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Link Types under Twisting Solid Tori
with Essential Boundaries

TORU IKEDA

ABSTRACT. Let L be a link in 52, and Vi,..., V] solid tori with dV;
being mutually disjoint non-paralell and essential in the exterior of L. We
twist V;, one by one to the meridional direction, and produce a new link L’.
The problem is the difference between two link types L and L'.

In the case of knots, some results were got in [I2). We will generalize
them for the case of links.

1. INTRODUCTION

Throughout this paper, intX and N(X,Y) denotes the interior of
X and the neighbourhood of X in Y respectively.

Let L; and L, be unoriented links in the oriented sphere $3. If
there exists an orientation preserving homeomorphism of S$3 carrying
L, to Ly, then we write Ly = L,. This is equivalent to saying that L,
and Ly are ambient isotopic in S3.

Let L be a link in 53, and V a solid torus with a preferred framing
such that 0V N L = 0. The wrapping number wy (L) of L in V is the
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minimal geometric intersection number of LNV and a meridian disk of V.
Suppose wy (L) > 2 and 9V is oriented. Let f(™) : §3 — S be a map,
which is discontinuous on @V, such that f(™|ss_y is the identity, and
f("|y is an orientation preserving self-homeomorphism of V' satisfying
F™m) = mand M) = 14 nm, where f™ : H,(8V) — H,(dV)
is an isomorphism induced by f(™, m and ! are homology classes of
a meridian and a preferred longitude of dV with intersection number
m-l = 1 respectively. Note that for a given link L, a solid torus V, an
orientation of AV and an integer n determine a unique link type Ff™(L).
We call f(") an n — twist along V.

Let V; (i = 1,2) be solid tori with mutually disjoint boundaries, f§")
be an n-twist along V;. Since f\™ gives a homeomorphism on either V;
or §3 — intVy, f{™(11) is a solid torus bounded by #$™(81,) for any
n. We do not distinguish notationally between fl("‘) and n;-twist along
A%)(vy). Similarly, denote np-twist along f}"‘)(%) by fé"’). So we
have always ff"l) 0 f2("2) = fé"z) o fl("l) for any n; and n;.

Figure 1.
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The link types do not always vary under some composition of twist
maps. For example, the knot type K in Figure 1 is invariant under

1(1) o 2("1). Then, when the link types varies?

In the case of knots, the following theorem is given by M. Kouno,
K. Motegi and T. Shibuya ([KMS1], [KMS2}).

Theorem 1.1. Let K be a knot in S, Vi and V, solid tori with
the boundaries being mutually disjoint and essential in the exterior of

K, ffn) an n-twist along V;. Suppose K C Vi C V3, wy,(K) > 2 and
wy,(coreVy) > 2. If (n1,n2) # (0,0), then fl("‘)(K) ¢ fén’)(K).

Here coreV denotes a core of V. They also got some results about
twisting of knots along a standard solid torus. Moreover, the author
([12]) showed the following theorem.

Theorem 1.2. Let K be a knot in S3,V4,..., Vi be solid tori with
the boundaries being mutually disjoint, non-parallel and essential in the

k
exterior of K, and fi(") an n-twist along Vi. If 3 nq1 # 0, then fl("l) o
i=1

o MK 2 K.

As a special case of Theorem 1.2, he generalized Theorem 1.1 as
follows ([I2]).

Theorem 1.3. Let K be a knot in S3,Vq,..., Vi be solid tori with
the boundaries being mutually disjoint, non-parallel and essential in the
exterior of K, and fi(") an n-twist along V;. Suppose K C V1 C --- C
Vi, wy, (K) 2 2, and wy,(coreVi_y) > 2 for2 <i < k. If (ny,...,n%) #
(0,...,0), then f™ o...0 f™)(K) % K.

The problem in this paper is whether the translation of these results
for the case of links are true or not.

2. MAIN RESULTS

Let L be a non-separable non-trivial link in S3. Consider the torus
decomposition of E = §3 — intN(L,S*) (see [JS] and [Jo]). By a
finite set 7}, of mutually disjoint, non-parallel, essential tori imbedded
in E,we can decompose F uniquely into the pieces each of which is Seifert
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fibered or admits a complete hyperbolic structure of finite volume in its
interior (see [T]). We call the piece a Seifert piece or a hyperbolic piece
respectively. Moreover each Seifert piece is one of a torus knot space, a
cable space and a composing space (see [I1]).

