||x and ||v(-)||x are elements of the unit
sphere of the space Lg. Since

lu(®) + v(Dllx < [lu@)llx +[lv(t)llx  forae. teT,

by the monotonicity of the Orlicz norm it follows that

2 = lutolle = |llu(-)+00)lx| <

L

<

le(llx + [lo()llx

< llulle +[lvlle = 2.
P

Hence

= 2.
@

lu()llx + [lv()llx
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Since ® is strictly convex, Theorem 2.4 from [20] implies that Lg¢ is
strictly convex and hence

lu()lix = llo@®llx forae. teT.

Denote
To = {teT: u(t)#v(t)}.

Suppose that u(Tp) > 0. Then ||u(t)llx = |lv(t)llx > 0for ae. t € Tp.
Hence, by the strict convexity of the space X, we get

lu(®) + v())||x < 2llu(t)l|lx  for ae. t € Tp.
Moreover, by Lemma 3 b), constants k; and k; can be found such that

U= e = {1+ [ eChalucoll) de}

and
1= [lolle = ]:—2{1+/T¢I>(k2||v(t)||x)dt} -

= {1+ [ el af.

Consequently, by the convexity of ®, we obtain

kl+k2{ k; /
2 = 1 ok [lut i
ik T R Jp Pl dit

ki
ki + k2 /TQ(kznu(t)“x) dt} >

ki + kz{ / [ k1k; ] }
> —1 (] 2|u(t dt
T kiky + v Lk1+ k2 Ilu(®)llx >

kq +kz{ / [ k1ko ]
> —=q1 P i t dt
e R I e ORI R

+
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k1k; ] }
¢ t)+ v(t dt s >
t [ o + ol e} >

. 1
> ;gg;{u | 21 + 00l dt} = lu+ ollo.

This contradiction proves that u(Tp) = 0, i.e.

u(t) = v(t) forae.teT

as claimed.

Proof of necessity. Let z,y € S(L¢) be such that ||z +ylle = 2.
Fix e € §(X). Define '

u(t) = =z(t)e, v(t) = y(t)e, teT.
Then u,v € S(L¢(X)) and
llu+olle = |lz+ylle = 2
By The strict convexity of the space Lg(X), we have
u(t) = v(t) forae.teT,

and hence
z(t) = y(t) forae.teT.

Therefore, Lg is strictly convex. Using Theorem 2.4 from [20], we con-
clude that @ is strictly convex, i.e. b) is satisfied.

Now, suppose that a) is false. Then there exist e; and e, from the
unit sphere S(X) such that

ller + e2llx = 2 and €; # e;.
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Let a be a positive real number such that |laxr|l¢ = 1. Define
u({t) + v(t
u(t) = aeixr(t), v(t) = aexxr(t) and w(t) = %
for every t € T. Then
u#vand lulle = [jfle = |lwlle = 1,

which contradicts to the strict ‘convexity of the space Lg(X). Thus a)
is satisfied. This completes the proof.

For later use, we present sufficient conditions for smoothness of the
space L(¢)(X) in the following theorem

Theorem 3. If ® € A,, ¢ is continuous and X is smooth, then
the Bochner-Orlicz space L(g)(X) is smooth.

Proof. Since X is reflexive and smooth, X* is strictly convex.
Therefore, by the continuity of ¢ and Theorem 2, we conclude that
Ly (X™) is strictly convex. But (L(g)(X))* = Lw¢(X*). Hence Lg)(X)
is smooth.

Taking into account the Bochner-Orlicz space with the Orlicz norm,
we get the following

Theorem 4. If ® € Ay, ¢ is continuous and X is smooth, then
the Bochner-Orlicz space Le(X) is smooth.

Proof. Let u be a non-zero element of the space Lg(X). By Lemma
3 b) there is k > 0 such that

oo

Moreover Lemma 2 states that (Lg(X))* = L(y)(X*) because ® € A,.
Suppose that v € S(Ly)(X*)) is such that

llulle = /T < u(t),0(t) > dt. )
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Note that
llu@®)llx = < u(t), Ax(u(t)) > for t € T.

Using (1), (2) and the Young inequality, we have

k < u(t),Ax(u(t)) > _ ku(t)
l+/T(I>[ lulle ]dt = /< e ”Q, v(t) > dt <

< [ Al gy <
r Tulle

< [o[ipoie] o+ [ o[ Hllix] 4 o 3)
< 1+/¢[k<u(t),Ax(u(t)) >] it
T

llulle

Taking into account the continuity of the function ¢ and conditions
under which both sides of the Young inequality are equal, we get

ol = ¢/ L] forae. e

Hence, by (3), we have

[ < B0 5 ar = [ Oy
v~ Tllo v Tulle

___/ k“(t)’¢[k||“(t)“x]AX(u(t))> d;_

|lulle |lulle

Thus

v(t) = ¢[k”|"|‘(|tl)||X]A (u(t)) forae teT,

which implies that the support mapping is single-valued. This means
that the space Ly (X) is smooth.
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2. MAIN RESULTS.