Suppose Ti,...,T; € T, are tori, allowing duplication, each of
which satisfies the following;:

(1) There is a solid torus V; bounded by T; satisfying wy,(L) > 2.
(2) For any T € Ty, satisfying (1), T; = T for some .
(3) ¢ # j implies V; # V.

(4) f T; is standard and wgs_;nsv,(L) > 2, then there is an integer
J#tsuch that T; = Tj,ie. V;NV; = T; and V;UV; = 3.

Let 7p = {Ti,...,T;}. Note that, by the property (4), we do
not always have a one to one correspondence between indices 1,...,!
and the elements of 7p. Suppose T; has an orientation decided by that
of 53 and a normal of T; oriented to the exterior of V;. If there is an
orientation preserving homeomorphism of $3 carrying V; to Vj, it gives
an orientation preserving homeomorphism from T; to Tj.

Let ff") be an n-twist along V;. First we show the following the-
orem.

!
Theorem 2.1. If ; n; # 0, then 1("1) 0-+-0 f,("')(L) 2 L.

Though Theorem 2.1 gives the translation of Theorem 1.3 for the
case of links, it is not enough to see the general cases. First we remark
the following case, which can never be found for any knots.

Remark 2.1. When T; bounds two different Seifert pieces M and
M’ in both sides, the Seifert fibering of M and M' cannot be extended

over T;. But fibers on T; = f™(T;) given by f™ (M) and f™(M")
can be mutually isotopic for some n. In this case, the Seifert fibering of
fi(")(M) and fi(")(M’) are extended over T;. Thus T; is contained in the
interior of a new Seifert piece fg"‘)(M) U fi("‘)(M’).

We show an example in Figure 2. Let L be a link constructed from
a Hopf link by (5,2)-cabling for one component and (2,3)-cabling for
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another. The torus decomposition of the exterior of L gives an essential
torus . Let V be a solid torus bounded by T containing (5,2)-cable.
The exterior E of L consists of two Seifert pieces. The orbit manifold of
each piece is a disk with a hole and a singular point. Make a new link
L' = f=U(L) where f(*) is an n-twist along V. Since L' is a torus
link of type (6,4), T = f(~V)(T) is contained in a Seifert piece with the
orbit manifold being a disk with a hole and two singular points.

sinular points

L

orbit manifolds

Figure 2.

In this case, there can be an essential torus T’ which intersects T
for all deformation by isotopies of f(~1(E). Let V' be a solid torus
bounded by T’ and ¢{™ an n-twist along V'. We can define g(™) o f(-1)
for any n # 0, but this map is not considered in Theorem 2.1.

The non-parallel essential tori, which intersect each other for all
deformation by isotopies in E, exist only in Seifert pieces. Let T¢ be the
set of mutually non-parallel essential tori, which are the representatives
of all the isotopy classes of essential tori in the interior of the Seifert
pieces. Suppose Ti41,...,Tn are tori in 7¢, allowing duplication, which
satisfy the following:
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(1) There is a solid torus V; bounded by T; € 7s satisfying wy, (L) >
2. |

(2) For any T € T¢ satisfying (1), T; = T for'somel+1<i< m.

(3) © # 7 implies V; # V.

(4) If T; € 7¢ is standard and wgs _jpev; (L) > 2, then there is a
torus T; € 7§ with j #iand T} = Tj,ie. V;NV; = T;
and V;UV; = S3.

Let Ts = {T1+1,...,Tm}.. Tori T; and T; in 7s are not always

mutually disjoint, even if T; # T;. Let T = Tp U Ts.

Our result in the general case is stated as follows. Any cases reduce
to this theorem, which we show in §5.

Theorem 2.2. Let {T,;)}2 =1 cT and {T,,(,)}J 2, C T are two

sets of mutually disjoint tori. If Z n; — E mj # 0, then fi(]’))
i=1 j=1

(n ) )
Lo (D) 2 £33 0 --0 £y (L),
Here T,(;) may intersect T}(;) for some ¢ and j.

In a special case when all the solid tori to twist are in an inclusion
relation, we get the following theorem.