First theorem of this section gives the complete characterization of
values of metric projection on convex subset C C Lg(X) at arbitrary
point u € Le(X)\ C.

Theorem 5. Let ® € Ay, ¢ be continuous, X be smooth and C be
a convez subset of the space Le(X). If up € C and u € Lg(X)\C, then
the following conditions are equivalent:

a) uo € II(C|u);

b) Jr < uo(t) —w(t), Ax(u(t) — uo(t)) > B[k||u(t) - uo(t)l|x] dt > 0
for any w € C, where

/T p(k|[u(t) - uo(®)l|x)] dt = 1.

Proof. By Theorem 4, the space Lg(X) is smooth. To simplify
notations we denote £ = Lg(X). Then, by Lemma 2 b), we obtain
E* = Lgy(X™).

Proof of implication. a) = b). Let uy € II(C|u). Using Lemma
5, we get

A < up(t) — w(t),Ap(u—uo)(t) > dt >0 (4)

for every w € C'. Further, by Lemma 3 b), there exists £ > 0 such that

{1+/T<I>[k||u(t)—uo(t)||x] dt} = |lu—wlle =

=

= /T < u(t) — uo(t), Ap(u — up)(t) > dt <

<7 /T Rllu(t) - wo(®)llx I1A5(w - uo)(®)][x- dt <

£ [ #1410 - w0l @+ [ 901z - )0l @} <
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< t{r+ [ ollu - woiix) o},

where ||Ag(u — uo)||(y) = 1. Hence

/T W[l|A(s - uo)(®)llx-] dt = 1 )

and

/ {@[kuuu) — wo®)llx]+ ¥lIAs(u — u0)(B)llx-]-

_K{lu(t) - uo<t)||quE(u—uo)(tmx-} it = o.

Therefore
D[klu(t) — uo(t)llx] + Y[|AE(x — uo)(®)l|x-] =

= kllu(t) — uo(t)||x||AE(u — uo)(t)||x-

for a.e. t € T. Taking into account the continuity of ¢ and conditions
under which both sides of the Young inequality are equal, we obtain

Ae(u —uo)(®)llx- = [kllu(t) — uo(t)l|x] forae. teT.

Hence ans by previous calculations, we have

/T < k(u(t) — uo(®), Aw(u — uo)(t) > dt =

= /T Kllu(t) - wo(dllx As(u - w0)(®)llx- dt =

= /T < k(u(t) — uo(t)), ¢k [lu(t) — uo(t)l|x]Ax (u(t) — uo(t)) > dt.

Consequently

Ap(u —uo)(t) = Ax(u(t) - uo(t)) ¢lkllu(t) — uo(t)llx]  (6)
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for a.e. t € T. Moreover, by (5), we have

[ iotwint) - w®llol dt = [ wAB( - w0)Ollx-] dt = 1.
T T

Hence, using (4) and (6), we obtain b).

Proof of implication b) = a). It follows immediately from Lem-
ma 5 and the equality (6).

For the case of Bochner-Orlicz spaces equipped with the Luxemburg
norm we can get the following theorem.

Theorem 6. Let ® € Ay, ¢ be continuous, X be smooth and C' be
a convez subset of the space L(e)(X). If up € C and u € Ls)(X)\C,
then the following conditions are equivalent:

a) up € II(C|u);

b) /T < ug(t) — w(t), Ax(u(t) — uo(t)) > ¢[“"(t) - "°(t)”x] dt >0

|lu = woll(e)
for any w € C.

Proof. By Theorem 3, the space L(g)(X) is smooth. Denoting
E = L)(X), by Lemma 2 b), we obtain E* = Lg(X™).

Proof of implication a) = b). Let uo € II(C|u). Lemma 5 implies
that

/T < uo(t) — w(t), Ap(u—uo)(t)> dt >0 (7)

for any w € C. Furthermore

[Ae(z —uo)lle = 1
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and
[lu — uolle) = /T < u(t) — uo(t), Ae(u —up)(t) > dt.

Using Lemma 3 b), a positive number k can be found such that

%{1+ [ wtelineu - w)olx- dt} = IAs(u - w)llv =

_ /< ut) = wot) ) ug)t) > dt <
7 |lu—uolle)

< L [ [lu(®) - w(@®llx
“kJr lu—uolle

FllAE(u — uo)(t)l|x- dt <

1

71

(8)

<t fo|Immlears [ w[uinntu- w)ox-] at} <

[lu — uolle)

< {1+ [ ¥biret - wolix-] ).