Theorem 2.3. Let L be a link in $°, V,;)(1 < i < k) solid tori
such that V1) C Veg) C -+ C Ve, ‘*’Vc(l)(L) > 2 and wv(.“)((L -
Vi) UcoreVyyy) 2 2 for 1< i< k—1. Then f 0.0 f (L) 2 L

c(1) c(k)
for any (nq,...,nk) # (0,...,0).
Theorem 2.3 gives the translation of Theorem 1.3.

3. PIECES IN A SOLID TORUS

Let V be a torus in S3 such that T = OV is essential in E, m
and [ homology classes of a meridian and a preferred longitude of T
respectively. In the statement and the proof of Lemma 3.1, double signs
are in the same order.

Lemma 3.1. Let T be a fibered torus of type (p,q) where p and ¢
are coprime integers with ¢ # 0, F: T — T a homeomorphism which
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preserves the orientation and the fibers, and F, : Hy(T) — Hy(T) an
isomorphism induced by F. If F.(m) = +m, then F.(I) = %l

Proof. Since F preserves the orientation of T and Fi is an iso-
morphism, we have F.(I) = £(I + am) for some a. Moreover, since F'
preserves the fibers on T, we have Fu(pm+gql) = *(pm+gq(l+am)) =
+(pm +ql). Then @ = 0, hence F,(I) = . &

Let M be a piece got by the torus decomposition of V —intN(L N
V,V) attaching T in V. In the statement and the proof of Lemma 3.2,
double signs are in the same order.

Lemma 3.2. Let F: M — M be an orientation preserving homeo-
morphism carrying T to T, F. : Hy(T) — Hi(T) an isomorphism
induced by F. Suppose F.(m) = xm. If M is not a Seifert piece with
meridional fibers on T, then F.(I) = %l

Proof. First, assume M is a hyperbolic piece. We have F,(I) =
+(I + am) for some a. By Mostow’s rigidity theorem ([T, 5.7.4.]),
Isom(intM) = OQut(my(intM)) is a finite group. So Flintm is homo-
topic to a unique isometry G of M and GV is the identity for some
integer N > 0. Then FN is homotopic to the identity. Then FN(l) =
(£)N( 4+ Nam) = l. Therefore a = 0, hence F.(I) = =+l

Next, assume M is a Seifert piece without meridional fibers on T'.
Since T is an essential torus in E, M is neither a trivial knot space nor a
Hopf link space. By [I1, Theorem 1}, M is homeomorphic to an exterior
of a Seifert link. So M is either a torus link space, a cable space or a
composing space by [I1, Theorem 2]. Therefore M has a unique Seifert
fibering up to isotopy by [Ja, Lemma VI.17]. Then F' is isotopic to a
fiber preserving homeomorphism. Hence the proof completes by Lemma
3.1. u

Assume M is a Seifert piece with meridional fibers on T. Then M
is a composing space, because a Seifert piece in a link exterior is either a
torus link space, a cable space or a composing space. In this case, there
is a solid torus V' satisfying V' N M = T' such that 7' = 0V’ has
meridional fibers given by M [I1, Proposition 12].

Lemma 3.3. Let T', V' be as above, T" an essential torus in
intM, V" a solid torus bounded by T" containing V', and fm, frm),
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f"(n) n-twists along V, V', V" respectively. Then we have FoNL) =
f;(n)(L) o fll(n)(L).

Proof. By [I1, Proposition 13], there is a companion of L, which
is a composite link, with coreV' being one of its components. Since
wy(coreV') = 1, f(* twists V' n times to the meridional direction.
Moreover, since wy (L — V') = 0, f™((L — V') U coreV’) is ambient
isotopic to (L — V') U coreV' in V. So we get f("(L) = f»)(L). Other
cases are similar. W

We show an example in Figure 3. By Lemma 3.3, ("), (™) and
f"") are mutually replaceable.

4. PROOF OF THEOREM 2.1

Let m; and /; be the homology classes of a meridian and a preferred
longitude of T; with m; - l; = 1 respectively, M; the piece got by
decomposing E N V; by T}, attaching T; in V;.

(L) = (L)

Figure 3.
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In this section, we suppose T; € Tp.

Proof of Theorem 2.1. Assume f{"™) o.-.0 F™M(L) 2 L for

]
some (7n1,...,n;). Under this assumption, we show Y n; = 0 in the
i=1
following.

There is an orientation preserving homeomorphism ¢ : §3 — §3
carrying fl("‘) 0:-0 f,("‘)(L) to L. Assume some M; with n; # 0 is a
composing space with meridional fibers on T;. Let T; C 9M; be a torus
with meridional fibers such that V;N M; = T;. By the condition of the
torus decomposition of E, M, is not a composing space with meridional

fibers on T;. Change fi("‘) for fj("‘) by Lemma 3.3. Then we can assume
M; with n; # 0 is not a composing space with meridional fibers on T;
for any 1.

For convenience, denote ¢ o fl("‘) 0-++0 f,("') by ¢, where p =
(n1,...,m;). Although ¢, is a discontinuous map on $3, it gives an
orientation preserving homeomorphism on each M;, which keeps the hy-
perbolic structure or Seifert fibering. Thus {@u(T)}rer; is a set of
essential tori in E = ¢,(F), a subset of which gives a torus decompo-
sition of E. As in Remark 2.1, ¢,(T') can be contained in the interior of
a Seifert piece for some T € 7;. In this case, the number of tori given
by the torus decomposition decreases. This contradicts the uniqueness
of the torus decomposition of E. Hence each torus ¢,(T) is isotopic to
a torus in 7). Then ¢, (| 7p) is isotopic to |J7p. Modify ¢ so as to

satisfy 0, (U7p) = U7b.

¢, induces a permutation @ on a finite set 7p. We can write @ as a
product disjoint cycles as follows:

(To(1,0), Tp(1,2)5 s To(1,N0) ) (Tp2,1) 5+« s Tp(z,Na) ) = (Tpr,1) s+ -+ s Tp(r, N, ))
We call the set {Tp(i 1), ..., p(i,n;)} an orbit under ¢,.

N.' l T
Let v; = Y nyuj ). Since 3 n; = 3 v;, following Lemma 4.1
=1 i=1 i=1
completes the proof of Theorem 2.1.
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Lemma 4.1. Suppose fl("‘) 0«0 f,("')(L) & [ and any M; with
n; # 0 is not a composing space with meridional fibers on T;. Let ¢,
and the orbits under ¢, are as above. Then we have v; = 0 for any i.

Proof. Let N = LCM{Ny,...,N,;} and v, = v;N/N;. We
calculate ¢¥) in the following. In the case 7 = land N = N = |,
we have

Soi; = Puo ‘PL—I

= o Lt o fiIG 0o FiIG” o
Using
Np(1,1) (n (1, 1)) d (ﬂp(l,i)) (""p(l :)) for 2 < < l
foliy ou = puofyyy™ and iy oo = puofy iy for 2 < 4
we get
(mp1,1) o £(mpa,2) ( ) -
(Pfu = popuo fp(lp(l; o p(lp(li)z) -fpzll"(l1 ‘1)) ° (,OL 2
- f;(;(nlp(ll 1)+7p(1,2)) f(nl»(; 2tn3) oo "(;;ul,)nﬂ»u.l)) 0
p( P 7
— f(zz,(l)1)+np(1,z)+n,(1.a)) f("lp(zl 2)Hnp(1,3)+1p(1,4))
?(1,1 p(
0. 0 f(?lp(lx) D1, F(1,2) ¢
P B
- (1) (v1)
= ¢l fihy o fam o o Ll
Similarly, in the general case, we have
N (v}) (v1) (v) (v,
Pu (fpu’ 1o fu N1)> (fp(m) 0 fyiiny )

The pieces My, ])(1 < j < N;) are mutually homeomorphic. So
if My(; 1) is a composing space with meridional fibers on T)p; 1), then
nyij) = 0for 1< 7 < N, thus v, = v; =0.
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Assume that M, ;) is not a composing space with meridional fibers
on Ty - gaﬁ’ gives an orientation preserving self-homeomorphism of
My 1) carrying Tp(iq) to Tpi,1). Note that when Vi) C intV; for
some j, V(1) can be automatically twisted by fJ(-"’ ). So <pﬂ’ induces
an isomorphism of H;(Tp(;,1)) carrying myi 1y to myiq) and Iy ) to
2(lpi1) + (V] + ai)myigy). Here a; depends on the twists along the
solid tori containing Vj; 1). Applying Lemma 3.2 to S"mM,,(.-,w we get
vi+a; = 0. If either there is no solid torus containing Vj; 1) or any of
the twists along the solid tori containing Vj; 1) is 0-twist, then a; = 0.
So we get &; = v} = 0 in order of the inclusion relation of the solid
tori. Therefore we get v; = 0 for any ¢. This completes the proof of
Lemma 4.1 and Theorem 2.1. B