It follows from the continuity of ¢ that

[|AE(w — w)(@)||x- = %(ﬁ[”u(t) — uo(t)||x] for a.e. t € T.

||u - uo||(<1>)

Hence, by (8), we have

/ <UD w0 4wty > dt =
T |lu—uoll(e)

_ /Tllu(t)—uo(t)ux e — 50Ol dt =

|lw — uol|(a)

- [ < ) 180 Ol ) >
T

llv — uoll@)” k71 |lu— uoll(e)
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Consequently

A(u - w)(t) = ﬂ“ﬂ uo(t)l1x

Hu — uol|(e)

]Aﬂﬂﬂ—%m) )

for a.e. t € T. Combining formula (9) with (7) we complete the proof
of the desire implication.

Proof of implication. b) = a). It follows immediately from
Lemma 5 and formula (9).

A subspace L C Lg(X) is said to be a zero mean valued subspace if

L= {weLq,(X): /Tw(t)dt - 0},

where an integration is in the Bochner sense.

Theorem 7. If ® € Ay N2, ¢ and 3 are continuous and X is
reflezive, smooth and strictly convez, then for each u € Lg(X) there
ezists a unique best approzimate element II(C|u) € L. Furthermore

N(Llu) = u(t)dt  for u € Lg(X).

(T)

Proof. Using Lemma 2, Theorem 2 and Theorem 4, we conclude
that Le(X) is reflexive, strictly convex and smooth. Moreover, L is a
linear and closed subspace of Le(X). Indeed, L is linear in an obvious
manner. For the proof of the closure of L, suppose that {w,} is a
sequence of elements of the subspace L such that

llwn — w||le — 0 as n — oo.

Note that *x7(-) € Lw)(X*) = (La(X))* for any z* € X*. Hence

< / w(t)dt, =* >=/ < w(t),z* > dt:/ < w(t),z*xr(t) > dt =
T T T
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= lim [ <wy(t),z*xr(t)> dt = lim < / wy(t)dt,z* > = 0
» n—oo T

n—00 T

for each z € X. Therefore

/T w(t)ydt = o0,

i.e. w€ L.

Since L is a closed linear subspace of the reflexive strictly convex
space Lg(X), there exists a unique element ug € L such that

- = inf llu —
lu=ualle = inf llu~ols,

ie. ug = M(L|u).
By Theorem 5,

/T < uo(t) — w(t), Ax(u(t) - uo(t) > dlkllu(t) - o (t)||x] dt > 0

for any w € L, where

/T [g(K{[u(t) - vo(®)llx)] dt = 1.

Since L is linear, we have
[, < w61kl - wa(OllxIAx (u(t) - wa(t)) > dt = 0

for each w € L. Hence, by the definition of the duality mapping
Fg: E — E*, we obtain

Fe(u— ) = |lu— uolleAp(u—u) =

llw = uolle @lkllu(-) — uo()llx1Ax (u(-) - %o(-)) € L* C Lw)(X*), (10)
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where E = Lg(X). Denote
H = {z"x2("): =" € X*}.

Obiously, H is a closed, linear subspace of L(y)(X™*). Moreover,

/ < w(t),z*xr(t) > dt =< / w(t)dt,z* > = 0
T T

for any w € L and z* € X*. This inequality implies inmediately that
L = H~. Therefore,

Lt = g+ = H.
Hence, by (10), there exists 25 € X™ such that
FE(u—uo) = ZSXT. (11)

Let Fg- : E* — E** = FE be the duality mapping E*. Since E
is reflexive, smooth and strictly convex, Fg and Fg. are bijections (cf.
Lemma 4) and Fg' = Fg-. Thus from (11) it follows that

u—up = Fg'(zixr) = Fe-(z5xT)- (12)

Since

[ <sixa(@), ﬁ[‘l’_l(;(lﬂ)]-zllxﬁllx*l\x-(zs)XT(t)> it =

= lagl- ¥~ (%T))]z = llegxrlite),
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we deduce, by the definition of Fg«, that

Fg-(zoxT) = T1XT, (13)

where

n = ||z;||x-Ax‘(za)[w-‘(M(IT))]":(IT) exX™ = X.

Combining (12) and (13), we obtain
u—I(L|u) = z1xT. (14)

Integrating this equality over T', we obtain

/ w(t)dt = / sixr(t)dt = z(T)
T T

and hence

T = ;(-IT-)-/Tu(t)dt.

Coming back to the equality (14), we get inmediately

N(Lju) = u—% /T u(t)dt

for any v € Lg(T'). This completes the proof.
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