5. PROOF OF THEOREM 2.2
In this section, we suppose that T; does not always belong to 7p.

Suppose M; and M; are Seifert pieces such that M;N M; = T;.
If a regular fiber on T; given by M; (resp. M;) is homologous to (p +
ng)m; + gl; (resp. pm; + gl;) for some coprime integers (p,q) and an
integer n, then we say T; is a connectable torus and the discrepancy of T;
is n. This means that the Seifert fibering of M; and M; are connectable
after (—n)-twist along V;.

Moreover, suppose T; is standard in $° and there is an integer j
such that V;NV; = T; = T;. If a regular fiber on 7} given by M; (resp.
M;) is homologous to (p+ n1q)mi + ql; (resp. pm; + (—n2p+ ¢)li), then
we say T; = T is a connectable torus and the discrepancies of T; and
T; are n1 and ny respectively. This means that the Seifert fibering of
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M; and M; are connectable after (—n;)-twist along V; and (—n;)-twist
along V;. .

'r Tc

Ts

Figure 4.

Obviously, the discrepancy of a connectable torus is unique. Let 7¢
be the set of all the connectable tori in 7 (Figure 4.). Then we have
T = TpUTg and Ts = T¢c - Tp.

Let {M,,}7_,; be a set of Seifert pieces in E which satisfies the
following:

(1) M = Ui.; M,, is connected.

(2) Ty, C intM implies T,; € ¢ for any 1.

(3) Fibers on T,, given by M,, are not meridional for any 1.

Let u; be the discrepancy of 7,,. By ® = fn(q—“‘)o- . -of,gr_’“'), (M)
gets to be a connected Seifert manifold. In other words, M is got by
applying ®-! to the Seifert manifold ®(M). So we call M a twisted
Seifert manifold. In this paper, we suppose the boundary components
of the twisted Seifert manifolds always belong to 7 U {0F}. When
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a twisted Seifert manifold which contains M is only M, we call M a
mazimal twisted Seifert manifold. In Figure 2, the exterior of L is an
example of a maximal twisted Seifert manifold.

Lemma 5.1. Let V be a solid torus with T = 8V being essential
in E. Suppose there is a twisted Seifert manifold M attaching T in
V, F: M — M is a fiber preserving map carrying T to T which may
be discontinuous on some essential tori in intM, F.: H1(T) — Hy(T)
is an isomorphism induced by F, m and | are homology classes of a
meridian and a preferred longitude of T respectively. If F.(m) = *m,
then Fu(l) = %l (The double signs are in the same order).

Proof. Since T is essential in E, M is neither a trivial knot space
nor a Hopflink space, and so are the Seifert pieces in M. Then the Seifert
fibering of each Seifert piece is unique by [Ja, Lemma VI.17]. Therefore
the Seifert fibering of T given by M is unique and not meridional. Hence
the proof completes by Lemma 3.1. =

Let 7;’ be a set of mutually non-parallel essential tori, which are the

representatives of all the isotopy classes in the exterior E' of fl(n‘) 0---0
f,(y?"‘)(L), where 4 = (n1,...,n). Suppose any two tori in 7 have
the transverse intersection with minimal number of components. Let
Ty,...,T, be tori in T, allowing duplication, which satisfy the following:

(1) T} is not isotopic to f}"’) 0--- of,(n"'")(Tj) for any 1 <4 < v and
1<j<m.
(2) There is a solid torus V; bounded by T} satisfying wy:(L) > 2
for any 1.
(3) For any T € T satisfying (1) and (2), T/ = T for some i.
(4) © # j implies V! # V.
(5) If T} is standard and w53—intV‘.’(L) > 2, then there is a torus 7
with j#iand T} = T}, ie. V/NV] = T/ and VUV = §°.
Let 7, = {T{,...,T,}. The existence of tori in 7,, depends on the
uncertainty of the atoroidal decomposition of the Seifert pieces. So each
T} is a connectable torus with discrepancy zero. By an m;-twist gfm")
(mi

along V/, the discrepancy of g;

)

)(T!) gets to be m;. So ¢{™) produces
no similar tori in ggm")(E’) for any m; # 0.
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Consider the general cases. Let ® be any composition of sequential
twists, each of which is defined after applying the previous twists. We
classify these twists up to isotopy as follows: The first class consists of

all the twists already defined, such as f("‘), ,(,I‘ m). ; The second class
consists of all the twists defined after a.pplymg the tw1sts in the first
class, such as g(z;;(”) ,gi?,:‘()"‘)) with T/ e(1)’ * Té(k ) being mutually

disjoint; Similarly, each class consists of the twists defined for the first
time after applying the twists in the previous classes.

f(nl) f(‘"vz) _ f(711+n2)

Calculate ¢ using in the first class and

ggm‘) o gg"") = g§m‘+m2) in the second class. Ignore all 0-twists, since

they are isotopic to the identity. Then by the above observation, there is
no twists out of the first two classes. Therefore any cases can be reduced
to Theorem 2.2.

Proof of Theorem 2.2. Assume f((l) i?l:;))(L) IS(';‘)I) -0
f,f(",zkf)(L) for some (n1,...,nk,,M1,...,Mk,). Under this assumption,

we show Z o M — Zfil m; = 0 in the following.

There is an orientation preserving homeomorphism p: §3 -8

carrying Ly = ) oo f) (D) to Ly = figi o ero £ye3 (D).
Note that ¢ o f(zlll)) .o i?;ll) (U(T - T¢)) is isotopic to f((l)l)
((’:"i)(U(’T TC)) Modify ¢ by an isotopy so as to satisfy ¢ o
n (n m (m
) oo ST - To) = i) 0-r o ASHUT - 7).

Then ¢ carries each maximal twisted Seifert manifold to a maximal
twisted Seifert manifold. So modify ¢ so as to preserve the fibering of

maximal twisted Seifert manifolds. Suppose p; = ng(x) — myx) When
i = a(k) = b(k') for some k and k', p; = ngk) When ¢ = a(k) and
i # b(k') for any k', p; = —mpx) when ¢ = b(k) and i # a(k’) for
any k', and otherwise p; = 0.
®
Ly — L
(1) f( ky) N7 f(ml)o_._°f(mk2)

a(1) a(k1) 5(1) b(k2)
L
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We classify the solid tori to twist in the two cases. First consider
the case of the solid tori without connectable toral boundaries. Let
¥ : §% = 83 be a discontinuous map defined by

-1
(m1) () (m1) (ns,)
(fb("f)l © Fucka) ) °¥ (fa(ll) e a(/ff))'

In this case, we can decompose the set 7 — 7¢ to the orbits
{Tp(inys-- p(, Ny} <4 < r) under . When Ty(; ;) bounds a hy-
perbohc plece in the same way as the proof of Theorem 2.1, we get

Z Mpii,j) = 0 for any ¢ by Lemma 4.1. When T,y bounds a

tw1sted Seifert manifold M, %™ gives a fiber preserving map of M
and an orientation preserving self-homeomorphism of Tj,(;1). Then we

N;
get Y pyi;) = 0 by Lemma 5.1.
Jj=1

Next consider the case of the solid tori with the connectable toral
boundaries. Let T; € 7¢. Since each connectable torus has unique
discrepancy, the sum of the discrepancy of all the connectable tori in the
exterior of Ly and Ly are the same. On the other hand, f,-(n) increases
the discrepancy of T; by n. Therefore the sum of n; with T,y € Tc is

equal to that of m; with Tyj) € 7c, hence Y, u; = 0.
T.€Tc

k1 2
Consequently we get Y u; = 0, thatis, 3 n;— > m; = 0,
t; €T i=1 j=1
and this completes the proof. N

6. PROOF OF THEOREM 2.3

In this section, we suppose V(1) C Vi(z) C -+ C Vo), wv, () (L) >
2, and wv(.“)((L - Vei)) UcoreVyyy)) > 2 for 1 <4 < k—1. Assume
f(("l‘)) -0 f(("k"))(L) & L for some (ny,...,nk). There is an orientation

preserving homeomorphism ¢ : §3 — §3 carrying f((ll)) 2{' k"))(L)

to L. Note that cpof((’;‘)) g(",:)) (U(T -1T¢)) is isotopic to U(T - Tc)
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in E. Modify ¢ so as to satisfy ¢ o ff_("ll)) 0:-+0 fi(";))(U(T -Tc)) =

U(T —7¢). Denote @o i(nll)) 0---0 ((:("I:)) by ¢, where p = (n1,...,n%).
Lemma 6.1. T.;) € T — T implies n; = 0.

Proof. Assume T.; € 7 — 7c. Since g, fixes (T - T¢), we
can consider the orbit of T.;) under ¢,. Either Vi C ntVy) or
Ve(j) C intVy;) holds for any j # ¢, therefore T¢(;) does not belong to
the orbit of Te(;y under . According as M.(;) is a hyperbolic piece or a
Seifert piece, the proof completes by Lemma 3.2 or 5.1 in the same way
as Lemma 4.1 respectively. B

By Lemma 6.1, we can assume T(;y € 7¢ for any i. Then each Ty
is contained in a maximal twisted Seifert manifold.

Lemma 6.2. n; = 0 for any .

Proof. Ignoring fi&'j) with n; = 0, we can suppose n; # 0 for any

First assume Ty € Tp N 7Z¢ for any i. Since ¢ (L) = L implies
that the torus decomposition of their exteriors give the same number of
tori, then ¢,(Tes)) € Tp N Tc for any i. Therefore ¢,(T(;)) is a con-
nectable torus with discrepancy non-zero. In this case, Lp,,( U TD) is iso-
topic to |J7p in E. Then modify ¢ so as to satisfy ¢,(U7p) = U7p.
So we can consider the orbit of T,(;) under . Since Te(1y,. .., Te(k) are
ordered by the inclusion relation of V1),...,V,(k), their orbits under
¢, are mutually different. According as M(;) is a hyperbolic piece or a
Seifert piece, we get n; = 0 by Lemma 3.2 or 5.1, contradiction.

Next assume T¢(;y € Tc — Tp for some i. Then T¢(;) is a connectable
torus with discrepancy zero. Suppose V;) is innermost of all the solid
tori Vg with 1 < ¢t < k and Tey) € Tc — Tp. We define some solid
tori Wy,..., W, inductively in the following. Let Wy = V). Since the
discrepancy of W, = T is zero, that of ¢,(0W)) is n; # 0. Then
©,(0W1) is isotopic to a torus in 7p. So modify ¢, by an isotopy in E
so as to satisfy ¢,(0W;) € Tp. Then one of the following occurs:

(1) pu(W1) is equal to one of V1y,...,Ve(k)-
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(2) pu(0W1) = Ty;) and pu(Ve(iy) # Vo) for some j.
(3) ¢u(0W) is disjoint to any of Ty,- .., Tek)-

When either (2) or (3) holds, let Wy = ¢,(W;). Then the discrepancy
of W3 is n; # 0. Similarly, when the solid torus W; is defined, one of
the following occurs:

(1) pu(Wy) is equal to one of V(y),..., Vi k).
(2) pu(OW;) = T(;) and @, (W;) # V() for some j.
(3) @u(0W,) is disjoint to any of Ty, . .., Te(k).

When either (2) or (3) hods, let Wiy = ¢, (W;). The discrepancy of
OW, is n; # 0, and so is that of 9W,4;. The isotopy classes of essential
tori in E are finite, then we get W; = V, ;) for some ¢ and j. Here the
discrepancy of T(;y and T,(;) are zero and n; # 0 respectively, therefore
J # ¢ holds. Note that T,y C int(V.;) N E) implies T,y € Tp for any
v. Then the number of Seifert pieces in W; N F is less than or equal to
that in V,(;) N E, and the number of the isotopy classes of essential tori in
Wi N E is greater than or equal to that in Vy;) N E. Then V,;) C intW;
contradicts the former, and W; C intV,(;) contradicts the latter. This
completes the proof. =

Consequently, these lemmas completes the proof of Theorem 2.3.
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